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1. Introduction 

In recent decades, fractional-order mathematical models and their application have found huge 
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attention in various disciplines. The reason for the popularity of the fractional-order differential 

equations is mainly due to the evolution of the theory of fractional calculus and their capacity to explain 

complex phenomena. Fractional order differential equations are a generalization of integral order 

differential equations and can be generalized in time and space with the help of a power-law type long 

memory kernel of the nonlocal operator. The fractional-order model furnishes a robust tool to explain 

the memories of various materials and the nature of the legacy. Altogether, these studies have a 

translucent visible background, which unblocks a new branch of research involving hypothetical and 

numerical analysis of various fractional-order dynamical systems in fluid dynamics, mechanics, 

biological modelling, physics, engineering, and areas of medical and other sciences. Podlubny [1], 

Oldham [2], Debnath [3], and Kilbas et al. [4] have elucidated the significance and practical 

implications of employing local generalized derivatives of fractional order in real-world phenomena. 

Fractional order systems have been solved with a different group of methodologies. Wazwaz [5,6] 

applied the variation iterative method, Tanh method, and sine-cosine analysis to linear and nonlinear 

systems. Gardner equation has been solved by Lin et al. [7] with the imposition of the tanh-coth method 

and Iyiola et al. [8,9] have described applications of Caputo fractional derivatives in different nonlinear 

time-fractional homogeneous and non-homogeneous models. Jafari et al. [10] explored the numerical 

scheme to study the system of fractional PDEs. Gandhi et al. [11–15] studied the numerous fractional 

order PDEs using different techniques. 

In recent times, Lie symmetry theory plays a very important role in the invariant analysis of 

Fractional differential equations. Olver [16] emphasized a wide range of applications of Lie group 

symmetries analysis to partial differential equations (PDEs). Bakkyaraj and Sahadevan [17] illustrated 

Lie group transformation to solve the fractional-order system. Moyo& Leach [18] presented the 

mathematical cancer model by symmetry analysis. The time-fractional Korteweg-de-Varies equations 

have been solved by Zhang [19]. Biswas et al. [20,21] organized multiple objectives like solitons, 

bifurcation analysis, conservation analysis, dual dispersion, and nonlinearity laws of Boussinesq 

equation. Bansal et al. [22] have designed optical perturbation, Lie group invariants to Fokas-Lenells 

equation. The symmetry reduction has been applied to clarify the soliton solution of time-fractional 

KdV and K(m,n) equations by Wang et al. [23,24]. The Harry-Dym equation with Riemann-

Liouville fractional derivative has been studied by Huang et al. [25]. Garrido et al. [26] suggested 

Lie point symmetry along with traveling wave solution to generalized Drinfeld-Sokolov system; 

Bokhari et al. [27] illustrated fundamentals of symmetries to time-fractional tumour growth in the 

brain. Liu et al. [28] and Singla et al. [29] declared that the Lie symmetry reduction is a robust and 

authentic technique to solve higher-order nonlinear systems. The extensive use of Erdelyi–Kober 

fractional operators to help convert FPDEs into fractional ODEs has been stated by Sneddon [30]. 

Balsar et al. [31] attempted the sum ability of the series solution of PDEs with constant coefficients. 

Using the same technique, Shi et al. [32] and Razborova et al. [33] explained the additional 

conservation laws and exact solution to Boussinesq-Burgers system and Rosenau-KdV-RLW equation. 

The study of diffusion and sub-diffusion wave equations with conservation laws has been concluded 

by Lukashuk et al. [34]. Anco et al. [35] focused on the direct construction of conservation laws of 

linear and nonlinear PDEs. The nonlinear self-adjointness to the time-fractional Kompaneets equation 

has been studied by Gazizov et al. [36]. In addition, recently, Gandhi et al. [37] focused on invariant 

analysis, exact series solution and the convergence of solution by implicit theorem on fractional-order 

Hirota-Satsuma Coupled KdV system. A comparative study for solving Laplace fractional equation 

has been produced by Dubey et al. [38]. Chatibi et al. [39] have done the discrete symmetry analysis 
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of some global and local systems. The invariant solution of generalized fractional order (2+1)-

dimensional Date-Jimbo-Kashiwara-Miwa equation has been evaluated by Chauhan et al. [40]. 

Gandarias et al. [41] have discussed the conservation laws and travelling wave solutions for double 

dispersion equations in (1+1) and (2+1) dimensions. Bruzon et al. [42] found a similarity solution of 

the Cooper-Shepard-Sodano equation along with the utilization of conservation analysis. The work of 

Edwards [45], Antim et al. [50], Hussain et al. [51,52], and Faridi et al. [53–56] is worth mentioning in 

this context. 

In this paper, we examine the nonlinear time fractional convection-diffusion equation given by 

' 2( ) ( ) ( ) ( ) ,t xx x xv D v v D v v C v v = + +        (1) 

where 10    and ),( txv  represents the density of particles, D(v) is a dispersion or diffusive term, 

and C(v) is a conductive or convective term; both D(v) and C(v) are non-zero terms. We have 

considered a special case of conduction-dispersion phenomenon when D(v)=4v3 and C(v)=3v2 in 

Eq (1), which is known as Buckmaster Model (BM) and it is extremely effective and relevant to 

explore the propagation of sound, electricity, and electrodynamics in physical systems. We know that 

buckling is the process of uncertainty that originates in thin materials due to pressure exceeding and 

making the material bend out of the plane. The BM equation (1) is also meant for dynamical modeling 

of thin sheet fluid flows to draw buckling, suggested by Buckmaster [43]. 

The nonlinear convection-diffusion equations have a great contribution to the model of the 

evolution of thermal waves in plasma by Rosenau and Kamin [44]. Movement is caused within a fluid 

by the propensity of hotter or less dense material to become colder, denser material to sink under the 

impact of gravity, which in consequence shows in the transfer of heat is called convection. The action 

of distributing matter by the natural movement of particles is called diffusion. The classical nonlinear 

convection-diffusion equation is given by Edward [45]. 

Our research article is organized as some basic definitions in Section 2, Lie symmetry 

methodology algorithm for BM is explained in part 3, and infinitesimal generators have been deduced 

using symmetry reduction in Section 4, followed by reduction of FPDEs into FODEs with the 

utilization of Erdelyi-Kober operators in Section 5, the power series solutions of respective FODE of 

BM and their convergence have been studied in subsequent Sections 6 and 7, respectively, and finally 

conservation laws have been defined in Section 8, which impart great information about physical BM 

system. 

2. Preliminaries 

In this section, we provided an overview of the fundamental concepts surrounding fractional 

derivatives and integrals. Various definitions exist for fractional derivatives, including the Grunwald-

Letnikov (GL), Riemann-Liouville (RL), and Caputo formulations. Each of these definitions offers 

unique advantages and occasional drawbacks, depending on the circumstances. However, our focus 

lies on utilizing the Riemann-Liouville fractional derivative to investigate symmetry reduction and 

attain exact solutions for Fractional Partial Differential Equations (FPDEs). Below, we present some 

essential definitions necessary for our exploration: 

Definition 2.1. The R-L fractional partial derivative of order ‘β>0’ for arbitrary function v(x,t) with 

time variable ‘t’ is given as 
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Definition 2.2. The R-L integral of fractional order ‘β>0’and ‘0<t<T’ is defined as 
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Some important results associated with the above operators and used in this paper are: 
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3. Methodology 

In this section, we give a summary of the Lie symmetry analysis for fractional partial differential 

equations (FPDEs) given by: 

( , , , , ,...) ; (0,1)t x xxv F x t v v v  =  .       (9) 

In one-parameter Lie group of transformations, the infinitesimals are to be determined in such a way 

that the PDE (9) is invariant under the group of transformations; the entity ‘ε’ is a small parameter 

such that its square and higher powers may be neglected. The existence of such a group reduces the 

number of independent variables by one, which allows us to replace the PDE by an ODE and it adheres 

to the following condition: 
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where τ, ξ and η are required infinitesimals ηx, ηxx are extended infinitesimals and ηβ,t is extended 

infinitesimal of fractional parameter of order ‘β’ associated to Lie algebra of (9) is spanned by vector 

fields 
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Prolongation to (9) carried  

,0|)( 0
)2,( =− =Fvpr t



         (12) 

where prolongation operator is defined by 

.
)(

,)2,(

xx

xx

x

x

t

t

vvv
Xpr




+




+




+= 





      (13) 

The expressions for extended infinitesimals are given as 
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As ‘η’ is linear function of ‘v’ then μ→0 
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Finally, we use Eqs (13)–(18) in prolonged Eq (12), split the coefficients of vx and vxx and equate to 

zero; subsequently, we proceed to solve the system of fractional PDEs and ODEs derived from the 

process. 

4. Fractional-order convection-diffusion Buckmaster model 

Applying Lie symmetry method on BM (1), using Lie symmetry analysis to obtain following set 

of PDEs 
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In order to solve set of Eqs (19)–(24), infinitesimals in explicit form with arbitrary constants ‘p’ and 

‘q’ are given by 
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Solving Eq (27), we obtain similarity transformation 

and ( )xt v t J  −= = .        (28) 

Related FODE with time fractional conduction-diffusion Buckmaster equation is 



17160 

AIMS Mathematics  Volume 9, Issue 7, 17154–17170. 

2 3 2 2 2[4( ( )) ( ''( )) 12( ( ) ) ( '( )) 3( ( )) '( )]
v

t J J J J J J
t





     −

= + +
 .   (29) 

5. Applications of Erdelyi-Kober operators 
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Theorem. Under the similarity transformations (28) for vector field X2, the reduced FODE (29) is 
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Using Eq (31), we obtain 
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Reconsider similar arguments (λ-1) times, to get 
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Finally, FODE becomes 
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6. Power series solution of BM 

Now, for further solution of FODEs, we want to explore the explicit power series solution [11,12], 

which can be applied to solve FODE (36). 
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Put n=0 in (24) and comparing coefficients of n , we get 
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As 
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Hence, we found the exact power series solution (39). 

Now, we are expecting the convergence of solution of BM, so 2+na  in Eq (38) taken as 
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We can find 1
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))1(2()21(


+−

−−+−





n

nn
, for large arbitrary value of n. 

;||||||||||||||||
0 0 0

1
0 0 0

1
2

2 







++   



= = =
−+−



= = =
−−++

n

n

k

k

i
kniki

n

n

k

k

i
ikkninn aaaaaaaMa

  (41) 

where 
1 12 3
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| | | | | |
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It can be observed that |𝑎𝑛| ≤ 𝑐𝑛, 𝑛 = 0,1,2…. 

Further, the series function G (ζ) has non-negative convergence radius and it presents 
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  (44) 

Now, the implicit function system is defined with the variable ζ. 
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 (45) 

As I (ζ, G) is regular in vicinity of (0, c0) and I(0,c0)=0 with 0),0( 0 



cI

G
, by implicit function 

theorem explained in Rudin [46]. We observed that G (ζ) is regular in the vicinity of the point (0, c0) 

and have real positive radius; the series solution (39) converges in the vicinity of the point (0, c0). 

7. Construction of conservation laws for BM 

In the physical and mathematical vision, conservation laws play a key role in the analysis of time-

fractional PDEs. To obtain the conservation laws of convection-diffusion BM, we are generalizing the 

Noether’s theorem suggested by Ibragimov [47,48] and Bourdin et al. [49]. The applications of 

conservation laws in FPDEs are almost the same as the application of these laws in classical order 

PDEs. These conservation laws can be extended from PDEs to FDEs. Let us define a conserved vector 

for BM (2), where 
t  and 

x  are components of vector 

),,( xt  =           (46) 

which satisfy the continuity or conservation equation given by 

.0|)()( 0=+ =
x

x
t

t DD 
        (47) 

A formal Lagrangian form with ‘u’ as a new independent variable described as  

 ,3124 2223
xxxxt vvvvvvvu −−−= 

       (48) 

where v /  is Euler-Lagrangian operator, is defined as 

1 2
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t i i i
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= + + −
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
    (49) 

where 
*)( 

tD is adjoint of R-L fractional differential operator )( 
tD . 

Adjoint equation of (1), is given by 

,0;)()1()( ** ===−= −

v
DDJD T

c
t

n
t

n
Tt

n
t



 

     (50) 

where −n

Tt J is right-handed fractional integral of order (n-β) and 
T

c

t D is Caputo right-handed 

derivative operator of fractional order β. 

The idea of the physical property of self-adjointness for establishing these laws has been 

discussed in [36] and this concept can also be applied and expanded to fractional PDEs. The time 

fractional convection-diffusion equation will be self-adjoint if the adjoint Eq (50) is well pleased for 

the obtained solution of model (1). 



17164 

AIMS Mathematics  Volume 9, Issue 7, 17154–17170. 

For further discussion, the basic Noether expression is defined as 
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     (51) 

where Nt and Nx are noether operators. As Nx in (1) does not have the non-integer or fractional 

derivatives with variable ‘x’, so the general expression is 
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and Nt involves fractional derivative, so this can be expressed by RL derivatives as 
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In Eq (51), X represents the prolongation of symmetry reduction with characteristics of the vector 

field W=η–τvt–ξvx, and operator I in (53) is described as 
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Applying Lagrangian operator ‘  ’ on (51) for any vector X of (1), we obtained 

0( ) ( ) | 0 also 0.t xX D D
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
=+ + = =

      (55) 

Thus, we obtained the conservation law of (1) 
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The components λt and λx of conserved vector fields in (30) can be expressed by 
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The adjoint equation for (1) is found as 

0
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17165 

AIMS Mathematics  Volume 9, Issue 7, 17154–17170. 

If adjoint Eq (58) is satisfied for all solutions of (1), is said to be nonlinear self-adjoint. It shows 

 .312443)( 222332*
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    (59) 

Substituting 0)()(),( == xtxtu   represents the nonlinear self adjointness of (1). By using the 

above (59), we obtain 
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Which implies that Cxtv == ),( , C is arbitrary constant. 

Thus, the Lagrangian operator for (1) is  xxxxt vvvvvvvC 2223 3124 −−−=  . Now, we proceed 

with the calculation of conservation laws of BM using (57). 

Case1. For 
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 the Lie characteristic is xvW −=1 , so the components of conserved 

vectors are as follows: 
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Case2. For 
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  (63) 

8. Conclusions 

In the article, we have utilized the symmetry reduction to fractional-order convection-diffusion 

Buckmaster model. The Lie point infinitesimal generators and Lie algebra have been constructed. Also, 

Erdelyi-Kober operators are used to transforming the fractional-PDE into fractional-ODE. Finally, the 

power series solutions of the model are obtained with their convergence the implicit function theorem. 

To construct the conservation laws of the model, Ibragimov’s method and Noether’s theorem have 

been used. The study of the obtained solutions with conservation laws is supposed to be very useful in 

the future for various stream of physical and applied sciences. 
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