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1. Introduction

The fuzzy concept has penetrated nearly all branches of mathematics since the concept was defined
by Zadeh [23]. Fuzzy sets have applications in several fields, such as information systems [9] and
control [8]. The theory of fuzzy topological spaces was first defined and developed by Chang [9], and
since then, various notions of general topology have been generalized to the fuzzy topological spaces
defined by Chang. Sostak [18] and Kubiak [14] developed fuzzy topology as an extension of the
fuzzy topology introduced by Chang [9]. It has been developed in several ways. Sostak [19] published
a survey article on the areas of development of fuzzy topological spaces. In a previous study [8],
the author introduced the idea of intuitionistic fuzzy sets; subsequently, Coker [10] introduced the
concept of intuitionistic fuzzy topological spaces. Furthermore, as a generalization of fuzzy topological
spaces, Mondal and Samanta [16] introduced the concept of the intuitionistic gradation of openness.
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In 2005, Garcia and Rodabaugh [11] proposed the termination of the term intuitionistic. They
proved that the term intuitionistic is unsuitable in mathematics and related applications and replaced
it with the notation “double”. Several topologists have studied various concepts in a double fuzzy
(DF-) topological spaces [12,15]. A fuzzy multifunction is a fuzzy set valued function [7, 21].
Fuzzy multifunctions arise in many applications, for instance, the budget multifunction occurs in
artificial intelligence, economic theory and decision theory. The biggest difference between fuzzy
multifunctions and fuzzy functions has to do with the definition of an inverse image. For a fuzzy
multifunction there are two types of inverses. These two definitions of the inverse have led to two
definitions of continuity (DFU) and (DFL) continuous multifunctions; for more details the reader
is referred to [2, 3, 13,20]. Fuzzy multifunctions are being used and applied in many fields, like
economics, artificial intelligence, decision theory, uncertainty, etc.

The goals of this paper were as follows: (1) to introduce DF-local multifunctions related to DF-
ideals and study its properties; (2) to submit new types of DF-continuity based on a DF-ideal and study
the common properties of continuity; and (3) to discuss the implications between these new types
of continuity. Many examples are introduced to ensure the non reversed implications. The use of a
DF-ideal in defining these new types of continuity extend the usual corresponding definitions of fuzzy
continuity; thus, the introduced types of DF-continuity are extensions of the corresponding usual ones.
These types of DF-ideal continuous multifunctions are called almost, weak and almost weak.

The layout of the paper is divided into 6 sections. Section 1 is an introduction. Section 2 presents the
main definition of DF-local functions that are joined to a DF-ideal. Section 3 investigates the notions
of DFU and DFL almost a-0-continuity and introduces many characteristic properties of these defined
multifunctions. Section 4 investigates the notions of DFU and DFL weak @-08-continuity and discusses
its properties, as well as investigates the implications associated with the previous definitions of DFU
and DFL almost a-0-continuity. Section 5 investigates the notions of DFU and DFL almost weak a-
O-continuity, and discusses its properties, as well as investigates the implications associated with the
previous definitions of DFU and DFL almost a-0-continuity and DFU and DFL weak @-8-continuity.
In Section 6, we introduce a generalization of several types of DF-multifunctions by using arbitrary
operators. Section 7 presents the conclusion.

Throughout this paper, let X be a universal set, I be the closed unit interval [0, 1], I, = (0, 1], and
I, = [0,1). I refers to the set of all fuzzy sets in X. 0 and 1 refer to the empty and the whole fuzzy
sets, respectively on X. The complement 1 — A of a fuzzy set A € ¥ is defined by 1 — A(x) = 1 — A(x).
A fuzzy point x, in X is a fuzzy set, so x,(z) = 0 Vz # x and x,(x) = t.

x; € Aif and only if # < A(x), x € X. In [5], the authors defined the fuzzy difference between two fuzzy
sets as follows:
UAA=0if u <A, and g A1 =puAA° otherwise.

Recall that a DF-ideal (3, 3°) on X [1] as 8,8° : I — [ satisfies the following conditions:

(1) s ) +d° ) <1.

(2) 41 £ A, implies that 8 (4;) > 8 (4,) and 8° (4;) < 8° (Ap).

(3) 8(4; VA3) 20(4)) AB(A) and 8° (4; V A,) <0°(4;) V O°(4y) .

The special DF-ideals (60, 6"0), (61, 6"1) are defined by:

8%0) = 8°'(1) = 1, 8°°(0) = 8'(1) = 0; otherwise, we have that 8°(v) = 8°!(v) = 0 and 8'(v) =
5°°(v) = 1. Let (3;,5}) and (8,,33) be DF-ideals on X. Then, (5;,3}) < (8,,85) iff 3, (v) < 8; (v) and
85 (v) > 8 (v) for each v € I*.
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Let (X, 7,7°) be a DF-topological space ; then, the closure C, .- : I X Iy X I; — I* and the interior
L : IX x Iy x I} — IX are respectively denoted by C..-(4, p,q) and I,-(4, p, q) for any fuzzy set
A€ IX. Let (X, (1,7°),(d,8°) be a DF-ideal topological space, A € IX, p € I, and g € I,. Then, the
(p, q)-fuzzy local function (4, p, q) [6] is defined by

¥(Lp.g)= [\lwe X :8QARW 2 p. FARW < 4. TW) 2 p.7°(W) < g).
Moreover, we define operators cl°, int° : IX x Iy x I, — I* as follows:
cl’(4, p,q) = AVY(A, p,q), int°(A, p,q) = AN (P(2°, p, q))".
Also, A is called (p, g)-fuzzy a-0-open iff A < I -(cl°(I; (4, p,q), P> Q) P, Q).

A map @ : (X,7) — (Y,0) is called a fuzzy multifunction [4] iff ®(x) € I' for each x € X. The
degree of membership of y in @(x) is denoted by ®(x)(y) = Go(x,y) for any (x,y) € X X Y. ® is called
crisp iff Ge(x,y) = 1foreachx € Xandy € Y. @ is called normalized iff for each x € X, there exists
yo € Y such that Go(x,y0) = 1. The image ®(1), the lower inverse ®'(1) and the upper inverse ®*(1)
of A € IX are defined respectively as follows:

O(A)(y) = \/X(Gq>(x, YA AX), D)) =V (Golx,y) AAY)), PD(X) = /\Y (Go) (x,y) V AY)).
xe ye

yey
Moreover, @ is called compact valued [2] iff ®(x,) is (p, g)-fuzzy compact for each x;, € dom(D).
Let®: X — Yand E : Y —o Z be two fuzzy multifunctions. Then, the compositionZEo ® : X — Z

is defined by ((E 0 ®)(x))(2) = V (Golx,y) A G=(y, 2)).

yey
All related definitions and properties of image, upper, lower and compositions of fuzzy

multifunctions can be found in [4].

Definition 1.1. [17] Let ® : (X, 7,7°) — (¥, 0, 0°) be a DF-multifunction, p € I, and g € I,; then, ®
is as follows:

(1) DFU semi-continuous at a fuzzy point x, € dom(®) iff x, € ®“(u) for each u € I, o-(u) > p and
o°(u) < g, there exists A € IX, (1) > p, 7°(1) < g and x, € A such that A A dom(®) < O*(u).

(2) DFL semi-continuous at a fuzzy point x, € dom(®) iff x, € ®'(u) for each u € I', o(u) > p and
o°(1) < g, there exists A € IX, 7(1) > p, 7°(1) < g and x; € A such that 1 < ®'(u).

(3) DFU (DFL) semi-continuous iff it is DFU (DFL) semi-continuous at every fuzzy point x, €
dom(®D).
Definition 1.2. [6] Let ® : (X,7,7°,0,0°) — (Y,0,0°) be a DF-multifunction, p € Iy and ¢g € I,.
Then, @ is as follows:

(1) DFU d-continuous at a fuzzy point x, € dom(®) iff x, € ®*(u) for each u € I', o(u) > p and
o°(u) < g, there exists A € IX,7(1) > p, °(1) < g and x, € A such that A A dom(®) < P(P*(u), p, q).

(2) DFL d-continuous at a fuzzy point x; € dom(®) iff x, € ®'(u) for each u € I?, o(u) > p and
o°(1) < g, there exists A € IX, 7(1) > p, 7°(1) < g and x, € A such that 1 < V(D' (), p, 9).

(3) DFU 06-continuous (resp. DFL 06-continuous) iff it is DFU &-continuous (resp. DFL 8-
continuous) at every fuzzy point x, € dom(®).

2. DF-a-0-continuous multifunctions

This section focuses on the definitions of the DF-a-0-continuous multifunctions related to a DF-
ideal.
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Definition 2.1. Let ® : (X, 7,7°,0,0°) — (Y, 0, 0°) be a DF-multifunction, p € I, and g € I,. Then, ®
is as follows:

(1) DFU @-3-continuous at a fuzzy point x; € dom(®) iff x, € ®“(u) for each u € I, o-(u) > p and
o°(u) < g, there exists a (p, g)-fuzzy a-8-open set A € IX and x, € A such that A A dom(®) < O“(u).

(2) DFL a-8-continuous at a fuzzy point x, € dom(®) iff x, € ®'(u) for each u € IY, o(u) > p and
o°(1) < g, there exists a (p, g)-fuzzy a-8-open set A € IX and x, € A such that 1 < ®'(u).

(3) DFU a-6-continuous (DFL @-0-continuous) iff it is DFU a-0-continuous (DFL a-8-continuous)
at every fuzzy point x, € dom(®).

If we take cl° = C, -, then we have the definition of DF-a-continuity.

Remark 2.1. If ® is a normalized multifunction, then ® is DFU a@-0-continuous at a fuzzy point x, €
dom(®) iff x, € ®“(u) for each u € IY, o-(u) > p and o°(u) < g, there exists a (p, g)-fuzzy a-8-open
set A € IX and x, € A such that 1 < ®*(u).

Remark 2.2. (1) DFU (resp. DFL) semi-continuous = DFU (resp. DFL) a-0-continuous.
(2) DFU (resp. DFL) a-6-continuous = DFU (resp. DFL) a-continuous.
(3) DFU (resp. DFL) a- 8°-continuous < DFU (resp. DFL) a- continuous.

The converses are not true.

Example 2.1. Let X = {x|,x2,x3} and Y = {y1,y2,y3}. For ui,pu € IX and us; € I' defined as
11 =1{0.9,0.5,0.5}, 1, = {0.9,0.9,0.5} and 3 = {0.9,0.9, 0.5}, define DF-topologies t,7°: 1X — 1,
o,0°: IY — I as follows:

T0)=711) =1, 7(uy) = % and 7(1) = 0 otherwise,

°0)=7(1) =0, °(y) = % and 7°(1) = 1 otherwise,

c)=0c)=1, ous) = % and (1) = 0 otherwise,

c°(0)=0°(1) =0, c°(3) = % and 0°(1) = 1 otherwise.

Then,

(1) ® : X — Y is a fuzzy multifunction defined by Go(x1,y1) = 1, Go(x1,y2) = 1, Go(x1,y3) = 0,
Go(x2,y1) =0, Go(x2,y2) = 1, Go(x2,y3) = 0, Go(x3,y1) = 0, Go(x3,y2) = 0.3, Go(x3,y3) = L.
For a DF-ideal d,5°: IX — I defined as follows:

0(0) =1, 0(v) = % if 0 <v < 0.5 and 3(v) = O otherwise;
0°(0) =0, 8°(v) = % if 0 <v < 0.5 and 8°(v) = 1 otherwise,
® is DFU and DFL «@-8-continuous multifunction but is neither a DFU nor DFL semi-continuous

multifunction because

12 12 12
q)u = < ITTO lo IT‘I'O iy Mt Sl Mib Rl B 1’
(M3) = pp < ,(C(,(.U233)33)33) 1
() = 12 < Lol (g (i 21 20, 2 2), 2 2y = 1
3 —,UZ— T,7° T,7° 2’393 7373 93’3 — 41
and
u u 1 2
() (/13) =l £ I‘r,‘r"(q) (,113), 5, 5) = M1,
! ! 12
DO (u3) = pp & Lo (D'(u3), 3 g) = U1.
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(2) ® : X — Y is a fuzzy multifunction defined by G¢(x1,y1) = 1, Go(x1,y2) = 1, Go(x1,y3) = 0,
Go(x2,y1) = 1, Go(x2,y2) = 0.4, Go(x2,y3) = 0, Go(x3,y1) = 0, Go(x3,y2) = 0.5, Go(x3,y3) = L.
For a DF-ideal 8, 8°; IX — I defined as follows:

0(0) =1, o(v) = Z if 0 <v <0.9 and 8(v) = 0 otherwise;

0°(0) =0, 6°(v) = 41‘; if 0 <v <0.9 and 8°(v) = 1 otherwise.

@ is a DFU and DFL a-continuous multifunction but is neither a DFU nor DFL @-8-continuous

multifunction because

D" (u3) = < o (Crre (1 ((I)”(/J)12 12)12)—1
3 ,UZ T,7° T,7° T,7° 3a3’3 ,373 73’3 -
12 12 12
o' <I L(®'(u3), =, =), =, =), =, =) =1
(/13) )25} T,7° (CTT(TT( (/-13 7333 73’3)’3’ 3) 1,
and 12 12 12
O} = L o (cl° (1 1o (" Z Oy 2 2 5=
(/-13) ,u2-i<— T,T (C (T,T( (/l3)73’3)7373)’373) M1,
12 12 12
@' = I °(I, (D - =), =, =), =, =) = U].
(/JS) ,u2-i<— TT (Cl(TT( (/1’3) 3’3 a3’3)73’3) /Jl
Theorem 2.1. For a DF-multifunction ® : (X,1,7°,8,8°) — (Y,0,0°), u€1', pe lyand g € I,,

the following statements are equivalent:

(1) @ is DFL a-0-continuous.

(2) V() < Lo (P (Lo (D (W), p, @), s )5 > @) if (1) = p and () < g.

(3) Crre (int*(Crro (D" (W), P, @) » P, @), > q) < D" (W) if () 2 p and o° (1) < q.

(4) ©' Iy oo (11, P, @) < Lrro (Lo (V' (Lo (11, P )5 P> Q) 5 P> D) P> )
Proof. (1) = (2) Let x, € dom(®), u € I', o(u0) > p, 0°(u) < g and x, € ®'(u). Then, there exists a
(p, q)-fuzzy a-8-open set A € I* and x, € A such that 1 < @' (i, p, q).

Thus, x, € 1 < Lo (cl°(I-(®' (W), p, @), P, @), P, 9); hence

(Dl(/'l) < IT,T° (CZO(I‘I',To ((Dl(l'l)7 pa Q), p, Q)’ p’ Q)-
(2) = (3) Let y € I with o"(u°) > p and o°(u°) < ¢. Then, by (2),

[@ W] = QW) < Lpe (el Leg= (D), P, ), P> Qs P> )
= [CT,T° (into(cf,‘r" (cDu (;u)’ p> CI) > D> CI)’ P Q)]C .

Thus, C.r (int°(Cr= (D (), p, @) » P, @), P, q) < D" (u) .
(3) - (4) Since CT,T° (into(cr,‘r"((bu (Ca',a'"(/J» P, (])), I?, Q), P, Q) s I?, q) S (I)u (Ca',a"’(ﬂ’ P, Q))
for each u € I?, it follows that

(Dl (I(T,(TO(/J7 P’ Q)) < IT,T°(CZO(IT,T°((I)I (I(T,(TO (,Ll, P, CI))’ P, q) ) P, q)’ P’ Q)

(4) = (1) Let x, € dom(®), u € I, o(u) > p, 0°(u) < q and x, € ®'(u). Then, by (4) and
u =1y, (U, p,q), we have

X, € D' () < Lo (cl° (.o (D' (W), s @), P> Q)s P Q).

Thus, @ is DFL a-0-continuous. O
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The proof of the following theorem is similar to that of Theorem 2.1.

Theorem 2.2. For a normalized DF-multifunction ® : (X, 1,7°,0,08°) — (Y,0,0°), u € I', p € Iy and
q € 1y, the following statements are equivalent:

(1) @ is DFU @-0-continuous.

(2) @“(u) < Lo (Lo (P (W), P, @) s P q)> P> q) 1T () > p and 0°(u) < gq.

(3) Cre (int*(Cers (@' (), P, @), P @), P, q) < D' () if () > p and °(u) < q.
@) D"(Iy0o (U, P, @) < Lrro(cl° (Lo (D" (Lo (s P, )5 P2 G) 5 P> D> P5 G)-

Corollary 2.1. (1) Let ® : X o Y and H : Y — Z be two DF-multifunctions. Then, H o ® is
DFL a-0-continuous if ® is DFL a-d-continuous and H is DFL semi-continuous.

2Q)Let® : X — Y and H : Y —o Z be two normalized DF-multifunctions. Then, H o ® is
DFU a-d-continuous if ® is DFU a-0-continuous and H is DFU semi-continuous.

3. DF-almost o-3-continuous multifunctions

This section investigates the definitions of DFU and DFL almost @-8-continuity and introduces
many characteristic properties of the defined multifunctions.

Definition 3.1. Let @ : (X,7,7°,8;,0)) — (¥,0,0°,8,,03) be a DF-multifunction, p € Iy and g € I;.
Then, @ is as follows:

(1) DFU almost a-8-continuous at a fuzzy point x;, € dom(®) iff x, € ®*(u) for each u € IY,
o(u) > p and o°(u) < g, there exists a (p,g)-fuzzy a-8-open set 1 € IX and x, € A such that
AN dom(q)) < (DM(IO',O'O(CZO(Na D> CI)’ b Q))

(2) DFL almost a-d-continuous at a fuzzy point x, € dom(®) iff x, € ®'(u) for each u € IY,
o(u) > p and o°(u) < g, there exists a (p, g)-fuzzy a-8-open set A € I* and x, € A such that 1 <
(DZ(IO',O'O(CZO(/Ja P, CI), P Q))-

(3) DFU almost a-6-continuous (DFL almost a-0-continuous) iff it is DFU almost @-0-continuous
(DFL almost a-d-continuous) at every fuzzy point x, € dom(®D).

If we take cl° = C, .-, then we have the definition of DF-almost @- continuous.

Remark 3.1. If @ is a normalized multifunction, then ® is DFU almost a-0-continuous at a fuzzy point
x; € dom(®) iff x, € ®“(u) for each u € 1Y, o(u) > p and o°(u) < g, there exists a (p, g)-fuzzy
a-0-open set A € IX and x, € A such that A < ®“(I,.,-(cl°(u, p, q), p, q)).

Theorem 3.1. For a DF-multifunction ® : (X,71,7°,0,,0]) — (Y,0,0°,0,,0), u € I', p € I and
q € 1, the following statements are equivalent:

(1) @ is DFL almost a-0-continuous.

(2) V() < Lgo (P (Lo (P (L= (° (1, P5 9)5 P D) P )5 P> D5 > ) if 0°(11) = p and o°(w) < g.

(3) CT,T° (into(cr,‘r“ ((DM(CO',O'O (int°(,u, pa Q)’ p’ Q))’ p, q)v p’ Q), p’ Q) S (Du (/1) lf O-(IUC) Z p and
oc°(u) <q.

(4) q)l(IO',O"’(/Ja P q)) < I‘r,‘ro (Clo(l‘r,‘r“ (q)l(la',a"’ (Clo(]o',o"’ (/Ja D> q)’ )2 Q), P Q))’ )2 q)a P CI), P> Q)
Proof. (1) = (2) Let x, € dom(®), u € 1Y, o(1) > p, 0°(u) < g and x, € ®'(u). Then, there exists a
(p, q)-fuzzy a-8-open set A € I* and x, € A such that 1 < ®/(1, ,-(cl°(u, p, g), P> q)).
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Thus, x; € A < Lo (cl°(I.0o (D' (1y o (cl°(1t, P, @), P, @) P- Q)5 P> 9)» P> q), and hence

O'(1) < Lo (cl°(Le 2o (D Ly o (cI° (W, P5 @)y P Q) P5 Q) P5 Q)5 P Q)
(2) = (3) Let u € I" with o(€) > p and o° () < q. Then, by (2),

[@" ()] Q' () < Lppo (L (Lo (D Ly oo (W, Po )5 P D)5 P Q)5 P5 Q)5 D5 Q)

= [C‘T,‘I'o (inl’o(C‘T,To ((DM(C‘(T,O'O (into(ua pa Q), p’ C[))’ p’ Q), pa C[), p, Q)]c-

Thus7 CT,T° (into(CT,T° ((I)M(Cja',()'o (i]’lto(l,l, p9 C]), p’ C[)), p9 Q), pa C[), p9 (]) < (Du(/'l)-
(3) = (4) Since

Crro(int*(Cr o (P (Cor e (int*(Cor o (s P @), P, D5 P D), P D> P> )5 P @) < PU(Coe (1, . q))

for each u € 17, then

(Dl (IO',O'O(/l’ p7 Q)) S IT,TO(CZO(IT,TO ((DZ(IO',O'O(CZO(I(T,(TO(/J, pa C])’ p’ q)’ p’ Q)), p, Q)’ p’ Q), pa Q)

4) = (1) Let x, € dom(®), u € I', o(u) > p, o°(u) < q and x, € ®'(u). Then, by (4) and
U =1y, (U, p,q), we have that

Xt € (Dl(:u) < IT,T° (CZO(IT,T" ((DI(IO',O"’ (Clo(ﬂa P Q), )2 Q)), P, Q), 2 Q), P, C])
Thus, ® is DFL almost a@-0-continuous. O

The proof of the following theorem is similar to that of Theorem 3.1.

Theorem 3.2. For a normalized DF-multifunction ® : (X,7,7°,0,,0]) — (¥Y,0,0°,8,,07), u € I,
p € Iy and q € 1), the following statements are equivalent:

(1) @ is DFU almost a@-8-continuous.

(2) (W) < Lo (el (Lo (D Ui (c°(1, . @), P, D), P, @) - Q)5 P> q) i o) 2 p and 0°(u) < g.

(3) Crro(int°(Cr o (D' (Corge (int* (1, p, @), P D) P> @) P> 9)> > @) < O () if (u) = p and
oc°(u) <gq.

(4) q)u(lo:o-c’(/l’ P CI)) < I‘r,‘r°(CZO(IT,T"((Du(lzr,(r"(Clo(Io',o'c’(ﬂ’ P> CI)» P> Q), P q))’ P (I), P C]), P CI)
Remark 3.2. (1) DFU (resp. DFL) a-0-continuous = DFU (resp. DFL) almost a-6-continuous.

(2) DFU (resp. DFL) almost a-8-continuous = DFU (resp. DFL) almost @-continuous.

(3) DFU (resp. DFL) almost a- 8°-continuous &= DFU (resp. DFL) almost a-continuous.

(4) DFU (resp. DFL) semi-continuous = DFU (resp. DFL) almost a-8-continuous.

The coming examples show that these implications are not reversed.

Example 3.1. Let X = {x,x2,x3}, Y = {y1, 2,3} and ® : X —o Y be a DF-multifunction defined by
Go(x1,y1) = 1, Go(x1,y2) = 0.1, Go(x1,y3) = 0.3, Go(x2,y1) = 0.5, Go(x2,y2) = 1, Go(x2,y3) = 0.1,
Go(x3,y1) = 0, Go(x3,y2) = 0, Go(x3, y3) = 1. Define DF-topologies t,7°: IX — I, o,0°: I' — I, and
DF-ideals 8,,07: I* — I, 8,,85: I" — I as follows:

0 =711) =1, 71(0.4) = 1,
°(0) =7°(1) = 0, 7°(0.4) = 3, 1

c0)=0c()=1, 0(0.7) = i and o (1) = 0 otherwise;
c°(0)=0°(1)=0, 0°(0.7) = f—1 and 0°(1) = 1 otherwise;
01(0) =1, 6;(v) = % if 0 <v <0.3 and 8;(v) = 0 otherwise;

7(0.9) = § and 7(1) = 0 otherwise;

7°(0.9) = 3 and 7°(1) = 1 otherwise;
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07(0) =0, 08{(v) =5 if 0 <v <0.3 and &](v) = 1 otherwise;
0,(0) =1, 0,(v) =5 if 0 <v < 0.3 and 8,(v) = 0 otherwise;
05(0) =0, 65(v) =5 1f 0 <v < 0.3 and &5(v) = 1 otherwise.
Then, ® : (X, 7,7°,0;,0]) — (¥,0,0°,8,,05) is DFU and DFL almost a-0-continuous but is neither

DFU nor DFL «-0-continuous because

SIS SIESI B

13 13 13 13 13
A= <ITT OITT (DMI(T(T ° s oo )y T T ) ) i T ) T T ) T TS :1’
0.7 = 00D < o (P e U (O 5.3 3 D P p D p P =1
13 13 13 13 13
< o o I N —Z 2y Iy 2 Zy=
O_ (O 7) ITT (Cl (ITT (CD (IO'O' (Cl( ’45 4)’ 4’ 4))9 4’ 4)’ 45 4)’ 49 4) l’
and 1313 13
0;7 =0 (0_7) -%— IT,TO(CZ (IT,TO((D ( )7 Z’ Z)a Z’ Z)’ Z’ Z) = %,
1313 13
- o Lo (Lo (@Y0.7), =, 2, =, 2), =, o) = 0.4
0.7 (0.7) £ Lo (cl" (L7 o (@(0. )44)44)44) 0.4

Example 3.2. Let X = {x1,x,x3}, Y = {y1, 2,3} and ® : X — Y be a DF-multifunction defined by
Go(x1,y1) = 0.4, Go(x1,y2) = 0, Go(x1,y3) = 1, Go(x2,y1) = 0.2, Go(x2,y2) = 1, Ga(x2,y3) = 0.3,
Go(x3,y1) = 1, Go(x3,¥2) = 0.3, Go(x3,y3) = 0.5. Define DF-topologies t,7°: IX — I, o,0°: I' — 1,
and DF-ideals &,,05: X -1 0,,05: IY — I as follows:

70)=71) =1, 7(0.3) = % and 7(1) = 0 otherwise;
°(0)=7°(1) =0, 7°(0.3) = % and 7°(1) = 1 otherwise;
c0)=0c1)=1, 0(0.7) = 1 and o (1) = 0 otherwise;
c°(0)=0°(1)=0, 0°(0.7 7) = % and 0°(1) = 1 otherwise;
01(0)=1, 01(v) =5 if 0 <v<0.3 and &,(v) = 0 otherwise;
07(0) =0, 0{(v) =5 if 0 <v <0.3 and 87(v) = 1 otherwise;
0,(0) =1, 0x(v) =3 if 0 <v <0.8 and 0,(v) = 0 otherwise;
05(0) =0, 85(v) = 5 if 0 <v < 0.8 and &5(v) = 1 otherwise.
Then, ® : (X,7,7°,8,0)) — (¥,0,0°,0,,03) is DFU and DFL almost a-continuous but is neither

DFU nor DFL almost a-0-continuous because

I\JI'—‘UJI—‘I\)I»—NI'—

12 12 12 12 12
hd = ! . < T,7° T,7° T,7° " o,0° o,0° Ly Ty T ) S o s ~s ~)s SR )y A0 A = )
0.7 = @%0.7) < Lo (Crpo (Irro(P* (L5 0+ (Cr = (0.7 3 3) 3 3)) 3 3) 3 3) 3 3) 1
12 12 12 12 12
L= < g oo o,0°\L oo s5 A 37355 ) 573 ) 555) — 4,
7= 0'(0.7) < Lro (Crro(Lrre (@ (I 0o (C (033)33))33)33)33)1
and 12 12 12 12 12
07 (0 7) £ I‘rr (Cl (I‘r‘r ((D (Ia'a' (Cl (O 5 g, g), §, g)), 5, g), g, 5), §, g) = 03,
12 12 12 12 12
— ! o 1 o it N et Y W
0.7 = D(0.7) £ L1 ro(cl’ (L1 (D' (U 5o (cI°(0.7, 3 3), 3 3)), 3 3), 3 3), 3 3)) 0.3

Example 3.3. Let X = {x1,x2,x3}, Y = {y1, 2,3} and ® : X —o Y be a DF-multifunction defined by
Go(x1,y1) = 0.5, Go(x1,y2) = 1, Go(x1,y3) = 0, Go(x2,y1) = 1, Go(x2,y2) = 0.3, Go(x2,y3) = 0.2,
Go(x3,y1) = 0, Go(x3,y2) = 0.4, Go(x3,y3) = 1. Define uy, ur € I and 3 € IV as follows:

1 =10.8,0.5,0.5}, u» = {0.8,0.8,0.5} and 3z = {0.8,0.8,0.5}. Define DF-topologies t,7°: IX — I,
o,0°: 1" — I, and DF-ideals 8,,55: IX — I, 8,,85: I" — I as follows:
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7(0) = 7(1) = 1, 7(uy) = 1 and 7(2) = 0 otherwise;

7°(0) = 7°(1) = 0, 7°u1) = § and 7°(1) = 1 otherwise;

c)=0c)=1, ous) = l and o (1) = 0 otherwise;

c°0)=0°(1)=0, o (].13) = % and 0°(1) = 1 otherwise;

01(0)=1, 0;(v) =5 if 0 <v <0.5 and 8,(v) = 0 otherwise;

07(0) =0, 8{(v) =5 if 0 <v < 0.5 and &7(v) = 1 otherwise,

0,(0) =1, 0x(v) =7 if0<v <0.5 and 8,(v) = 0 otherwise;

05(0) =0, 85(v) = 3 if 0 <v < 0.5 and d5(v) = 1 otherwise.

Then, ® : (X, 7,7°,0,,0]) — (¥,0,0°,8,,0;) is DFU and DFL almost a-8-continuous but is neither
DFU nor DFL semi-continuous because

-&IW#I'—‘NIHI\JI'—‘

1 3 13.13 13 13
< ° u © - )= MND.=-.2). =), =. ) =

(D(,U%) ITT (Cl (ITT (® (IO'O' (Cl (/“13 4 4 4’4))94a4)a474)a494) la

1 3 1313 13 13
_q) <ITT OITT (I) IO'O' ¢ 9_’_9_3_ s s ) o T ) o T :19
M2 (13) (" (Lo (@ Ly oo (" (113 117 4)) 1 4) 1 4) i 4) 1

and
; y 1 3
Mo = D(u3) £ Lo (O (u3), 4_14_1 = 1,

— ®! / I
Mo = O (u3) £ L 7-(D (,U3), 7 4) =

Corollary 3.1. (1) Let ® : X — Y and H : Y — Z be two DF-multifunctions. Then, H o ® is DFL
almost a-6-continuous if ® is DFL a-0-continuous and H is DFL almost 8-continuous.

2Q)Let ® : X — Y and H : Y —o Z be two normalized DF-multifunctions. Then, H o ® is DFU
almost a-06-continuous if ® is DFU a-0-continuous and H is DFU almost 8-continuous.

4. DF-weakly a-0-continuous multifunctions

This section presents the notions of DFU and DFL weakly a-0-continuity and discusses its relations
with the previous definitions of DFU and DFL almost @-8-continuity.

Definition 4.1. Let @ : (X,7,7°,8,0)) — (¥,0,0°,0,,0;) be a DF-multifunction, p € Iy and g € I;.
Then, @ is as follows:

(1) DFU weakly a-8-continuous at a fuzzy point x, € dom(®) iff x, € ®*(u) for each u € IY,
o(u) > p and 0°(u) < g, there exists a (p, g)-fuzzy a-d-open set A € I* and x; € A such that 1 A
dom(®) < O“(cl°(u, p, q)).

(2) DFL weakly a-8-continuous at a fuzzy point x, € dom(®) iff x, € ®'(u) foreachu € IV, o(u) > p
and o°(u) < g, there exists a (p, g)-fuzzy a-8-open set A € IX and x, € A such that A < ®(cl°(u, p, q)).

(3) DFU weakly a-0-continuous (DFL weakly a-8-continuous) iff it is DFU weakly @-0-continuous
(DFL weakly a-0-continuous) at every fuzzy point x; € dom(®).

If we take cl° = C, .-, we have the definition of DF-weakly a-continuous.

Remark 4.1. If @ is a normalized multifunction, then ® is DFU weakly a@-0-continuous at a fuzzy
point x; € dom(®) iff x, € ®*(u) for each u € I, o(u) > p and o°(u) < g, there exists a (p, g)-fuzzy
a-0-open set A € IX and x; € A such that 1 < ®“(cl°(u, p, q)).
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Theorem 4.1. For a DF-multifunction ® : (X,7,7°,01,0]) — (Y,0,0°,0,,0), u € I', p € Iy and
q € 1, the following statements are equivalent:

(1) @ is DFL weakly @-8-continuous.

(2) (W) < Lo (cl* (Lo (D' (cl° (1, P, ), P, @, P @) - @) if () > p and °(w) < q.

(3) Crro(int®(Crpo (P (int*(u, p, @), P> @) Ps @) P> @) < O () if (i) = p and o°(u°) < g.

(4) 'Ly (11, P, @) < Lo (I (Lo (R (I (L (s P5 @), P> D)5 P> D P> D P> G-
Proof. (1) = (2) Let x; € dom(®), u € I, o(u) > p, 0°(u) < q and x, € ®'(u). Then, there exists a
(p, q)-fuzzy a-8-open set A € I* and x, € A such that A < ®'(cl°(u, p, g)).

Thus, X € A < I (cl* (Lo (D' (cl°(1, p, 9)), P> @5 P 9)s P> @) and hence

Q' () < Lrve (I (Lo (D (I (t, P, D)), P2 D), P2 D), P D)
(2) = (3) Let u € I' with o-(u°) > p and o°(u°) < g. Then, by (2),

[0 (W] = W) < Lol U (Dl (W, P, @), P2 9)s P2 D), P> D)
= [Crre(int®(Crpo(®"(int°(u, p. 9)), - 9 P- Q) P D] -

Thus, Cpr(int®(Crr(®“(int°(u, p, q)), P, q), P, q), P, q) < ().
(3) = (4) Since

Crro(int°(Cor o (P (int°(Coroo (U1, P, Q)5 P D)), P> D)5 P> Q)5 P q) < P (Coro (1, . q))

for each u € I". Then,

(DI (IO',(J'O(/J7 P’ q)) < IT,T° (ClO(IT,TO ((DZ(CZO(IO',O'O (/1’ P, Q)’ P, CI))’ P, Q)’ P, CI), P’ Q)

4) = (1) Let x, € dom(®), u € I, o(u) > p, c°(u) < g and x, € ®'(u). Then, by (4) and

1= lpgo (i, p, q), we have that x, € O'(u) < Lo (cl°(Lro(D'(c° (1, P, @), P> @)s Ps @)» P> ). Thus, @ is
DFL weakly a-0-continuous. m|

The following theorem is proved similarly as in the case of Theorem 4.1.

Theorem 4.2. For a normalized DF-multifunction ® : (X,7,7°,01,0]) — (¥,0,0°,0,,07), u € I,
p € Iy and q € 1), the following statements are equivalent:

(1) @ is DFU weakly a-0-continuous.
(2) (1) < Lrpe (Lo (P (cl° (14, P, 9))s P, D)5 P> @), P> @) if () = p and 0°(p) < q.
(3) Crpo (int®(Cr g (V' (int° (i, P, 9)) P> 9> P> D P> @) < () if o(u) > p and o°(u) < gq.
(4) (DM(I(T,O"’ (ﬂa p’ Q)) S IT,T° (CZO(IT,TO ((DM(CZO(I(T,G(’(#, p’ Q)’ p’ Q)), p’ CI)’ p, Q)’ p’ Q)
Remark 4.2. (1) DFU (resp. DFL) almost @-0-continuous = DFU (resp. DFL) weakly a-0-continuous.
(2) DFU (resp. DFL) weakly a-0-continuous = DFU (resp. DFL) weakly @-continuous.
(3) DFU (resp. DFL) weakly a- 8°-continuous <= DFU (resp. DFL) weakly a-continuous.

In general, the converse is not true as we will see in the following examples.

Example 4.1. Let X = {x, x5, x3}, Y = {y1, 2,3} and ® : X —o Y be a DF-multifunction defined by

Go(x1,y1) = 0, Go(x1,y2) = 0.3, Go(x1,y3) = 1, Go(x2,y1) = 0.5, Go(x2,y2) = 1, Go(x2,y3) = 0,
Go(x3,y1) = 1, Go(x3,¥2) = 0.2, Go(x3,y3) = 0.4. Define DF-topologies t,7°: IX — I, o,0°: I' — 1,
and DF-ideals 8., 8] : X =1 0, 05: IY — I as follows:
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7(0) =7(1) = 1, 7(0.6) = 1 and 7(1) = 0 otherwise;

7°(0)=7°(1) =0, 7°(0.6) = % and 7°(1) = 1 otherwise;

o(0) = o(1) = 1, 6(0.3) = 0(04) = 1 and (1) = 0 otherwise;

c°(0)=0°(1)=0, 0°(0.3) =0°(04) = % and 0°(1) = 1 otherwise;

01(0)=1, 0;(v) =5 if0<v <0.3 and 0,(v) = 0 otherwise;

07(0) =0, 8{(v) =5 if 0 <v < 0.3 and &](v) = 1 otherwise;

0,(0) =1, 0x(v) =3 if 0 <v <0.3 and 8,(v) = 0 otherwise;

05(0) =0, 85(v) =5 if 0 <v < 0.3 and d5(v) = 1 otherwise.

Then, @ : (X, 7,7°,08,,0]) — (¥,0,0°,8,,0) is DFU and DFL weakly a-0-continuous but is neither
DFU nor DFL almost a-0-continuous because

D= =D =D | —

13 13 13 13
D = Y . < o ° o u © . -, — - =)=, =), —,—) =
0.3 = 0%(0.3) < Irpo(cl" (I, (D" (cl (@,4,4)),4,4),4,4),4,4) 1
1313 13 13
— [ < 3 o . ) o -2 22y 2 2y 2 2y=
0.3 = 0(0.3) < Lo (cl”(Lrro(P(cl°(0.3 1 4)),4,4),4,4),4,4) 1
and 13 13 13 13
= 4 <ITT OITT q)u ° T o))y Ty T ) o o)y T T :1’
04 = 0%0.4) (cl’(Ireo( (01(0_44))44)44)44) 1
13.13 13 13
'4:(I)l '4 <ITT° OITTO (I)l ° . T A ) T T )y T T ) T TS :15
0.4 = 0) < Lo (el U (@ Q4 1.7 12 31 3 P p P =
but 13 13 13 13 13
@ (O 3)$I‘I’T (Cl (ITT ((D (I(J'U' (Cl (0_ Z Z)’Z’ Z))&Z»Z)’Z’ 1)91’ Z):Q’
13 13 13 13 13
:(I)l . ITT° OITT° q)lI(T()'D ° s s T s Ty T ))s s T )y T ) s ) = Yy
(ﬁ)ﬁ,(d(,((,(d(o44)44))44)44)44)9
and 13 13 13 13 13
0_: (04)-;<—ITT (Cl (ITT ((D (IO'O' (Cl (0_ Z’ Z)’Z’ Z))aZ?Z)aZ’ Z)?Z’ Z):Q,
. 1313 13 13 13
0.4 = 9'(0.4) £ Lrro(cl’ Urro (D' Uy (cI°(0.4, 7 4) 4,4)),4,4),4,4),4,4) =0

Example 4.2. Let X = {x1,x2,x3}, Y = {y1,y2, 3} and ® : X — Y be a DF-multifunction defined by
Go(x1,y1) = 0.1, Go(x1,y2) = 1, Go(x1,¥3) = 0.3, Go(x2,¥1) = 0, Go(x2,¥2) = 0.4, Go(x2,y3) = 1,
Go(x3,71) = 1, Go(x3,y2) = 0, Go(x3,y3) = 0.2. Define DF-topologies t,7°: IX — I, o,0°: I' — 1,
and DF-ideals 8,,85: IX — I, 8,,85: I" — I as follows:

70)=711) =1, 7(0.7) = % and 7(1) = 0 otherwise;
°0)=7°(1) =0, v°0.7) = L and 7°(1) = 1 otherwise;
c0)=0() =1, 0(0.6) = i and o(1) = 0 otherwise;
c°(0)=0°(1) =0, 0°(0.6) = § and 0°(1) = 1 otherwise;
01(0)=1,0,(v)=5 ifO<v < 0.3 and 0;(v) = 0 otherwise;
07(0) =0, 8{(v) =5 if 0 <v < 0.3 and 8](v) = 1 otherwise;
0,(0) =1, 8(v) =7 if 0 <v <0.6 and 0,(v) = 0 otherwise;
05(0) =0, 85(v) = 7 if 0 <v < 0.6 and d5(v) = 1 otherwise.

S]]

-PIM-&I—‘NI'—'I\JI'—‘
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Then, @ : (X,7,7°,04,0]) — (¥,0,0°,8,,05) is DFU and DFL almost a-continuous but is neither
DFU nor DFL almost a-0-continuous because

13 .13 13 13
0= (Du i < ITTO T,7° ITT° (Du o,0° . N o7 )y e )y T ) = 13
0.6 (%)_,(C,(,((C,(0644))44)44)44)_
1313 13 13
< ! Z )2 )y )y )=
0.6 = 0(0.6) < Lt 7o(Crpo(Ir (D' (Cro (0.6 "7 4)) 7 4),4,4),4,4) 1
but 13 13 13 13
()_ (O 6) £ ITT (Cl (ITT ((D (Cl ( L) Z, Z))a Z’ 1)9 Z’ Z)s Z’ Z) = Q»
1313 13 13
— M o I/ .70 -2 22y -2y 2 2y =
= 0(0.6) £ Lo (cl” (Lo (D(cl (0-6,4,4)),4,4),4,4),4,4) 0

5. DF-almost weakly @-0-continuous multifunctions

This section presents the notions of DFU and DFL almost weakly a-0-continuity and discusses its
relations with the previous definitions of DFU and DFL a-6-continuity (almost and weakly).

Definition 5.1. Let @ : (X,7,7°,8,0)) — (¥,0,0°,8,,0;) be a DF-multifunction, p € Iy and g € I;.
Then, @ is as follows:

(1) DFU almost weakly a-0-continuous at a fuzzy point x; € dom(®) iff x, € ®*(u) for each
uel¥, o(u) > pand 0°(u) < g, there exists a (p, g)-fuzzy a-8-open set A € I* and x, € A such that
AN dom(®@) < Crro (" (cl°(u, p, 9)), P> ).

(2) DFL almost weakly a-d-continuous at a fuzzy point x, € dom(®) iff x, € ®'(u) for each
wel?, o(u) > pand o°(u) < g, there exists a (p, g)-fuzzy a-d-open set A € I* and x; € A such that
/l < CT,T°((DI(CZO(I’L’ P Q)), P Q)

(3) DFU almost weakly a-0-continuous (DFL almost weakly a-0-continuous) iff it is DFU almost
weakly a-0-continuous (DFL almost weakly a-8-continuous) at every fuzzy point x, € dom(®D).

If we take cl° = C, .-, then we have the definition of DF-almost weakly a-continuous.

Remark 5.1. If ® is a normalized multifunction, then @ is DFU almost weakly @-0-continuous at a
fuzzy point x, € dom(®) iff x, € ®“(u) for each u € IY, o(u) > p and oc°(u) < g, there exists a
(p, q)-fuzzy a-0-open set A € I* and x; € A such that A < C,-(®“(cl°(u, p, 9)), p. q).

Theorem 5.1. For a DF-multifunction ® : (X,7,7°,0,,08]) — (¥,0,0°,8,,07), u € I', p € Iy and
q € 1y, the following statements are equivalent:

(1) @ is DFL almost weakly @-8-continuous.

(2) D' () < Lo (P (Lo (Crpe (D (cl°(1, P, )5 P D), P2 @), P, 9)s P> q) if () > p and () < q.

(3) Crro(int®(Crpo (Lo (D" (int®(u, p, 9))> P> Qs P> D) P> @) P> q) < " () if o(u) = p and o°(u) <
q.

4) O'(Iyoo (i1, P, @) < Lo (l°(Lr 2o (Crone (DNl U o (s P Q)5 P> D) Ps Q)5 P Q)5 P> D)5 P> G)-

Proof. (1) = (2) Let x, € dom(®), u € 1Y, o() > p, °(u) < g and x, € ®'(u). Then, there exists
A€ X with A < I - (clI°(I.-(A, p, q), p.q), p, q) and x;, € A such that A < C,-(®'(cl°(u, p, q)), P q).
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Thus, x; € A < Lo (cl°(Ir.ro(Cr oo (Dl (1, P, @), P Q)5 P> 9> P> Q), P> ), and hence
Q1) < Lo (cl°(Ir 2 (Crpo (D' (L1, P, 9))s P, 9)s P> Q)5 P Q) D5 )
(2) = (3) Let u € I with o(u°) > p and o°(u°) < q. Then, by (2),

D' (U) < Lo (L (Lo (Coae (D (L (UC, P @), P> Q) P> D) P> D) P> )
[CT,T° (into(C"I',TO (IT,To ((Du(lnto(lla p9 Q))’ pa Q)’ p’ Q), p’ C[)’ p, Q)]C .

[@“ (W]

Thus, Crro(int®(Crre(Le e (P“(int®(u, p, ), P, @) P» Qs P> @), P> q) < P“(w).
(3) = (4) Since

CT,T° (into(CT,‘r" (IT,T° ((I)u(into(ca',a"’(ﬂ’ ps (I), D> q))’ ps Q)’ ps Q)7 ps (I), p; Q) < (DM(CG',G"’(/J’ pPs (])) for each
u € 1Y, it follows that

D (1o (s P> q)) < Lpgo (Lo (Crgo (DNl Ly (11, P, )5 P @) P> D5 P> D) P> Q)» P> D)-

(4) = (1) Let x;, € dom(®), u € I', o(u) > p, 0°(u) < q and x; € ®'(u). Then, by (4) and

,U = IO’,O’O (/'l’ p’ CI)’ we have that Xt € (Dl(#) < I‘r,‘r° (CIO(IT,T" (CT,T° ((Dl(Clo(ﬂ’ p’ C])), pa CI)’ p, q)’ p’ Q)7 p’ Q)
Thus, ® is DFL almost weakly a-0-continuous. O

The following theorem is proved similarly as in the case of Theorem 5.1.

Theorem 5.2. For a normalized DF-multifunction ® : (X,7,7°,8;,0]) — (Y,0,0°,0,,05), u € I,
p € lyand q € 1), the following statements are equivalent:

(1) @ is DFU almost weakly a-8-continuous.

(2) D“(w) < Lo (PP (Lo (Crro (P (P (s P @), P @) P Q)5 P @) P @) i () 2 p and 0°(u) < g.

(3) Crro(int°(Crgo (1o (V' (int° (i, p, @), - @) P> 95 P @) P @) < D () if () > p and o°(u°) < g.
4) Uy (s Ps @) < Lrgo (L (Lo (Coro (Ol Ui (1 P> Q)5 P> D)5 P> D5 Ps D> P> D> P> G)-

Remark 5.2. DFU (resp. DFL) weakly a-0-continuous = DFU (resp. DFL) almost weakly a-0-
continuous.

In general, the converse is not true as we will show in the following example.

Example 5.1. Let X = {x1,x2,x3}, Y = {y1, 2,3} and ® : X — Y be a DF-multifunction defined by
Go(x1,y1) = 0.2, Go(x1,y2) = 0.3, Go(x1,¥3) = 1, Go(x2,¥1) = 1, Go(x2,¥2) = 0.4, Go(x2,y3) = 0,
Go(x3,y1) = 0.3, Go(x3,y2) = 1, Go(x3,y3) = 0.2. Define DF-topologies t,7°: IX — I, o,0°: I' — 1,
and DF-ideals 8,,05: IX — I, 8,,85: I" — I as follows:

70)=71) =1, 7(0.8) = % and 7(1) = 0 otherwise;

7°(0) =7°(1) =0, 7°(0.8) = % and 7°(1) = 1 otherwise;

o(0) =o(1) =1, 6(0.6) = 3 and 0<(1) = 0 otherwise;
c°(0)=0°(1) =0, 0°(0.6) = % and 0°(1) = 1 otherwise;
01(0)=1, 01(v) =7 if0<v <04 and 8,(v) = 0 otherwise;
07(0) =0, d8](v) =3 if 0 <v <04 and 8](v) = 1 otherwise;
02(0) =1, 0x(v) =7 if0<v <0.7 and 8,(v) = 0 otherwise;
550) = 0, 35(») =

if 0 <v<0.7 and 85(v) = 1 otherwise.

INYTIY TSN TR N O
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Then, @ : (X,7,7°,04,0]) — (¥,0,0°,0,,05) is DFU and DFL almost weakly a-0-continuous but
is not DFU or DFL weakly a-0-continuous because

1 3. 13 13 13 13
<I (1 D (cl’ R e e e |
O_ (O 6) TT (CI ( TT (CTT( (Cl( 4 4)) 4 4), 4’ 4)’ 45 4)7 47 4) ]
13 13 13 13 13
— < o o - - Bt et Wt Wt W
O_ (O 6) ITT (Cl (ITT (CTT ((D (CZ( 4 4)) 4 4)9 4, 4)’ 49 4)’ 4’ 4) l’
but 13 13 1313
0.6 = ©%(0.6) £ Lo (cl*(Ir - (D" (cl°(0.6, 1’ Z))’Z’ Z),Z, 4_1)’ 1 4_1) =0,
1313 13 13
:(I) ITT OITT q)l © s T ) ) T )y e T ) T ) &
0.6 (0.6) £ Lo (cl" (Lo (@' (c(0.6 1 4)) i 4) 1 4) 1 4) 0

6. DF (x,e, A, V,(0,08°))-continuous multifunctions

Definition 6.1. (1) Let ® : (X,7,7°,0,0°) — (Y,0,0°) be a DF-multifunction. Then, ® is DFL
(x,,A,V,(d,38°))-continuous iff for every u € I, p € Iy and g € I,

3[x (D' (V(u, p, ), poq) A o(D (A, p, ), P, )] = T (W),
3 [*(D (Y, p. @) p.q) A oD (A, p, @), P, @] < ().

(2) Let @ : (X,7,7°,04,0]) — (¥,0,0°,0,,05) be a normalized DF-multifunction. Then, @ is DFU
(x,e,A,V,(d,05°) -continuous iff for every u € IY, p € Iy and q € I,

O[*(D“(V(u, p, ), p,q) N o(D“(A(u, p,q)), p,q)] = o (),
O [* (@ (V(u, p. @), pq) N (D (A(u, p,q)), p, )] < o° ().

We can see that the above definition generalizes the concept of DFL (resp. DFU) semi-continuous,
when we choose * = identity operator, e = interior operator, A = identity operator, Vv = identity
operator and (0, 0°)= (60 6°0) Because, if we supposed that there exist u € I', p € Iy and ¢ € I, such

that T(le(,u)) <p<o(uand7° ((Dl(p)) > g > 0°(u), and since

S L@ () A Lo ('), p, ] = 0 (1), LD () A Lo (@), p, )] < 0 (1)

for every u € I', p € Iy and g € I, it follows that ®'(u) A I-(®'(u), p,g) = 0; hence ®'(u) <
L (@' (), p, q), and it follows that T((Dl(/.l)) > pand 7° (d)l(/x)) < g, which is a contradiction. Then,
T (CI)’(,u)) > o(u) and 1° ((Dl(u)) < 0°(u). So, @ is DFL semi-continuous. The other case is similarly
proved.
Remark 6.1. (1) DFL (resp. normalized DFU) almost continuous multifunction & DFL (resp.
normalized DFU) (idy, I;1o, 1y.5-(Cy.oo), idy, (60, 6°0) )-continuous multifunction.

(2) DFL (resp. normalized DFU) weakly continuous multifunction <& DFL (resp. normalized DFU)
(idx, Itzo, Cy e, idy, (60, 6°O))-continuous multifunction.

(3) DFL (resp. normalized DFU) almost weakly continuous multifunction < DFL (resp.
normalized DFU) (idy, I; (Crr2), Coio, idy, (60, 6°0) )-continuous multifunction.
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(4) DFL (resp. normalized DFU) 8-continuous multifunction < DFL (resp. normalized DFU) (idy,
Lz (Yere), Lo, idy, (60, 6°0))—c0ntinuous multifunction.

(5) DFL (resp. normalized DFU) almost d-continuous multifunction < DFL (resp. normalized
DFU) (idy, I+1o, Ly.oe (clfmo), idy, (60, 600))-continuous multifunction.

(6) DFL (resp. normalized DFU) weakly 8-continuous multifunction < DFL (resp. normalized
DFU) (idx, Iy, cL. .., idy , (60, 6°0))—continu0us multifunction.

(7) DFL (resp. normalized DFU) almost weakly 0-continuous multifunction < DFL (resp.
normalized DFU) (idy, Ir.r= (Crre), cL, ..., idy, (60, 6°0))—continuous multifunction.

(8) DFL (resp. normalized DFU) a-continuous multifunction < DFL (resp. normalized DFU) (idy,
Lo (C_. (L)), Ipge, idy, (8°,5°°))-continuous multifunction.

(9) DFL (resp. normalized DFU) a-0-continuous multifunction < DFL (resp. normalized DFU)
(idx, Lzo(cl’ ,(Itr2)), Ly oo, idy, (60, 6°0))-continuous multifunction.

(10) DFL (resp. normalized DFU) almost @-8-continuous multifunction < DFL (resp. normalized
DFU) (idy, I (cl’ . (Ine)), Ipge (cli . ). idy, (8%, 5°))-continuous multifunction.

(11) DFL (resp. normalized DFU) weakly a-0-continuous multifunction < DFL (resp. normalized
DFU) (idy, L (cl’ . (Isz-)), cly .. idy, (5°,5))-continuous multifunction.

(12) DFL (resp. normalized DFU) almost weakly @-0- continuous multifunction <« DFL (resp.
normalized DFU) (idy, Irr(cl* ,(I(C_.))), cl .., idy, (60, 6°0))—continuous multifunction.

Definition 6.2. Let ® : (X,7,7°) — (Y,0,0°) be a DF-multifunction (resp. normalized DF-
multifunction). Then, ® is DFL k-continuous (resp. DFU k-continuous) iff T(CD’(,u)) > o(w) and
T (O'(w) < o).

(resp. T (®“(1)) > o () and 7° (®“(u)) < o°(u)) for each u € I” that satisfies property k.

Let Cy : IY x Iy x I} — I" be an operator on (Y, o, 0°) defined as follows:

Colu - u, if p satisfies property k with o-(u) > p, 0°(u) < g, p € Ip and s € I,
SHPD T 1 otherwise.

Theorem 6.1. (1) Let @ : (X, 1,7°) — (Y, 0,0°) be a DF-multifunction. Then, ® is DFL k -continuous
iff it is DFL (idy, I .. , Cy, idy, (8°,8%))-continuous.

2) Let @ : (X,71,7°) — (Y, 0,0°) be a normalized DF-multifunction. Then, ® is DFU k-continuous
iff it is DFU (idy, I_., Cy, idy, (8°,8%) )-continuous.

Proof. (1) (=) Suppose that @ is fuzzy lower k-continuous and u € IV.

Case 1. If u satisfies property k with o (1) > p, o°(u) < q, Cx(u, p, q) = K, T(d)l(y)) > pand

7° ((Dl(,u)) < g. Thus, we obtain that ®'(u) < I_.(P'(u), p,q) = I_.(®(Ce(i, p. @), p, ). Then,
() A I (D'(Ce(p, p. 9)), . q) = 0. Hence,

D' (W) A (D (Culs p.q)). p. D] = o (),
50D (w) A I _.(D(Cul. p. ). p.q)] < T° ().

Case 2. If u does not satisfy property k, Cx(u, p, g) = 1. Thus, we obtain that
Q') < I_.(D'(D), p,q) = I_.(P"(Celp, p. @), p» ). Then, @' ()AL (D' (Ci(u, p, 9)), p.q) = 0. Hence,

30w A I_.(®(Cul, p, ), ps ] = o(u),
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3D (w) A I_.(@(Celit, P, @), P @] < ().

Then, @ is DFL (idx, I_.., C, idy, (8°,3"))-continuous.
(<) Suppose that there exists u € IY such that (CDZ(,u)) Z? o(u) and 7° ((Dl(/.l)) £ 0°(u). There exists
p € Iy and g € I; such that 7 (®'(u)) < p < o°(u) and 7° (D)) > g = o°(u). Since

5[0 (w) I_.(®'(Celis, p, 9)), P, g)] > o(u) and
3D () I_.(®(Celi, p, @), p- ] < (),

it follows that ®'(u) A I_.(®'(Ce(i, p,q)), p.q) = 0and ®'(u) < I_.(D'(Ci(u, p,q)), p,q) for each
uel.

A
A

If u satisfies property k with o(u) > r, o°(u) < s, Cu(u, p,q) = u, and hence ®'(u) <
I_.(®'(w), p,q), then T((Dl(/.l)) > pand 7° ((Dl(,u)) < g, which is a contradiction. Then, T((Dl(/l)) >
o(w), ° (CDI(M)) < 0°(w), and hence ® is DFL k-continuous.

(2) It is similar to (1). ]

Definition 6.3. Let x and e be fuzzy operators on (X, 7,7°). Then, x C e iff % (4,p,q) < e(4,p,q)

YAe IXand p € Iy, g € I,. Also, an operator x on X is called monotonic if A < v; then, * (4, p, q) <

* (v, p, Q).

Theorem 6.2. (1) Let © : (X, 7,7°) — (Y, 0,0°) be a DF-multifunction and (8,8°) be a DF ideal on X.

Let %, ® be fuzzy operators on (X, 1,7°), ® be monotonic and A, &', V be fuzzy operators on (Y, 0, 0°)

with ACA'. If ® is DFL (%, e, A, V,(0,0°))-continuous, then itis DFL (x,e, A", V,(0,0°))-continuous.
2)Let @ : (X, 1,7°) — (Y, 0,0°) be a normalized DF-multifunction and (0,0°) be a DF ideal on X.

Let x, ® be fuzzy operators on (X, 1,7°) and A, A, V are fuzzy operators on (Y, o, 0°) with ACA’.

If ® is DFU (%,e,A,V,(0,0°))-continuous, then itis DFU (kx,e, A", V,(0,8°))-continuous.

Proof. (1) If ® is DFL (x, e, A, v, (8, d°))-continuous,

o(@' (A, p, @), P, Q)] = (1),
o(@' (A, p, @), P, ) < T°(1).

3[* (@' (V(u, p. ) P, 9)

A
5°[*(@' (V(u, p. ). p.q) A

Since ACA’, foreveryu € I, pe Iyand g € I,

(@' (AW, p, 9)), p, q) < oD (&' (1, p,q)), p. q). Therefore,

*( @' (V. p, ). p.q) N (@ (&' (. p,q)). P, q)
< *(D' (Y, p. @), p.q) A (@ (A, p, 9)), P, Q).

Thus,

S[*(@ (V(, p. ), @) A o (8%, p,q)), p, )]
> B3[*(D' (V(u, p, @), p, @) A oD (A, p, 7)), p. @)] = o (1),

O [*(@ (V(, p, @) pr@) A o(@ (2%, p,q)), p )]
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< 3 [*(@ (V(u, p.9)). p.q) N (D' (A, p, 9)), P, @)]
< o ().
Then, @ is DFU (k,e, A’, v, (0,0°))-continuous.
(2) It is similar to (1). |

Definition 6.4. A fuzzy operator e on (X, 7, 7°) induces another operator /. .-(e) defined as follows:
L(9) (4, p,q) = L.~(¢ (1, p,q), p,q), VA € I*. Observe that I, -(e)Ce.

Theorem 6.3. Let *, o be fuzzy operators on (X,1,7°), A,V be fuzzy operators on (Y,o,0°), and
(0,0°) be a proper DF ideal on X. If ® : (X,7,7°) — (Y,0,0°) is a DFU (resp. DFL)
(*,e,A,V,(0,0°)-continuous multifunction and

o[D“(W), p, q] < o[V (so= (it P, @), P, q) (resp. o [D(w), p, q] < o[V Iy (11, p. ), . q])
foreachu e I’, p € Iyand q € I,. Then, ® is DFU (resp. lower) (x,®, 1,5 (A), V,(D,3°))-continuous.
Proo.f' If .((DM (A(l'la p’ C[))’ p’ CI) S .((I)H(I()',G'o (A(/'l9 p’ C[)’ pa (]))» p, Q), then

*( @ (Y, p, ), poq) N (D (r oo (A, P, @), P> D)5 P )
< *(Q“(V(u, p. @), P, q) A (D (A, p, @), P> ).
Since ® is DFU (%, e, A, V, (0,0°))-continuous,

O[* (D" (V(u, p, ), P> q)
O°[* (D (V(u, p, @), P> q)

A o(D" (A, p,q)), p,q)] = o(u) and
A o(D" (A, p, @), Py ] < T° ().
Hence,

O[*(D“(V(u, p, @), p,q) AN o(D"(Iy (A, P, @), P> Q) P> Q)]
> O[x (D" (V(u, p,9)), P, q) A (D (A, p, @), P, @] = (1),

and
O°[* (D (V(, p, ), psq) A (D (Lo (A, P, Q)5 P> ) P> Q)]
< O [*(Q"(V(i, p,9)), p, ) A o (D" (A1, P, 9)), P, 9)]
< o°(u). Then,
®is DFU (*,e,1,, (0),V,(8,0°)) -continuous. The other case is similarly proved. O

Definition 6.5. Let (X, 7,7°) be a DF-topological space, A € IX, p € Iy, and g € I,. Then, A is called
(p, q@)-fuzzy A-compact iff for every family {y; € I () > p, () < g; i € Jysuch that A < \/u;,
ieJ
there exists a finite subset J, of J such that 4 < \/ A(u;, p, 9).
ieJy

Theorem 6.4. Let ® : X — Y be a crisp DFU (x, [+, A, v, (8°,5°%))-continuous multifunction
encompssing compact valued between DF-topological spaces (X, 1,7°), (Y,0,0°) with A < *(4, p,q)
and

u < v(u, p,q) Yu € IX. Then, ®(A) is (p, q)-fuzzy A-compact if A is (p, q)-fuzzy compact.
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Proof. Let{u; € I' : o(;) > p,o°(;) < q;i € J} and ®(2) < \/ ;. Since A = \/ x,, then
ieJ xr€A

D) = O(V x) = VO(x) < Vu,, that is, for each x; € A, O(x;) < \/u;. Since @ is compact

x€A xr€A ieJ ieJ

valued, there exists a finite subset J,, of J such that ®(x,) < \/ w, = p,,; thus, we get that x, <

neJy,

DUD(x)) < VD) and A = Vx, < V). Since @ is a DFU (%, I, A, 7, (3", 5))-

x€A X €A x€A
continuous multifunction, ®“(u) < *(®“(V(u, p,q)), P, q) < L. (P (A, p, q)), P, q) < (A, p, q)).
Thus, 1 <V L - (P“(A(uy,, P, 9)), P, q)- Since A is a (p, g)-fuzzy compact set, then there exists a finite

x€A

index set M of J,, such that

A<\ Lo (@ (A, 2, @) P2 @) <\ @ (B, P D)

meM meM

It follows that

6 < O(\/ D"(AGuy,, P, ) = \/ D@ (8l 2, @) < \/ Buty,, > P2 9)-

meM meM meM

Hence, (1) is a (p, g)-fuzzy A-compact set. O
7. Conclusions

This article investigated DF-multifunctions based on a DF-ideal and analyzed their usual properties.
Also, we have submitted new types of DF-continuity based on a DF-ideal, studied the common
properties of continuity and discussed the implications associated with these new types of continuity.
Some examples have been presented to explain that these implications may be not reversed. The use
of DF-ideals in defining these new types of continuity extended the usual corresponding definitions of
fuzzy continuity; thus, the introduced types of DF-continuity are extensions of the corresponding usual
ones.

The conclusion regarding the resulting variety of continuous DF-multifunctions based on a DF-
ideal and the associated implications is that these types of continuity constitute an extension and is
meaningful more compared with the corresponding previous types of fuzzy continuity.
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