Research article Special Issues

Application of symmetry analysis and conservation laws to a fractional-order nonlinear conduction-diffusion model

  • Received: 06 March 2024 Revised: 04 May 2024 Accepted: 10 May 2024 Published: 17 May 2024
  • In this paper, the Lie symmetry analysis was executed for the nonlinear fractional-order conduction-diffusion Buckmaster model (BM), which involves the Riemann-Liouville (R-L) derivative of fractional-order 'β'. In the study of groundwater flow and oil reservoir engineering where fluid flow through porous materials is crucial, BM played an important role. The Lie point infinitesimal generators and Lie algebra were constructed for the equation. The Lie symmetries were acquired for the ordinary fractional-order BM. The power series solution and its convergence were also analyzed with the application of the implicit theorem. Noether's theorem was employed to ensure the consistency of a system by deriving the conservation laws of its physical model.

    Citation: A. Tomar, H. Kumar, M. Ali, H. Gandhi, D. Singh, G. Pathak. Application of symmetry analysis and conservation laws to a fractional-order nonlinear conduction-diffusion model[J]. AIMS Mathematics, 2024, 9(7): 17154-17170. doi: 10.3934/math.2024833

    Related Papers:

  • In this paper, the Lie symmetry analysis was executed for the nonlinear fractional-order conduction-diffusion Buckmaster model (BM), which involves the Riemann-Liouville (R-L) derivative of fractional-order 'β'. In the study of groundwater flow and oil reservoir engineering where fluid flow through porous materials is crucial, BM played an important role. The Lie point infinitesimal generators and Lie algebra were constructed for the equation. The Lie symmetries were acquired for the ordinary fractional-order BM. The power series solution and its convergence were also analyzed with the application of the implicit theorem. Noether's theorem was employed to ensure the consistency of a system by deriving the conservation laws of its physical model.



    加载中


    [1] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Academic Press, 1999.
    [2] K. B. Oldham, J. Spaniel, The fractional calculus: theory and applications of differentiation and integration to arbitrary order, Academic press, 1974.
    [3] L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci., 54 (2003), 753601. https://doi.org/10.1155/S0161171203301486 doi: 10.1155/S0161171203301486
    [4] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, Vol. 204, 2006.
    [5] A. M. Wazwaz, Exact solutions for the ZK-MEW Equation by using the tanh and sine-cosine Methods, Int. J. Comput. Math., 82 (2005), 699–707. https://doi.org/10.1080/00207160512331329069 doi: 10.1080/00207160512331329069
    [6] A. M. Wazwaz, The variational iteration method for solving linear and nonlinear systems of PDEs, J. Comput. Math. Appl., 54 (2007), 895–902. https://doi.org/10.1016/j.camwa.2006.12.059 doi: 10.1016/j.camwa.2006.12.059
    [7] L. Lin, S. Zhu, Y. Xu, Y. Shi, Exact solutions of Gardner equations through tanh-coth method, Appl. Math., 7 (2016), 2374–2381. https://doi.org/10.4236/am.2016.718186 doi: 10.4236/am.2016.718186
    [8] O. S. Iyiola, O. G. Olyinka, Analytical solutions of time fractional models for homogeneous Gardner equation and non-homogeneous differential equations, Ain Shams Eng. J., 5 (2014), 2090–4479. https://doi.org/10.1016/J.ASEJ.2014.03.014 doi: 10.1016/J.ASEJ.2014.03.014
    [9] O. S. Iyiola, F. D. Zaman, A fractional diffusion equation model for cancer tumor, AIP Adv., 4 (2014), 107–121. https://doi.org/10.1063/1.4898331 doi: 10.1063/1.4898331
    [10] H. Jafari, M. Nazarib, D. Baleanuc, C. M. Khaliquea, A new approach for solving a system of fractional partial differential equations, Comput. Math. Appl., 66 (2013), 838–843. https://doi.org/10.1016/j.camwa.2012.11.014 doi: 10.1016/j.camwa.2012.11.014
    [11] H. Gandhi, D. Singh, A. Tomar, Explicit solution of general fourth order time fractional KdV equation by Lie symmetry analysis, AIP Conf. Proc., 2253 (2020), 020012. https://doi.org/10.1063/5.0019077 doi: 10.1063/5.0019077
    [12] H. Gandhi, D. Singh, A. Tomar, Lie symmetry analysis to general fifth order time fractional Korteweg-de-Vries equation and its explicit solution, In: P. Singh, R. K. Gupta, K. Ray, A. Bandyopadhyay, Proceedings of International Conference on Trends in Computational and Cognitive Engineering, Advances in Intelligent Systems and Computing, Singapore: Springer, 1169 (2020), 189–201. https://doi.org/10.1007/978-981-15-5414-8_16
    [13] H. Gandhi, A. Tomar, D. Singh, A predicted mathematical cancer tumor growth model of brain and its analytical solution by reduced differential transform method, In: P. Singh, R. K. Gupta, K. Ray, A. Bandyopadhyay, Proceedings of International Conference on Trends in Computational and Cognitive Engineering, Advances in Intelligent Systems and Computing, Singapore: Springer, 1169 (2020), 203–213. https://doi.org/10.1007/978-981-15-5414-8_17
    [14] H. Gandhi, A. Tomar, D. Singh, The study of linear and nonlinear fractional ODEs by homotopy analysis, In: T. K. Sharma, C. W. Ahn, O. P. Verma, B. K. Panigrahi, Soft Computing: Theories and Applications, Advances in Intelligent Systems and Computing, Singapore: Springer, 1380 (2021), 407–417. https://doi.org/10.1007/978-981-16-1740-9_33
    [15] H. Gandhi, D. Singh, A. Tomar, The comparative study of time fractional linear and nonlinear Newell-Whitehead-Segel equation, In: T. K. Sharma, C. W. Ahn, O. P. Verma, B. K. Panigrahi, Soft Computing: Theories and Applications, Advances in Intelligent Systems and Computing, Singapore: Springer, 1380 (2021), 419–431. https://doi.org/10.1007/978-981-16-1740-9_34
    [16] P. J. Olver, Application of Lie group symmetries to differential equations, Graduated Textin Mathematics, Springer-Verlag, Vol. 107, 2002.
    [17] T. Bakkyaraj, R. Sahadevan, Group formalism of Lie transformations to time fractional partial differential equations, Pramana-J. Phys., 85 (2015), 849–860. https://doi.org/10.1007/s12043-015-1103-8 doi: 10.1007/s12043-015-1103-8
    [18] S. Moyo, P. G. L. Leach, Symmetry method applied to a mathematical model of a tumor of brain, Proceedings of Institute of NAS of Ukraine, 50 (2004), 204–210.
    [19] Y. Zhang, Lie symmetry analysis to general time fractional Korteweg-de-Varies equation, Fract. Differ. Calc., 5 (2013), 125–135. https://doi.org/10.7153/fdc-05-11 doi: 10.7153/fdc-05-11
    [20] A. Biswas, M. Song, H. Triki, A. H. Kara, B. S. Ahmad, A. Strong, et al., Solitons, shock waves, conservation laws and bifurcation analysis of Boussinesq equation with power law non linearity and dual dispersion, Appl. Math. Inf. Sci., 3 (2014), 949–957.
    [21] A. Biswas, C. M. Khalique, Optical quasi-solitons by Lie symmetry analysis, J. King Saud Univ.-Sci., 24 (2012), 271–276. https://doi.org/10.1016/j.jksus.2011.05.003 doi: 10.1016/j.jksus.2011.05.003
    [22] A. Bansal, A. H. Kara, A. Biswas, S. P. Moshokoa, M. Belić, Optical soliton perturbation, group invariants and conservation laws of perturbed Fokas-Lenells equation, Chaos Soliton. Fract., 114 (2018), 275–280. https://doi.org/10.1016/J.CHAOS.2018.06.030
    [23] G. Wang, T. Xu, Symmetry properties and explicit solutions of the non-linear time fractional KdV equation, Bound. Value Probl., 2013 (2013), 232. https://doi.org/10.1186/1687-2770-2013-232 doi: 10.1186/1687-2770-2013-232
    [24] G. W. Wang, M. S. Hashemi, Lie symmetry analysis and soliton solutions of time fractional K(m, n) equation, Pramana-J. Phys., 88 (2017), 7. https://doi.org/10.1007/s12043-016-1320-9
    [25] Q. Huang, R. Zhdanov, Symmetries and exact solutions of the time fractional Harry-Dym equation with Riemann-Liouville derivative, Phys. A, 409 (2014), 110–118. https://doi.org/10.1016/J.PHYSA.2014.04.043 doi: 10.1016/J.PHYSA.2014.04.043
    [26] T. M. Garrido, M. S. Bruzón, Lie point symmetries and travelling wave solutions for the generalized Drinfeld-Sokolov system, J. Comput. Theor. Trans., 45 (2016), 290–298. https://doi.org/10.1080/23324309.2016.1164720 doi: 10.1080/23324309.2016.1164720
    [27] A. H. Bokhari, A. H. Kara, F. D. Zaman, On the solutions and conservation laws of model for tumor growth in the Brain, J. Math. Anal. Appl., 350 (2009), 256–261. https://doi.org/10.1016/J.JMAA.2008.09.065 doi: 10.1016/J.JMAA.2008.09.065
    [28] H. Liu, J. Li, L. Liu, Lie symmetry analysis, optimal systems and exact solution to fifth order KdV types of equations, J. Math. Anal. Appl., 368 (2010), 551–558. https://doi.org/10.1016/j.jmaa.2010.03.026
    [29] K. Singla, R. K. Gupta, On invariant analysis of some time fractional non-linear systems of partial differential equations, J. Math. Phys., 57 (2016), 101504. https://doi.org/10.1063/1.4964937 doi: 10.1063/1.4964937
    [30] I. N. Sneddon, The use in mathematical physics of Erdélyi-Kober operators and some of their generalizations, In: B. Ross, Fractional calculus and its applications, Lecture Notes in Mathematics, Springer, 457 (1975), 37–79. https://doi.org/10.1007/BFb0067097
    [31] W. Balser, Multisummability of formal power series solutions of partial differential equations with constant coefficients, J. Differ. Equations, 201 (2004), 63–74. https://doi.org/10.1016/J.JDE.2004.02.002 doi: 10.1016/J.JDE.2004.02.002
    [32] D. Shi, Y. Zhang, W. Liu, J. Liu, Some exact solutions and conservation laws of the coupled time fractional Boussinesq-Burgers system, Symmetry, 11 (2019), 77. https://doi.org/10.3390/sym11010077 doi: 10.3390/sym11010077
    [33] P. Razborova, A. H. Kara, A. Biswas, Additional conservation laws for Rosenau-KdVRLW equation with power law nonlinearity by Lie symmetry, Nonlinear Dyn., 79 (2015), 743–748. https://doi.org/10.1007/s11071-014-1700-y doi: 10.1007/s11071-014-1700-y
    [34] S. Y. Lukaschuk, Conservation laws for time fractional sub diffusion and diffusion wave equations, Nonlinear Dyn., 80 (2015), 791–802. https://doi.org/10.1007/s11071-015-1906-7 doi: 10.1007/s11071-015-1906-7
    [35] S. C. Anco, G. Bluman, Direct construction method for conservation laws of partial differential equations Part I: examples of conservation law classifications, Eur. J. Appl. Math., 13 (2002), 545–566. https://doi.org/10.1017/S095679250100465X doi: 10.1017/S095679250100465X
    [36] R. K. Gazizov, N. H. Ibragimov, S. Y. Lukashchuk, Nonlinear self-adjointness, conservation laws and exact solutions of time-fractional Kompaneets equations, Commun. Nonlinear Sci. Number. Simul., 23 (2015), 153–163. https://doi.org/10.1016/J.CNSNS.2014.11.010
    [37] H. Gandhi, A. Tomar, D. Singh, Conservation laws and exact series solution of fractional order Hirota-Satsoma coupled Korteveg-de-Vries system by symmetry analysis, Math. Methods Appl. Sci., 44 (2021), 14356–14370. https://doi.org/10.1002/mma.7701 doi: 10.1002/mma.7701
    [38] V. P. Dubey, J. Singh, A. M Alshehri, S. Dubey, D. Kumar, A comparative analysis of schemes for solving local fractional Laplace equations, Math. Methods Appl. Sci., 44 (2021), 13540–13559. https://doi.org/10.1002/mma.7642 doi: 10.1002/mma.7642
    [39] Y. Chatibi, E. E. Kinani, A. Ouhadan, On the discrete symmetry analysis of some classical and fractional differential equations, Math. Methods Appl. Sci., 44 (2020), 2868–2878. https://doi.org/10.1002/mma.6064 doi: 10.1002/mma.6064
    [40] A. Chauhan, K. Sharma, R. Arora, Lie symmetry analysis, optimal system, and generalized group invariant solutions of the (2+1)-dimensional Date-Jimbo-Kashiwara-Miwa equation, Math. Methods Appl. Sci., 43 (2020), 8823–8840. https://doi.org/10.1002/mma.6547
    [41] M. L. Gandarias, M. R. Durán, C. M. Khalique, Conservation laws and travelling wave solutions for double dispersion equations in (1+1) and (2+1) dimensions, Symmetry, 12 (2020) 950. https://doi.org/10.3390/sym12060950
    [42] M. S. Bruzón, E. Recio, T. M. Garrido, A. P. Márquez, R. de la Rosa, On the similarity solutions and conservation laws of the Cooper-Shepard-Sodano equation, Math. Methods Appl. Sci., 41 (2017), 7325–7332. https://doi.org/10.1002/mma.4829
    [43] J. D. Buckmaster, A. Nachman, L. Ting, The Buckling and Stretching of a Viscida, J. Fluid Mech., 69 (1975), 1–20. https://doi.org/10.1017/S0022112075001279 doi: 10.1017/S0022112075001279
    [44] P. Rosenau, S. Kamin, Thermal waves in an absorbing and convective medium, Phys. D, 8 (1983), 273–283. https://doi.org/10.1016/0167-2789(83)90325-1 doi: 10.1016/0167-2789(83)90325-1
    [45] M. P. Edwards, Classical symmetry reductions of nonlinear diffusion-convection equations, Phys. Lett. A, 190 (1994), 149–154. https://doi.org/10.1016/0375-9601(94)90068-X doi: 10.1016/0375-9601(94)90068-X
    [46] W. Rudin, Principles of mathematical analysis, Beijing: China Machine Press, 2004. https://doi.org/10.2307/3608793
    [47] N. H. Ibragimov, Nonlinear self-adjointness in constructing conservation laws, J. Phys. A: Math. Theor., 44 (2011), 432002. https://doi.org/10.1088/1751-8113/44/43/432002 doi: 10.1088/1751-8113/44/43/432002
    [48] N. H. Ibragimov, A new conservation theorem, J. Math. Anal. Appl., 333 (2007), 311–328. https://doi.org/10.1016/J.JMAA.2006.10.078
    [49] L. Bourdin, J. Cresson, I. Greff, A continuous/discrete fractional Noether's theorem, Commun. Nonlinear Sci. Number. Simul., 18 (2013), 878–887. https://doi.org/10.1016/j.cnsns.2012.09.003 doi: 10.1016/j.cnsns.2012.09.003
    [50] A. Chauhan, R. Arora, A. Tomar, Lie symmetry analysis and traveling wave solutions of equal width wave equation, Proyecciones (Antofagasta), 39 (2000), 173–192. https://doi.org/10.22199/issn.0717-6279-2020-01-0012 doi: 10.22199/issn.0717-6279-2020-01-0012
    [51] A. Hussain, M. K. Zia, K. S. Nisar, V. Vijayakumar, I. Khan, Lie analysis, conserved vectors, nonlinear self-adjoint classification and exact solutions of generalized N+1-dimensional nonlinear Boussinesq equation, AIMS Math., 7 (2022), 13139–13168. https://doi.org/10.3934/math.2022725
    [52] A. Hussain, A. Anjum, M. Junaid-U-Rehman, I. Khan, M. A. Sameh, A. S. Al-Johani, Symmetries, optimal system, exact and soliton solutions of (3+1)-dimensional Gardner-KP equation, J. Ocean Eng. Sci., 9 (2024), 178–190. https://doi.org/10.1016/j.joes.2022.04.035
    [53] W. A. Faridi, S. A. Al Qahtani, The explicit power series solution formation and computation of Lie point infinitesimals generators: Lie symmetry approach, Phys. Scr., 98 (2023), 125249. https://doi.org/10.1088/1402-4896/ad0948
    [54] W. A. Faridi, A. Yusuf, A Akgül, F. M. Tawfiq, F. Tchier, R. Al-deiakeh, et al., The computation of Lie point symmetry generators, modulational instability, classification of conserved quantities, and explicit power series solutions of the coupled system, Results Phys., 54 (2023), 107126. https://doi.org/10.1016/j.rinp.2023.107126
    [55] W. A. Faridi, Z. Myrzakulova, R. Myrzakulov, A. Akgül, M. S. Osman, The construction of exact solution and explicit propagating optical soliton waves of Kuralay equation by the new extended direct algebraic and Nucci's reduction techniques, Int. J. Modelling Simul., 2024, 1–20. https://doi.org/10.1080/02286203.2024.2315278 doi: 10.1080/02286203.2024.2315278
    [56] W. A. Faridi, A. M. Wazwaz, A. Mostafa, R. Myrzakulov, Z. Umurzakhova, The Lie point symmetry criteria and formation of exact analytical solutions for Kairat-Ⅱ equation: Paul-Painlevé approach, Chaos Soliton. Fract., 182 (2024), 114745. https://doi.org/10.1016/j.chaos.2024.114745 doi: 10.1016/j.chaos.2024.114745
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(710) PDF downloads(47) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog