Research article Special Issues

Double fuzzy $ \alpha $-$ \eth $-continuous multifunctions

  • Received: 29 March 2024 Revised: 27 April 2024 Accepted: 07 May 2024 Published: 14 May 2024
  • MSC : 54C10, 54C60, 54A40, 32A12

  • Various types of double fuzzy continuity of fuzzy multifunctions are introduced in this paper. These types are double fuzzy upper and lower $ \alpha $-$ \eth $-continuous, almost $ \alpha $-$ \eth $-continuous, weakly $ \alpha $-$ \eth $-continuous and almost weakly $ \alpha $-$ \eth $-continuous multifunctions. Double fuzzy ideals are playing the main role in defining these types of continuous multifunctions. All implications associated with these types are ensured; also, many examples are introduced to illustrate these implications, and to explain the advantages of these new types of continuity for some previous definitions.

    Citation: M. N. Abu_Shugair, A. A. Abdallah, S. E. Abbas, Ismail Ibedou. Double fuzzy $ \alpha $-$ \eth $-continuous multifunctions[J]. AIMS Mathematics, 2024, 9(6): 16623-16642. doi: 10.3934/math.2024806

    Related Papers:

  • Various types of double fuzzy continuity of fuzzy multifunctions are introduced in this paper. These types are double fuzzy upper and lower $ \alpha $-$ \eth $-continuous, almost $ \alpha $-$ \eth $-continuous, weakly $ \alpha $-$ \eth $-continuous and almost weakly $ \alpha $-$ \eth $-continuous multifunctions. Double fuzzy ideals are playing the main role in defining these types of continuous multifunctions. All implications associated with these types are ensured; also, many examples are introduced to illustrate these implications, and to explain the advantages of these new types of continuity for some previous definitions.



    加载中


    [1] S. E. Abbas, A. H. Zakaria, Lattice valued double fuzzy ideal structure, J. Fuzzy Math., 20 (2012), 899–910.
    [2] S. E. Abbas, M. A. Hebeshi, I. M. Taha, On fuzzy upper and lower semi-continuous multifunctions, J. Fuzzy Math., 22 (2014), 951–962.
    [3] S. E. Abbas, M. A. Hebeshi, I. M. Taha, On upper and lower almost weakly continuous fuzzy multifunctions, Iran. J. Fuzzy Syst., 12 (2015), 101–114.
    [4] S. E. Abbas, M. A. Hebeshi, I. M. Taha, On upper and lower contra-continuous fuzzy multifunctions, Punjab Uni. J. Math., 47 (2015), 105–117.
    [5] S. E. Abbas, I. Ibedou, Fuzzy topological concepts via ideals and grills, Ann. Fuzzy Math. Inform., 15 (2018), 137–148.
    [6] M. N. A. Shugair, A. A. Abdallah1, S. E. Abbas, E. El-Sanowsy, I. Ibedou, Double fuzzy ideal multifunctions, Mathematics, 2024 (2024), 1128.
    [7] J. Albrycht, M. Maltoka, On fuzzy multivalued functions, Fuzzy Set. Syst., 12 (1984), 61–69.
    [8] K. T. Atanassov, New operations defined over the intuitionistic fuzzy sets, Fuzzy Set. Syst., 61 (1994), 137–142.
    [9] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182–190.
    [10] D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Set. Syst., 88 (1997), 81–89.
    [11] J. G. Garcia, S. E. Rodabaugh, Order-theoretic, topological, categorical redundancies of interval-valued sets, grey sets, vague sets, interval-valued intuitionistic sets, intuitionistic fuzzy sets and topologies, Fuzzy Set. Syst., 156 (2005), 445–484.
    [12] A. Ghareeb, Normality of double fuzzy topological spaces, Appl. Math. Lett., 24 (2011), 533–540.
    [13] M. A. Hebeshi, I. M. Taha, On upper and lower $\alpha$-continuous fuzzy multifunctions, J. Intell. Fuzzy Syst., 25 (2015), 2537–2546.
    [14] T. Kubiak, On fuzzy topologies, Ph.D. dissertation, Adam Mickiewicz University, Poznan, Poland, 1985.
    [15] F. M. Mohammed, M. S. M. Noorani, A. Ghareeb, Somewhat slightly generalized double fuzzy semi continuous functions, Int. J. Math. Math. Sci., 2014 (2014), 756376.
    [16] T. K. Mondal, S. K. Samanta, On intuitionistic gradation of openness, Fuzzy Set. Syst., 131 (2002), 323–336.
    [17] N. Rajesh, M. Vanishree, B. Brundha, Double fuzzy contra-continuous multifunctions, Malaya J. Mat., 7 (2019), 862–866.
    [18] A. P. Sostak, On a fuzzy topological structure, In: Proceedings of the 13th Winter School on Abstract Analysis, Palermo, Italy: Circolo Matematico di Palermo, 1985, 89–103.
    [19] A. P. Sostak, Basic structures of fuzzy topology, J. Math. Sci., 78 (1996), 662–701.
    [20] I. M. Taha, On fuzzy upper and lower $\alpha$-$\ell$-continuity and their decomposition, J. Math. Comput. Sci., 11 (2021), 427–441.
    [21] E. Tsiporkova, B. De Baets, E. Kerre, A fuzzy inclusion based approach to upper inverse images under fuzzy multivalued mappings, Fuzzy Set. Syst., 85 (1997), 93–108.
    [22] E. Tsiporkova, B. De Baets, E. Kerre, Continuity of fuzzy multivalued mappings, Fuzzy Set. Syst., 94 (1998), 335–348.
    [23] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(373) PDF downloads(26) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog