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1. Introduction

The double Hermite-Hadamard inequality [13, 14] can be stated as follows: If u : I → R is convex
on I then for all a1, a2 ∈ I with a1 < a2 we have

u

1
2

2∑
i=1

ai

 ≤ 1
a2 − a1

∫ a2

a1

u(x) dx ≤
1
2

2∑
i=1

u(ai). (1.1)
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Inequalities of type (1.1) have many applications in theoretical and applied mathematics, such as
convex analysis, optimization, numerical integrations, etc. As it is mentioned above, (1.1) holds for
convex functions u : I → R. A natural question is to ask whether it is possible to derive inequalities
of type (1.1) for other classes of functions. Several results in this direction were obtained for different
types of convex functions, such as m-convex functions [7,10,25], s-convex functions [11,12,17,22,27],
h-convex functions [5, 23, 24], logarithmically convex functions [19, 20, 26], convex functions with
respect to a pair of functions [3, 4, 21, 28] and convex functions on the coordinates [6, 15, 18].

The study of Hermite-Hadamard-type inequalities for second-order differential inequalities was first
considered in [1,2,8,9]. Namely, in [8], Dragomir established inequalities of type (1.1) for the class of
functions u : I → R satisfying: For all a, b ∈ I with 0 < b − a < π

ρ

u(x) ≤
sin[ρ(b − x)]
sin[ρ(b − a)]

u(a) +
sin[ρ(x − a)]
sin[ρ(b − a)]

u(b), a ≤ x ≤ b,

where ρ > 0 is a constant. A function u satisfying the above condition is called trigonometrically
ρ-convex. Moreover, in [1]- it was shown that, if u ∈ C2(I), then u is trigonometrically ρ-convex if and
only if u satisfies the second order differential inequality

u′′(x) + ρ2u(x) ≥ 0, x ∈ I.

Similar results were obtained in [9] for the class of functions u : I → R satisfying: For all a, b ∈ I with
a < b

u(x) ≤
sinh[ρ(b − x)]
sinh[ρ(b − a)]

u(a) +
sinh[ρ(x − a)]
sinh[ρ(b − a)]

u(b), a ≤ t ≤ b,

where ρ > 0 is a constant. A function u satisfying the above condition is called hyperbolic ρ-convex.
On the other hand, it was proved in [2] that, if u ∈ C2(I), then u is hyperbolic ρ-convex if and only if u
satisfies the second order differential inequality

u′′(x) − ρ2u(x) ≥ 0, x ∈ I.

Motivated by the above cited works, we extend in this paper the (right) Hermite-Hadamard
inequality (1.1) to the class of functions u ∈ C2((0,∞)) satisfying second-order differential inequalities
of the form

u′′(x) +
k
x2 u(x) ≥ 0, x > 0, (1.2)

where 0 < k ≤ 1
4 is a constant. Remark that in the limit case, k = 0 (1.2) reduces to

u′′(x) ≥ 0, x > 0,

which is equivalent to the convexity of u on (0,∞). Remark also that, if u ≤ 0 on (0,∞) and u
satisfies (1.2), then u is convex on (0,∞). However, if u satisfies (1.2) then u is not necessarily convex.
For instance, the function u(x) =

√
x + x is concave on (0,∞) and

u′′(x) +
1

4x2 u(x) =
1
4x

> 0, x > 0.

The rest of the paper is arranged as follows: In Section 2 we fix some notations and establish some
lemmas that will be used later. In Section 3, we establish Hermite-Hadamard-type inequalities for
the class of functions u ∈ C2((0,∞)) satisfying (1.2). We discuss separately the cases of k = 1

4 and
0 < k < 1

4 . The obtained results in Section 3 are extended to the two-dimensional case in Section 4.
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2. Auxiliary results

In this section, we establish some lemmas that will be useful in the proofs of our main results. We
first fix some notations that will be used throughout this paper.

We denote by M,N : (1,∞)→ R the functions defined by

M(s) =
1

ln s

(
s

3
2 −

3
2

ln s − 1
)
, N(s) =

1
ln s

(
s−

3
2 +

3
2

ln s − 1
)
.

For 0 < k ≤ 1
4 and 0 < a < b, we introduce the terms

λk =
√

1 − 4k,

A(a, b) =
a

3
2 ln b − b

3
2 ln a

ln b − ln a
, B(a, b) =

b
3
2 − a

3
2

ln b − ln a

Ck(a, b) =
1 −

(
a
b

) λk−3
2

1 −
(

a
b

)λk
, Dk(a, b) =

1 −
(

a
b

) λk+3
2

1 −
(

a
b

)λk
.

Lemma 2.1. Let 0 < a < b and

F(x) = A(a, b) + B(a, b) ln x − x
3
2 , a ≤ x ≤ b. (2.1)

Then the following holds:

(i) F(a) = F(b) = 0;
(ii) F′(a) =

√
aM

(
b
a

)
, F′(b) =

√
bM

(
b
a

)
;

(iii) F(x) ≥ 0 for all x ∈ [a, b].

Proof. (i) follows immediately from the definition of F. On the other hand, for all x ∈ [a, b], we have

F′(x) =
B(a, b) − 3

2 x
3
2

x
. (2.2)

Taking x = a (resp. x = b) in (2.2), we obtain (ii). Furthermore, from (i) and Rolle’s theorem, there
exists at least c ∈ (a, b) such that F′(c) = 0. However, from (2.2), we have F′(x) = 0 if and only if

x =

(
2
3

B(a, b)
) 2

3

.

Consequently, c =
(

2
3 B(a, b)

) 2
3
∈ (a, b) and from (2.2) F reaches its maximum value at x = c. Then due

to (i) we deduce that F(x) ≥ 0 for all x ∈ [a, b], which proves (iii). �

Lemma 2.2. Let 0 < a < b and

f (x) =
4
9
√

xF(x), a ≤ x ≤ b, (2.3)

where F is the function defined by (2.1). Then the following holds:
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(i) f (a) = f (b) = 0;
(ii) f ′(a) = 4a

9 M
(

b
a

)
, f ′(b) = −4b

9 N
(

b
a

)
;

(iii) f (x) ≥ 0 for all x ∈ [a, b];

(iv) f ′′(x) +
1

4x2 f (x) = −1 for all x ∈ (a, b).

Proof. (i)–(iii) are the immediate consequences of Lemma 2.1. (iv) follows from the definition of f
and some elementary calculations. �

Lemma 2.3. Let 0 < k < 1
4 , 0 < a < b and

G(x) = a
λk+3

2 Ck(a, b) + b
3−λk

2 Dk(a, b)xλk − x
λk+3

2 , a ≤ x ≤ b. (2.4)

Then the following holds:

(i) G(a) = G(b) = 0;
(ii) G′(a) = λkaλk−1b

3−λk
2 Dk(a, b) −

(
λk+3

2

)
a
λk+1

2 ;

(iii) G′(b) = b
λk+1

2

(
λkDk(a, b) −

(
λk+3

2

))
;

(iv) G(x) ≥ 0 for all x ∈ [a, b].

Proof. (i) follows immediately from the definition of G. On the other hand, for all x ∈ [a, b], we have

G′(x) = xλk−1
(
λkDk(a, b)b

3−λk
2 −

(
λk + 3

2

)
x

3−λk
2

)
. (2.5)

Taking x = a (resp. x = b) in (2.5) we obtain (ii) and (iii). Furthermore, from (i) and Rolle’s theorem,
there exists at least c ∈ (a, b) such that G′(c) = 0. However, from (2.5), G′(x) = 0 if and only if

x =

(
2λkDk(a, b)
λk + 3

) 2
3−λk

b.

Consequently, c =
(

2λkDk(a,b)
λk+3

) 2
3−λk b ∈ (a, b) and from (2.5), G reaches its maximum value at x = c. Then

due to (i) we deduce that G(x) ≥ 0 for all x ∈ [a, b], which proves (iv). �

Lemma 2.4. Let 0 < k < 1
4 , 0 < a < b and

g(x) =
1

k + 2
x

1−λk
2 G(x), a ≤ x ≤ b, (2.6)

where G is the function defined by (2.4). Then the following holds:

(i) g(a) = g(b) = 0;

(ii) g′(a) = 3+λk
2(k+2)a

(
2λk

3+λk

(
b
a

) 3−λk
2 Dk(a, b) − 1

)
;

(iii) g′(b) = 3+λk
2(k+2)b

(
2λk

3+λk
Dk(a, b) − 1

)
;

(iv) g(x) ≥ 0 for all x ∈ [a, b];

(v) g′′(x) +
k
x2 g(x) = −1 for all x ∈ (a, b).
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Proof. (i)–(iv) are the immediate consequences of Lemma 2.3. (v) follows from the definition of g and
some elementary calculations. �

Lemma 2.5. We have
M(s) ≥ 0, N(s) ≥ 0

for all s > 1.

Proof. We have

M(s) =
1

ln s
ϕ(s), s > 1,

where
ϕ(s) = s

3
2 −

3
2

ln s − 1.

Remark that lim
s→1+

ϕ(s) = 0. On the other hand, for all s > 1 we have

ϕ′(s) =
3
2
√

s −
3
2

s−1 =
3
2

s−1
(
s

3
2 − 1

)
≥ 0,

which shows that ϕ is a nondecreasing function. Consequently, we have ϕ(s) ≥ 0, which implies that
M(s) ≥ 0. Similarly, we have

N(s) =
1

ln s
ψ(s), s > 1,

where
ψ(s) = s−

3
2 +

3
2

ln s − 1.

Remark that lim
s→1+

ψ(s) = 0. We also have

ψ′(s) = −
3
2

s−
5
2 +

3
2

s−1 =
3
2

s−1
(
1 − s−

3
2
)
≥ 0,

which shows that ψ is a nondecreasing function. Consequently, we have ψ(s) ≥ 0, which implies that
N(s) ≥ 0. �

Lemma 2.6. Let 0 < k < 1
4 and 0 < a < b. Then the following holds:

(
b
a

) 3−λk
2 2λk

λk + 3
Dk(a, b) − 1 ≥ 0 (2.7)

and
1 −

2λk

λk + 3
Dk(a, b) ≥ 0. (2.8)

Proof. We have (
b
a

) 3−λk
2 2λk

λk + 3
Dk(a, b) − 1 =

[
1 −

(a
b

)λk
]−1

γ

(
b
a

)
, (2.9)

where
γ(s) =

2λk

λk + 3
s

3−λk
2 +

3 − λk

3 + λk
s−λk − 1, s ≥ 1.
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Observe that γ(1) = 0. On the other hand, for all s ≥ 1, we have

γ′(s) =
λk(3 − λk)
λk + 3

s−λk−1
(
s
λk+3

2 − 1
)
≥ 0,

which shows that γ is a nondecreasing function. Consequently, we have γ(s) ≥ 0 for all s ≥ 1, which
implies that γ

(
b
a

)
≥ 0. Then by (2.9), we obtain (2.7). On the other hand, we have

1 −
2λk

λk + 3
Dk(a, b) =

[
1 −

(a
b

)λk
]−1

η
(a
b

)
, (2.10)

where

η(s) =
3 − λk

λk + 3
+

2λk

λk + 3
s

3+λk
2 − sλk , 0 < s ≤ 1.

Remark that η(1) = 0, and for all 0 < s ≤ 1, we have

η′(s) = λks
1+λk

2

(
1 − s

λk−3
2

)
≤ 0,

which shows that γ is a decreasing function. Consequently, we have η
(

a
b

)
≥ η(1) = 0. Then by (2.10)

we obtain (2.8). �

3. Hermite-Hadamard-type inequalities

For 0 < k ≤ 1
4 , we consider the class of real-valued functions

C2,+
k ((0,∞)) =

{
u ∈ C2((0,∞)) : u′′(x) +

k
x2 u(x) ≥ 0 for all x > 0

}
.

Remark that, in the limit case k = 0, we have

C2,+
0 ((0,∞)) =

{
u ∈ C2((0,∞)) : u is convex on (0,∞)

}
.

In this section we establish Hermite-Hadamard-type inequalities for functions u ∈ C2,+
k ((0,∞)).

We first consider the case k = 1
4 .

Theorem 3.1. If u ∈ C2,+
1/4((0,∞)), then for all a, b ∈ R with 0 < a < b, we have∫ b

a
u(x) dx ≤

4
9

(
aM

(
b
a

)
u(a) + bN

(
b
a

)
u(b)

)
. (3.1)

Proof. Let u ∈ C2,+
1/4((0,∞)) and 0 < a < b. By Lemma 2.2-(iv), we have∫ b

a
u(x) dx = −

∫ b

a
u(x)

(
f ′′(x) +

1
4x2 f (x)

)
dx, (3.2)
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where f is the function defined by (2.3). Integrations by parts give us that

−

∫ b

a
u(x)

(
f ′′(x) +

1
4x2 f (x)

)
dx

= −
[
f ′(x)u(x)

]b
x=a +

∫ b

a
u′(x) f ′(x) dx −

∫ b

a
f (x)

1
4x2 u(x) dx

= − f ′(b)u(b) + f ′(a)u(a) +
[
f (x)u′(x)

]b
x=a −

∫ b

a
f (x)u′′(x) dx −

∫ b

a
f (x)

1
4x2 u(x) dx

= f ′(a)u(a) − f ′(b)u(b) +
(
f (b)u′(b) − f (a)u′(a)

)
−

∫ b

a
f (x)

(
u′′(x) +

1
4x2 u(x)

)
dx.

On the other hand, from Lemma 2.2-(i) we know that f (a) = f (b) = 0. Consequently, we have

−

∫ b

a
u(x)

(
f ′′(x) +

1
4x2 f (x)

)
dx = f ′(a)u(a) − f ′(b)u(b)

−

∫ b

a
f (x)

(
u′′(x) +

1
4x2 u(x)

)
dx.

(3.3)

From (3.2) and (3.3), we deduce that∫ b

a
u(x) dx = f ′(a)u(a) − f ′(b)u(b) −

∫ b

a
f (x)

(
u′′(x) +

1
4x2 u(x)

)
dx.

Since f ≥ 0 by Lemma 2.2-(iii) and u ∈ C2,+
1/4((0,∞)), then∫ b

a
f (x)

(
u′′(x) +

1
4x2 u(x)

)
dx ≥ 0.

Hence, it holds that ∫ b

a
u(x) dx ≤ f ′(a)u(a) − f ′(b)u(b).

Finally, using Lemma 2.2-(ii), we obtain (3.1). �

We now consider case 0 < k < 1
4 .

Theorem 3.2. Let 0 < k < 1
4 . If u ∈ C2,+

k ((0,∞)), then for all a, b ∈ R with 0 < a < b, we have∫ b

a
u(x) dx (3.4)

≤
λk + 3

2(k + 2)

a

(
b
a

) 3−λk
2 2λk

λk + 3
Dk(a, b) − 1

 u(a) + b
(
1 −

2λk

λk + 3
Dk(a, b)

)
u(b)

 .
Proof. Let u ∈ C2,+

k ((0,∞)) and 0 < a < b. We shall follow the same approach used in the proof of
Theorem 3.1. Namely, by Lemma 2.4-(v), we have∫ b

a
u(x) dx = −

∫ b

a
u(x)

(
g′′(x) +

k
x2 g(x)

)
dx, (3.5)
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where g is the function defined by (2.6). Integrating by parts, we get

−

∫ b

a
u(x)

(
g′′(x) +

k
x2 g(x)

)
dx = g′(a)u(a) − g′(b)u(b) + g(b)u′(b) − g(a)u′(a)

−

∫ b

a
g(x)

(
u′′(x) +

k
x2 u(x)

)
dx,

which implies by Lemma 2.4-(i) that

−

∫ b

a
u(x)

(
g′′(x) +

k
x2 g(x)

)
dx

= g′(a)u(a) − g′(b)u(b) −
∫ b

a
g(x)

(
u′′(x) +

k
x2 u(x)

)
dx.

(3.6)

In view of (3.5) and (3.6), we have∫ b

a
u(x) dx = g′(a)u(a) − g′(b)u(b) −

∫ b

a
g(x)

(
u′′(x) +

k
x2 u(x)

)
dx.

Since g ≥ 0 by Lemma 2.4-(iv) and u ∈ C2,+
k ((0,∞)), then∫ b

a
g(x)

(
u′′(x) +

k
x2 u(x)

)
dx ≥ 0.

Consequently, we get ∫ b

a
u(x) dx ≤ g′(a)u(a) − g′(b)u(b).

Finally, using Lemma 2.4-(ii)-(iii), we obtain (3.4). �

Remark 3.1. Remark that in the limit case k = 0, (3.4) reduces to the right Hermite-Hadamard
inequality for convex functions

1
b − a

∫ b

a
u(x) dx ≤

u(a) + u(b)
2

.

4. The two-dimensional case

We now consider the class of real-valued functions

C2,+
k ((0,∞)2)

=

{
u ∈ C2((0,∞)2) :

∂2u
∂x2 (x, y) +

k
x2 u(x, y) ≥ 0,

∂2u
∂y2 (x, y) +

k
y2 u(x, y) ≥ 0, x, y > 0

}
,

where 0 < k ≤ 1
4 and (0,∞)2 = (0,∞) × (0,∞). Notice that in the limit case k = 0, C2,+

0 ((0,∞)2) is the
class of functions u ∈ C2((0,∞)2) such that u is convex on the coordinates in (0,∞)2 (see Dragomir [6]).
In this section, we extend some of the obtained results in [6] to the class of functions C2,+

k ((0,∞)2).
We first consider the case k = 1

4 .
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Theorem 4.1. If u ∈ C2,+
1/4((0,∞)2), then for all a, b, c, d ∈ R with 0 < a < b and 0 < c < d we have∫ b

a

∫ d

c
u(x, y) dx dy

≤
2
9

∫ b

a

(
cM

(
d
c

)
u(x, c) + dN

(
d
c

)
u(x, d)

)
dx

+
2
9

∫ d

c

(
aM

(
b
a

)
u(a, y) + bN

(
b
a

)
u(b, y)

)
dy

≤
16ac
81

M
(
d
c

)
M

(
b
a

)
u(a, c) +

16bc
81

M
(
d
c

)
N

(
b
a

)
u(b, c)

+
16ad

81
M

(
b
a

)
N

(
d
c

)
u(a, d) +

16bd
81

N
(
b
a

)
N

(
d
c

)
u(b, d).

(4.1)

Proof. Let u ∈ C2,+
1/4((0,∞)2) and a, b, c, d ∈ R with 0 < a < b and 0 < c < d. By the definition of

C2,+
1/4((0,∞)2), the function u(x, ·) : y 7→ u(x, ·)(y) = u(x, y) belongs to C2,+

1/4((0,∞)) for all x > 0. Then
by Theorem 3.1 we have∫ d

c
u(x, y) dy ≤

4
9

(
cM

(
d
c

)
u(x, c) + dN

(
d
c

)
u(x, d)

)
.

for all x > 0. Integrating the above-mentioned inequality over (a, b) we get∫ b

a

∫ d

c
u(x, y) dx dy ≤

4
9

(
cM

(
d
c

) ∫ b

a
u(x, c) dx + dN

(
d
c

) ∫ b

a
u(x, d) dx

)
. (4.2)

Similarly, by the definition of C2,+
1/4((0,∞)2), the function u(·, y) : x 7→ u(·, y)(x) = u(x, y) belongs to

C2,+
1/4((0,∞)) for all y > 0. Then by Theorem 3.1 we have∫ b

a
u(x, y) dx ≤

4
9

(
aM

(
b
a

)
u(a, y) + bN

(
b
a

)
u(b, y)

)
.

for all y > 0. Integrating the above inequality over (c, d), we obtain∫ b

a

∫ d

c
u(x, y) dx dy ≤

4
9

(
aM

(
b
a

) ∫ d

c
u(a, y) dy + bN

(
b
a

) ∫ d

c
u(b, y) dy

)
. (4.3)

Summing (4.2) and (4.3), we obtain∫ b

a

∫ d

c
u(x, y) dx dy ≤

2
9

∫ b

a

(
cM

(
d
c

)
u(x, c) + dN

(
d
c

)
u(x, d)

)
dx

+
2
9

∫ d

c

(
aM

(
b
a

)
u(a, y) + bN

(
b
a

)
u(b, y)

)
dy,

which proves the first inequality in (4.1). On the other hand, since the function u(·, c) : x 7→ u(·, c)(x) =

u(x, c) belongs to C2,+
1/4((0,∞)), then by Theorem 3.1 we have∫ b

a
u(x, c) dx ≤

4
9

(
aM

(
b
a

)
u(a, c) + bN

(
b
a

)
u(b, c)

)
.
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Multiplying the above inequality by cM
(

d
c

)
and using Lemma 2.5, we obtain

cM
(
d
c

) ∫ b

a
u(x, c) dx ≤

4
9

cM
(
d
c

) (
aM

(
b
a

)
u(a, c) + bN

(
b
a

)
u(b, c)

)
. (4.4)

Similarly, we have ∫ b

a
u(x, d) dx ≤

4
9

(
aM

(
b
a

)
u(a, d) + bN

(
b
a

)
u(b, d)

)
,

which implies after multiplication by dN
(

d
c

)
(notice that by Lemma 2.5 we have N(s) ≥ 0 for all s > 1)

that

dN
(
d
c

) ∫ b

a
u(x, d) dx ≤

4
9

dN
(
d
c

) (
aM

(
b
a

)
u(a, d) + bN

(
b
a

)
u(b, d)

)
. (4.5)

In the same manner, we obtain

aM
(
b
a

) ∫ d

c
u(a, y) dy ≤

4
9

aM
(
b
a

) (
cM

(
d
c

)
u(a, c) + dN

(
d
c

)
u(a, d)

)
(4.6)

and

bN
(
b
a

) ∫ d

c
u(b, y) dy ≤

4
9

bN
(
b
a

) (
cM

(
d
c

)
u(b, c) + dN

(
d
c

)
u(b, d)

)
. (4.7)

Finally, the second inequality in (4.1) follows from (4.4)–(4.7). �

We next consider case 0 < k < 1
4 .

Theorem 4.2. Let 0 < k < 1
4 . If u ∈ C2,+

k ((0,∞)2), then for all a, b, c, d ∈ R with 0 < a < b and
0 < c < d we have

4(k + 2)
λk + 3

∫ b

a

∫ d

c
u(x, y) dx dy

≤ c


(
d
c

) 3−λk
2 2λk

λk + 3
Dk(c, d) − 1

 ∫ b

a
u(x, c) dx + d

(
1 −

2λk

λk + 3
Dk(c, d)

) ∫ b

a
u(x, d) dx

+a


(
b
a

) 3−λk
2 2λk

λk + 3
Dk(a, b) − 1

 ∫ d

c
u(a, y) dy + b

(
1 −

2λk

λk + 3
Dk(a, b)

) ∫ d

c
u(b, y) dy

≤

 (λk + 3)ac
k + 2


(
d
c

) 3−λk
2 2λk

λk + 3
Dk(c, d) − 1



(
b
a

) 3−λk
2 2λk

λk + 3
Dk(a, b) − 1


 u(a, c)

+

 (λk + 3)bc
k + 2


(
d
c

) 3−λk
2 2λk

λk + 3
Dk(c, d) − 1


(
1 −

2λk

λk + 3
Dk(a, b)

) u(b, c) (4.8)

+

 (λk + 3)ad
k + 2

(
1 −

2λk

λk + 3
Dk(c, d)

) 
(
b
a

) 3−λk
2 2λk

λk + 3
Dk(a, b) − 1


 u(a, d)

+

[
(λk + 3)bd

k + 2

(
1 −

2λk

λk + 3
Dk(c, d)

) (
1 −

2λk

λk + 3
Dk(a, b)

)]
u(b, d).
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Proof. Let u ∈ C2,+
k ((0,∞)2) and a, b, c, d ∈ R with 0 < a < b and 0 < c < d. By Theorem 3.2, we have∫ d

c
u(x, y) dy

≤
λk + 3

2(k + 2)

c

(
d
c

) 3−λk
2 2λk

λk + 3
Dk(c, d) − 1

 u(x, c) + d
(
1 −

2λk

λk + 3
Dk(c, d)

)
u(x, d)


for all x > 0. Integrating the above inequality over (a, b), we obtain

2(k + 2)
λk + 3

∫ b

a

∫ d

c
u(x, y) dx dy ≤ c


(
d
c

) 3−λk
2 2λk

λk + 3
Dk(c, d) − 1

 ∫ b

a
u(x, c) dx

+d
(
1 −

2λk

λk + 3
Dk(c, d)

) ∫ b

a
u(x, d) dx. (4.9)

Similarly, by Theorem 3.1, we have∫ b

a
u(x, y) dx

≤
λk + 3

2(k + 2)

a

(
b
a

) 3−λk
2 2λk

λk + 3
Dk(a, b) − 1

 u(a, y) + b
(
1 −

2λk

λk + 3
Dk(a, b)

)
u(b, y)


for all y > 0. Integrating the above inequality over (c, d), we obtain

2(k + 2)
λk + 3

∫ b

a

∫ d

c
u(x, y) dx dy ≤ a


(
b
a

) 3−λk
2 2λk

λk + 3
Dk(a, b) − 1

 ∫ d

c
u(a, y) dy

+b
(
1 −

2λk

λk + 3
Dk(a, b)

) ∫ d

c
u(b, y) dy. (4.10)

Summing (4.9) and (4.10), we obtain

4(k + 2)
λk + 3

∫ b

a

∫ d

c
u(x, y) dx dy

≤ c


(
d
c

) 3−λk
2 2λk

λk + 3
Dk(c, d) − 1

 ∫ b

a
u(x, c) dx + d

(
1 −

2λk

λk + 3
Dk(c, d)

) ∫ b

a
u(x, d) dx

+ a


(
b
a

) 3−λk
2 2λk

λk + 3
Dk(a, b) − 1

 ∫ d

c
u(a, y) dy + b

(
1 −

2λk

λk + 3
Dk(a, b)

) ∫ d

c
u(b, y) dy,

which proves the first inequality in (4.8). We now use Theorem 3.2 to get∫ b

a
u(x, c) dx

≤
λk + 3

2(k + 2)

a

(
b
a

) 3−λk
2 2λk

λk + 3
Dk(a, b) − 1

 u(a, c) + b
(
1 −

2λk

λk + 3
Dk(a, b)

)
u(b, c)

 .
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Multiplying the above inequality by c
((

d
c

) 3−λk
2 2λk

λk+3 Dk(c, d) − 1
)
, it follows from Lemma 2.6 (see (2.7))

that

c


(
d
c

) 3−λk
2 2λk

λk + 3
Dk(c, d) − 1

 ∫ b

a
u(x, c) dx

≤
λk + 3

2(k + 2)
c


(
d
c

) 3−λk
2 2λk

λk + 3
Dk(c, d) − 1

 (4.11)

·

a

(
b
a

) 3−λk
2 2λk

λk + 3
Dk(a, b) − 1

 u(a, c) + b
(
1 −

2λk

λk + 3
Dk(a, b)

)
u(b, c)

 .
Using Theorem 3.2, we obtain∫ b

a
u(x, d) dx

≤
λk + 3

2(k + 2)

a

(
b
a

) 3−λk
2 2λk

λk + 3
Dk(a, b) − 1

 u(a, d) + b
(
1 −

2λk

λk + 3
Dk(a, b)

)
u(b, d)

 .
Multiplying the above inequality by d

(
1 − 2λk

λk+3 Dk(c, d)
)
, it follows from Lemma 2.6 (see (2.8)) that

d
(
1 −

2λk

λk + 3
Dk(c, d)

) ∫ b

a
u(x, d) dx

≤
λk + 3

2(k + 2)
d
(
1 −

2λk

λk + 3
Dk(c, d)

)
(4.12)

·

a

(
b
a

) 3−λk
2 2λk

λk + 3
Dk(a, b) − 1

 u(a, d) + b
(
1 −

2λk

λk + 3
Dk(a, b)

)
u(b, d)

 .
Similarly, we have

a


(
b
a

) 3−λk
2 2λk

λk + 3
Dk(a, b) − 1

 ∫ d

c
u(a, y) dy

≤
λk + 3

2(k + 2)
a


(
b
a

) 3−λk
2 2λk

λk + 3
Dk(a, b) − 1

 (4.13)

·

c

(
d
c

) 3−λk
2 2λk

λk + 3
Dk(c, d) − 1

 u(a, c) + d
(
1 −

2λk

λk + 3
Dk(c, d)

)
u(a, d)


and

b
(
1 −

2λk

λk + 3
Dk(a, b)

) ∫ d

c
u(b, y) dy
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≤
λk + 3

2(k + 2)
b
(
1 −

2λk

λk + 3
Dk(a, b)

)
(4.14)

·

c

(
d
c

) 3−λk
2 2λk

λk + 3
Dk(c, d) − 1

 u(b, c) + d
(
1 −

2λk

λk + 3
Dk(c, d)

)
u(b, d)

 .
Finally the second inequality in (4.8) follows from (4.11)–(4.14). �

Remark 4.1. In the limit case k = 0, we have

λ0 = 1, D0(a, b) = 1 +
a
b
, D0(c, d) = 1 +

c
d
.

In this case, (4.8) reduces to

1
(d − c)(b − a)

∫ b

a

∫ d

c
u(x, y) dx dy

≤
1

4(b − a)

(∫ b

a
u(x, c) dx +

∫ b

a
u(x, d) dx

)
+

1
4(d − c)

(∫ d

c
u(a, y) dy +

∫ d

c
u(b, y) dy

)
≤

u(a, c) + u(b, c) + u(a, d) + u(b, d)
4

.

The above inequalities were derived previously by Dragomir [6] when u is convex on the coordinates.

5. Conclusions

Hermite-Hadamard-type inequalities are very useful in many branches of pure and applied
mathematics. Such inequalities were established by many authors for different kinds of convex
functions. The class of functions u ∈ C2((0,∞)) satisfying second-order differential inequalities of
the form

u′′(x) +
k
x2 u(x) ≥ 0, x > 0

is investigated in this paper. Namely, Hermite-Hadamard-type inequalities are established for this
class of functions in both cases k = 1

4 (see Theorem 3.1) and 0 < k < 1
4 (see Theorem 3.2). Next,

the obtained results are extended to the two-dimensional case by considering the class of functions
u = u(x, y) ∈ C2((0,∞)2) satisfying the system of second order differential inequalities

∂2u
∂x2 (x, y) +

k
x2 u(x, y) ≥ 0, x, y > 0,

∂2u
∂y2 (x, y) +

k
y2 u(x, y) ≥ 0, x, y > 0.

Hermite-Hadamard-type inequalities are derived for this class of functions in the case k = 1
4 (see

Theorem 4.1) and the case 0 < k < 1
4 (see Theorem 4.2).

An interesting question consists of studying the class of functions u ∈ C2(Ω) satisfying second-order
differential inequalities of the form

∆u +
k
|x|2

u(x) ≥ 0, x ∈ Ω,
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where Ω ⊂ Rn\{0} and ∆ is the Laplacian operator (∆ = ∂2

∂x2
1

+ · · · + ∂2

∂x2
n
). Notice that in the limit case

k = 0, the above class of functions reduces to the class of subharmonic functions (see, e.g., [16]).
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