Various types of double fuzzy continuity of fuzzy multifunctions are introduced in this paper. These types are double fuzzy upper and lower $ \alpha $-$ \eth $-continuous, almost $ \alpha $-$ \eth $-continuous, weakly $ \alpha $-$ \eth $-continuous and almost weakly $ \alpha $-$ \eth $-continuous multifunctions. Double fuzzy ideals are playing the main role in defining these types of continuous multifunctions. All implications associated with these types are ensured; also, many examples are introduced to illustrate these implications, and to explain the advantages of these new types of continuity for some previous definitions.
Citation: M. N. Abu_Shugair, A. A. Abdallah, S. E. Abbas, Ismail Ibedou. Double fuzzy $ \alpha $-$ \eth $-continuous multifunctions[J]. AIMS Mathematics, 2024, 9(6): 16623-16642. doi: 10.3934/math.2024806
Various types of double fuzzy continuity of fuzzy multifunctions are introduced in this paper. These types are double fuzzy upper and lower $ \alpha $-$ \eth $-continuous, almost $ \alpha $-$ \eth $-continuous, weakly $ \alpha $-$ \eth $-continuous and almost weakly $ \alpha $-$ \eth $-continuous multifunctions. Double fuzzy ideals are playing the main role in defining these types of continuous multifunctions. All implications associated with these types are ensured; also, many examples are introduced to illustrate these implications, and to explain the advantages of these new types of continuity for some previous definitions.
[1] | S. E. Abbas, A. H. Zakaria, Lattice valued double fuzzy ideal structure, J. Fuzzy Math., 20 (2012), 899–910. |
[2] | S. E. Abbas, M. A. Hebeshi, I. M. Taha, On fuzzy upper and lower semi-continuous multifunctions, J. Fuzzy Math., 22 (2014), 951–962. |
[3] | S. E. Abbas, M. A. Hebeshi, I. M. Taha, On upper and lower almost weakly continuous fuzzy multifunctions, Iran. J. Fuzzy Syst., 12 (2015), 101–114. |
[4] | S. E. Abbas, M. A. Hebeshi, I. M. Taha, On upper and lower contra-continuous fuzzy multifunctions, Punjab Uni. J. Math., 47 (2015), 105–117. |
[5] | S. E. Abbas, I. Ibedou, Fuzzy topological concepts via ideals and grills, Ann. Fuzzy Math. Inform., 15 (2018), 137–148. |
[6] | M. N. A. Shugair, A. A. Abdallah1, S. E. Abbas, E. El-Sanowsy, I. Ibedou, Double fuzzy ideal multifunctions, Mathematics, 2024 (2024), 1128. |
[7] | J. Albrycht, M. Maltoka, On fuzzy multivalued functions, Fuzzy Set. Syst., 12 (1984), 61–69. |
[8] | K. T. Atanassov, New operations defined over the intuitionistic fuzzy sets, Fuzzy Set. Syst., 61 (1994), 137–142. |
[9] | C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182–190. |
[10] | D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Set. Syst., 88 (1997), 81–89. |
[11] | J. G. Garcia, S. E. Rodabaugh, Order-theoretic, topological, categorical redundancies of interval-valued sets, grey sets, vague sets, interval-valued intuitionistic sets, intuitionistic fuzzy sets and topologies, Fuzzy Set. Syst., 156 (2005), 445–484. |
[12] | A. Ghareeb, Normality of double fuzzy topological spaces, Appl. Math. Lett., 24 (2011), 533–540. |
[13] | M. A. Hebeshi, I. M. Taha, On upper and lower $\alpha$-continuous fuzzy multifunctions, J. Intell. Fuzzy Syst., 25 (2015), 2537–2546. |
[14] | T. Kubiak, On fuzzy topologies, Ph.D. dissertation, Adam Mickiewicz University, Poznan, Poland, 1985. |
[15] | F. M. Mohammed, M. S. M. Noorani, A. Ghareeb, Somewhat slightly generalized double fuzzy semi continuous functions, Int. J. Math. Math. Sci., 2014 (2014), 756376. |
[16] | T. K. Mondal, S. K. Samanta, On intuitionistic gradation of openness, Fuzzy Set. Syst., 131 (2002), 323–336. |
[17] | N. Rajesh, M. Vanishree, B. Brundha, Double fuzzy contra-continuous multifunctions, Malaya J. Mat., 7 (2019), 862–866. |
[18] | A. P. Sostak, On a fuzzy topological structure, In: Proceedings of the 13th Winter School on Abstract Analysis, Palermo, Italy: Circolo Matematico di Palermo, 1985, 89–103. |
[19] | A. P. Sostak, Basic structures of fuzzy topology, J. Math. Sci., 78 (1996), 662–701. |
[20] | I. M. Taha, On fuzzy upper and lower $\alpha$-$\ell$-continuity and their decomposition, J. Math. Comput. Sci., 11 (2021), 427–441. |
[21] | E. Tsiporkova, B. De Baets, E. Kerre, A fuzzy inclusion based approach to upper inverse images under fuzzy multivalued mappings, Fuzzy Set. Syst., 85 (1997), 93–108. |
[22] | E. Tsiporkova, B. De Baets, E. Kerre, Continuity of fuzzy multivalued mappings, Fuzzy Set. Syst., 94 (1998), 335–348. |
[23] | L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. |