Research article

Research on the ellipsoidal boundary of reachable sets of neutral systems with bounded disturbances and discrete time delays

  • Received: 28 March 2024 Revised: 03 May 2024 Accepted: 07 May 2024 Published: 13 May 2024
  • MSC : 34K40, 37B25

  • This research focuses on the challenge of defining the ellipsoidal boundaries of the reachable set (RS) for neutral-type dynamical systems with time delays. A novel analytical approach is proposed, leveraging the development of new Lyapunov functions and matrix inequality techniques. These methods provide powerful tools for determining the ellipsoidal boundaries of the system's RS. A comparative analysis, supported by numerical examples, demonstrates that the approach outlined in this study can accurately identify smaller yet effective RS boundaries compared to existing literature. This precise boundary determination offers significant theoretical support for state estimation and control design in dynamical systems, thereby enhancing their effectiveness and reliability in real-world applications.

    Citation: Beibei Su, Liang Zhao, Liang Du, Qun Gu. Research on the ellipsoidal boundary of reachable sets of neutral systems with bounded disturbances and discrete time delays[J]. AIMS Mathematics, 2024, 9(6): 16586-16604. doi: 10.3934/math.2024804

    Related Papers:

  • This research focuses on the challenge of defining the ellipsoidal boundaries of the reachable set (RS) for neutral-type dynamical systems with time delays. A novel analytical approach is proposed, leveraging the development of new Lyapunov functions and matrix inequality techniques. These methods provide powerful tools for determining the ellipsoidal boundaries of the system's RS. A comparative analysis, supported by numerical examples, demonstrates that the approach outlined in this study can accurately identify smaller yet effective RS boundaries compared to existing literature. This precise boundary determination offers significant theoretical support for state estimation and control design in dynamical systems, thereby enhancing their effectiveness and reliability in real-world applications.



    加载中


    [1] J. Nilsson, B. Bernhardsson, B. Wittenmark, Stochastic analysis and control of real-time systems with random time delays, Automatica, 34 (1998), 57–64. http://dx.doi.org/10.1016/S0005-1098(97)00170-2 doi: 10.1016/S0005-1098(97)00170-2
    [2] R. Olfati-Saber, R. Murray, Consensus problems in networks of agents with switching topology and time-delays, IEEE T. Automat. Contr., 49 (2004), 1520–1533. http://dx.doi.org/10.1109/TAC.2004.834113 doi: 10.1109/TAC.2004.834113
    [3] C. Zhang, F. Long, Y. He, W. Yao, L. Jiang, M. Wu, A relaxed quadratic function negative-determination lemma and its application to time-delay systems, Automatica, 113 (2020), 108764. http://dx.doi.org/10.1016/j.automatica.2019.108764 doi: 10.1016/j.automatica.2019.108764
    [4] C. Xu, W. Zhang, C. Aouiti, Z. Liu, L. Yao, Bifurcation insight for a fractional-order stage-structured predator-prey system incorporating mixed time delays, Math. Method. Appl. Sci., 46 (2023), 9103–9118. http://dx.doi.org/10.1002/mma.9041 doi: 10.1002/mma.9041
    [5] B. Yan, X. Wang, H. Ma, W. Lu, Q. Li, Hybrid time-delayed feedforward and feedback control of lever-type quasi-zero-stiffness vibration isolators, IEEE T. Ind. Electron., 71 (2024), 2810–2819. http://dx.doi.org/10.1109/TIE.2023.3269481 doi: 10.1109/TIE.2023.3269481
    [6] H. Liu, Y. Wang, X. Li, New results on stability analysis of neutral-type delay systems, Int. J. Control, 95 (2022), 2349–2356. http://dx.doi.org/10.1080/00207179.2021.1909750 doi: 10.1080/00207179.2021.1909750
    [7] Z. Zhao, Z. Wang, L. Zou, J. Guo, Set-membership filtering for time-varying complex networks with uniform quantisations over randomly delayed redundant channels, Int. J. Syst. Sci., 51 (2020), 3364–3377. http://dx.doi.org/10.1080/00207721.2020.1814898 doi: 10.1080/00207721.2020.1814898
    [8] H. Leipholz, Stability theory: an introduction to the stability of dynamic systems and rigid bodies, Wiesbaden: Springer-Verlag, 1987. http://dx.doi.org/10.1007/978-3-663-10648-7
    [9] L. Kolev, S. Petrakieva, Assessing the stability of linear time-invariant continuous interval dynamic systems, IEEE T. Automat. Contr., 50 (2005), 393–397. http://dx.doi.org/10.1109/TAC.2005.843857 doi: 10.1109/TAC.2005.843857
    [10] B. Hang, B. Su, W. Deng, Adaptive sliding mode fault-tolerant attitude control for flexible satellites based on ts fuzzy disturbance modeling, Math. Biosci. Eng., 20 (2023), 12700–12717. http://dx.doi.org/10.3934/mbe.2023566 doi: 10.3934/mbe.2023566
    [11] B. Hang, W. Deng, Finite-time adaptive prescribed performance dsc for pure feedback nonlinear systems with input quantization and unmodeled dynamics, AIMS Mathematics, 9 (2024), 6803–6831. http://dx.doi.org/10.3934/math.2024332 doi: 10.3934/math.2024332
    [12] J. Skarding, B. Gabrys, K. Musial, Foundations and modeling of dynamic networks using dynamic graph neural networks: a survey, IEEE Access, 9 (2021), 79143–79168. http://dx.doi.org/10.1109/ACCESS.2021.3082932 doi: 10.1109/ACCESS.2021.3082932
    [13] Y. Huang, Y. He, J. An, M. Wu, Polynomial-type Lyapunov-Krasovskii functional and Jacobi-Bessel inequality: further results on stability analysis of time-delay systems, IEEE T. Automat. Contr., 66 (2021), 2905–2912. http://dx.doi.org/10.1109/TAC.2020.3013930 doi: 10.1109/TAC.2020.3013930
    [14] H. Phan-Van, K. Gu, Structured invariant subspace and decomposition of systems with time delays and uncertainties, Int. J. Robust Nonlin., in press. http://dx.doi.org/10.1002/rnc.7271
    [15] H. Shen, Y. Wang, J. Wang, J. Park, A fuzzy-model-based approach to optimal control for nonlinear markov jump singularly perturbed systems: a novel integral reinforcement learning scheme, IEEE T. Fuzzy Syst., 31 (2023), 3734–3740. http://dx.doi.org/10.1109/TFUZZ.2023.3265666 doi: 10.1109/TFUZZ.2023.3265666
    [16] J. Wang, J. Wu, H. Shen, J. Cao, L. Rutkowski, Fuzzy $h_{\infty}$ control of discrete-time nonlinear markov jump systems via a novel hybrid reinforcement $ q $-learning method, IEEE T. Cybernetics, 53 (2023), 7380–7391. http://dx.doi.org/10.1109/TCYB.2022.3220537 doi: 10.1109/TCYB.2022.3220537
    [17] M. Cruz, J. Hale, Stability of functional differential equations of neutral type, J. Differ. Equations, 7 (1970), 334–355. http://dx.doi.org/10.1016/0022-0396(70)90114-2 doi: 10.1016/0022-0396(70)90114-2
    [18] G. Li, Q. Yang, Stability analysis of the $\theta$-method for hybrid neutral stochastic functional differential equations with jumps, Chaos Soliton. Fract., 150 (2021), 111062. http://dx.doi.org/10.1016/j.chaos.2021.111062 doi: 10.1016/j.chaos.2021.111062
    [19] J. Džurina, S. Grace, I. Jadlovská, T. Li, Oscillation criteria for second-order emden–-fowler delay differential equations with a sublinear neutral term, Math. Nachr., 293 (2020), 910–922. http://dx.doi.org/10.1002/mana.201800196 doi: 10.1002/mana.201800196
    [20] M. Mansour, S. Me, S. Hadavi, B. Badrzadeh, A. Karimi, B. Bahrani, Nonlinear transient stability analysis of phased-locked loop-based grid-following voltage-source converters using Lyapunov's direct method, IEEE J. Em. Sel. Top. P., 10 (2022), 2699–2709. http://dx.doi.org/10.1109/JESTPE.2021.3057639 doi: 10.1109/JESTPE.2021.3057639
    [21] X. Fan, W. Lin, Z. Liu, L. Zhao, Reachable set control for nonlinear markov jump cyber-physical systems with false data injection attacks, J. Franklin I., 361 (2024), 224–233. http://dx.doi.org/10.1016/j.jfranklin.2023.12.013 doi: 10.1016/j.jfranklin.2023.12.013
    [22] I. Mitchell, A. Bayen, C. Tomlin, A time-dependent hamilton-jacobi formulation of reachable sets for continuous dynamic games, IEEE T. Automat. Contr., 50 (2005), 947–957. http://dx.doi.org/10.1109/TAC.2005.851439 doi: 10.1109/TAC.2005.851439
    [23] Z. Feng, J. Lam, On reachable set estimation of singular systems, Automatica, 52 (2015), 146–153. http://dx.doi.org/10.1016/j.automatica.2014.11.007 doi: 10.1016/j.automatica.2014.11.007
    [24] R. Gonzalez, M. Fiacchini, T. Alamo, J. Guzmán, F. Rodríguez, Online robust tube-based mpc for time-varying systems: a practical approach, Int. J. Control, 84 (2011), 1157–1170. http://dx.doi.org/10.1080/00207179.2011.594093 doi: 10.1080/00207179.2011.594093
    [25] Y. Yang, J. Lam, Y. Niu, C. Fan, Balancing fuzzy control performance and reachable-set-dependent event-triggered communication, IEEE T. Cybernetics, in press. http://dx.doi.org/10.1109/TCYB.2024.3363005
    [26] J. Lam, B. Zhang, Y. Chen, S. Xu, Reachable set estimation for discrete-time linear systems with time delays, Int. J. Robust Nonlin., 25 (2015), 269–281. http://dx.doi.org/10.1002/rnc.3086 doi: 10.1002/rnc.3086
    [27] M. Chen, S. Herbert, M. Vashishtha, S. Bansal, C. Tomlin, Decomposition of reachable sets and tubes for a class of nonlinear systems, IEEE T. Automat. Contr., 63 (2018), 3675–3688. http://dx.doi.org/10.1109/TAC.2018.2797194 doi: 10.1109/TAC.2018.2797194
    [28] E. Fridman, U. Shaked, On reachable sets for linear systems with delay and bounded peak inputs, Automatica, 39 (2003), 2005–2010. http://dx.doi.org/10.1016/S0005-1098(03)00204-8 doi: 10.1016/S0005-1098(03)00204-8
    [29] A. Devonport, M. Arcak, Estimating reachable sets with scenario optimization, Proceedings of the 2nd Conference on Learning for Dynamics and Control, 120 (2020), 75–84.
    [30] J. Scott, P. Barton, Bounds on the reachable sets of nonlinear control systems, Automatica, 49 (2013), 93–100. http://dx.doi.org/10.1016/j.automatica.2012.09.020 doi: 10.1016/j.automatica.2012.09.020
    [31] B. Xue, Z. She, A. Easwaran, Under-approximating backward reachable sets by polytopes, In: Computer aided verification, Cham: Springer, 2016,457–476. http://dx.doi.org/10.1007/978-3-319-41528-4_25
    [32] Y. Li, Y. He, W. Lin, M. Wu, Reachable set estimation for singular systems via state decomposition method, J. Franklin I., 357 (2020), 7327–7342. http://dx.doi.org/10.1016/j.jfranklin.2020.04.031 doi: 10.1016/j.jfranklin.2020.04.031
    [33] J. Kim, Improved ellipsoidal bound of reachable sets for time-delayed linear systems with disturbances, Automatica, 44 (2008), 2940–2943. http://dx.doi.org/10.1016/j.automatica.2008.03.015 doi: 10.1016/j.automatica.2008.03.015
    [34] Z. Feng, W. Zheng, L. Wu, Reachable set estimation of t–s fuzzy systems with time-varying delay, IEEE T. Fuzzy Syst., 25 (2017), 878–891. http://dx.doi.org/10.1109/TFUZZ.2016.2586945 doi: 10.1109/TFUZZ.2016.2586945
    [35] N. That, P. Nam, Q. Ha, Reachable set bounding for linear discrete-time systems with delays and bounded disturbances, J. Optim. Theory Appl., 157 (2013), 96–107. http://dx.doi.org/10.1007/s10957-012-0179-2 doi: 10.1007/s10957-012-0179-2
    [36] Z. Feng, J. Lam, An improved result on reachable set estimation and synthesis of time-delay systems, Appl. Math. Comput., 249 (2014), 89–97. http://dx.doi.org/10.1016/j.amc.2014.10.004 doi: 10.1016/j.amc.2014.10.004
    [37] J. Jian, L. Duan, Finite-time synchronization for fuzzy neutral-type inertial neural networks with time-varying coefficients and proportional delays, Fuzzy Set. Syst., 381 (2020), 51–67. http://dx.doi.org/10.1016/j.fss.2019.04.004 doi: 10.1016/j.fss.2019.04.004
    [38] Y. Liu, X. Pei, H. Zhou, X. Guo, Spatiotemporal trajectory planning for autonomous vehicle based on reachable set and iterative LQR, IEEE T. Veh. Technol., in press. http://dx.doi.org/10.1109/TVT.2024.3371184
    [39] Z. Zuo, D. Ho, Y. Wang, Reachable set bounding for delayed systems with polytopic uncertainties: the maximal Lyapunov-Krasovskii functional approach, Automatica, 46 (2010), 949–952. http://dx.doi.org/10.1016/j.automatica.2010.02.022 doi: 10.1016/j.automatica.2010.02.022
    [40] J. Hale, S. Verduyn Lunel, Introduction to functional differential equations, New York: Springer Science & Business Media, 1993. http://dx.doi.org/10.1007/978-1-4612-4342-7
    [41] J. Tian, L. Xiong, J. Liu, X. Xie, Novel delay-dependent robust stability criteria for uncertain neutral systems with time-varying delay, Chaos Soliton. Fract., 40 (2009), 1858–1866. http://dx.doi.org/10.1016/j.chaos.2007.09.068 doi: 10.1016/j.chaos.2007.09.068
    [42] X. Liu, M. Wu, R. Martin, M. Tang, Delay-dependent stability analysis for uncertain neutral systems with time-varying delays, Math. Comput. Simulat., 75 (2007), 15–27. http://dx.doi.org/10.1016/j.matcom.2006.08.006 doi: 10.1016/j.matcom.2006.08.006
    [43] S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear matrix inequalities in system and control theory, Philadelphia: Society for Industrial and Applied Mathematics, 1994. http://dx.doi.org/10.1137/1.9781611970777
    [44] W. Chen, W. Zheng, Delay-dependent robust stabilization for uncertain neutral systems with distributed delays, Automatica, 43 (2007), 95–104. http://dx.doi.org/10.1016/j.automatica.2006.07.019 doi: 10.1016/j.automatica.2006.07.019
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(480) PDF downloads(43) Cited by(0)

Article outline

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog