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Abstract: This research focuses on the challenge of defining the ellipsoidal boundaries of the
reachable set (RS) for neutral-type dynamical systems with time delays. A novel analytical approach
is proposed, leveraging the development of new Lyapunov functions and matrix inequality techniques.
These methods provide powerful tools for determining the ellipsoidal boundaries of the system’s RS.
A comparative analysis, supported by numerical examples, demonstrates that the approach outlined in
this study can accurately identify smaller yet effective RS boundaries compared to existing literature.
This precise boundary determination offers significant theoretical support for state estimation and
control design in dynamical systems, thereby enhancing their effectiveness and reliability in real-world
applications.
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1. Introduction

Time delays are prevalent in both natural phenomena and various systems encountered in everyday
life, characterized by a temporal lag in system responses [1–5]. They manifest in diverse contexts,
spanning from biological processes to communication networks and industrial control systems.
Specifically, neutral type delay systems [6], incorporating neutral terms, present heightened complexity
and pose greater challenges compared to conventional delay systems. Exploring the dynamic
characteristics of neutral type delay systems is not only of considerable theoretical significance but
also of substantial practical value in various applications. Consequently, it has become a central focus
of current academic research [7]. Understanding these systems’ behaviors contributes to advancing
fundamental knowledge in dynamical systems theory while also facilitating the development of robust
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control strategies for real-world applications. By delving deeply into their dynamics, we can enhance
our comprehension and predictive capabilities regarding the behavior of these systems. In turn, this
furnishes a scientific foundation and technical backing for addressing real-world challenges effectively.
Such insights empower us to develop tailored solutions and robust strategies that account for the
complexities inherent in neutral type delay systems, thus facilitating their practical implementation
across various domains.

Since the 1970s, stability analysis in continuous dynamic systems has garnered considerable
attention [8–12]. In the last three decades, stability investigations concerning delay differential
systems have continued to be a focal point within the global control theory community. Among
these, neutral type delay systems stand out for providing a nuanced and precise understanding of
the fundamental principles underlying dynamic changes in phenomena. Their distinctive attributes
offer significant advantages in addressing complex real-world challenges, such as those encountered
in turbine jet engine systems and lateral cutting applications [13, 14]. Indeed, the incorporation of
neutral terms complicates the analysis of dynamical properties in these systems, presenting greater
challenges compared to ordinary delay differential systems. As a result, progress in research on
neutral type differential systems has been relatively slow. In [15], Shen et al. proposed a method
based on a fuzzy model to study a nonlinear Markov jump singular perturbation system, adopting deep
learning optimization and a new online parallel learning algorithm. This method is very interesting,
and the effectiveness of the proposed method was shown. As interesting as research work [15],
in [16], a novel hybrid reinforcement Q-learning control method was developed for adaptive fuzzy
H∞ control of discrete-time nonlinear Markov jump systems, along with an innovative online parallel
Q-learning algorithm that enhances learning efficiency by eliminating initial stability conditions and
achieving faster convergence compared to traditional methods. The intricate interplay between delayed
and non-delayed components necessitates the development of specialized analytical techniques and
methodologies to unravel their behaviors accurately. Since M. A. Cruz and J. K. Hale initially
introduced the concept of neutral functional differential equations and their associated theories,
substantial theoretical advancements have been made in investigating their stability [17–19]. These
pioneering contributions laid the groundwork for subsequent research endeavors, driving forward our
understanding of the stability properties inherent in such systems. The majority of these findings have
been derived using techniques such as Lyapunov’s direct method [20], state space analysis, and the
characteristic equation method. Through the application of these methodologies, researchers have
been able to uncover fundamental stability properties and develop strategies for effectively analyzing
and controlling these complex systems.

The term “reachable set” (RS) encompasses the set of states that a system can potentially attain
within its state space [21–24]. This which concept is fundamental in understanding the dynamic
evolution and potential trajectories of a given system under different conditions and inputs. In
dynamic systems, the system’s state is typically represented by a set of variables, and the values of
these variables form the state space [25]. Research on RS is crucial for understanding the system’s
dynamic behavior, stability analysis, control design, and performance evaluation. Researching the RS
of system states is of paramount significance [26–28]. The RS denotes the collection of states that a
system in a state space may potentially attain, playing a pivotal role in comprehending the system’s
dynamic behavior and stability. By scrutinizing the RS, we can assess the stability of the system and
ascertain the existence and stability characteristics of equilibrium points. Moreover, the RS serves as
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a fundamental framework for devising effective control strategies. By comprehending the accessibility
of various system states, we can identify suitable control inputs to steer the system towards desired
states or steer clear of undesired ones. Furthermore, investigations into RS contribute to assessing
system performance, enabling comparisons between the system’s RS and the anticipated workspace
to determine if the system meets the operational requirements in real-world scenarios. In summary,
studying the RS of system states provides crucial reference points for system design, control, and
performance evaluation [22, 29–32].

In [33], the focus is on addressing the challenge of determining an ellipsoidal RS that encompasses
the states of linear time-delay systems under the influence of bounded peak disturbances. Feng and
Zheng investigated the RS estimation problem for discrete-time delayed Takagi-Sugeno fuzzy systems
with bounded input disturbances and nonzero initial conditions. By utilizing an approach based on
reciprocally convex combinations to estimate the forward difference of terms that are triple-summable,
a condition for RS estimation was formulated. Numerical examples validated the effectiveness of the
proposed results [34]. [35] investigated the boundedness issue concerning reachable sets for linear
discrete-time systems that are affected by state delays and bounded disturbances. A novel approach
involved minimizing the projection distance of ellipsoids along each axis with different exponential
convergence rates, rather than simply minimizing their radii, to obtain smaller boundaries. As a
result, the intersection points of these ellipsoids produce a more compact boundary for the RS.
Numerical demonstrations confirmed the efficacy of the proposed methodology. In [36], Feng delved
into issues concerning RS estimation and synthesis for time-delay systems. The non-uniform delay-
partitioning method and the triple integral technique were introduced to propose an improved RS
estimation condition, which is formulated as a linear matrix inequality. This enhanced condition offers
advancements in accurately estimating and synthesizing the RS for time-delay systems. Using this
criterion, a sufficient condition for the existence of a state-feedback controller is established, ensuring
that the reachable set of the closed-loop system is bounded by a predefined ellipsoid. Two numerical
examples were provided to demonstrate the efficacy of the results. Jian and Duan explored the
finite-time synchronization issue of fuzzy inertial neural networks with time-varying coefficients and
proportional delays by employing suitable variable transformations. They proposed criteria based on
algebraic inequalities to attain finite-time synchronization. The effectiveness of the proposed method
was validated through simulations of two numerical examples, with estimation of the settling time
included [37]. [38] introduced a novel approach that integrates spatiotemporal trajectory planning
and control using a combination of RS and optimization techniques. The method encompasses a
risk assessment model that accounts for uncertainty in predictive position distribution, along with a
strategy for constructing spatiotemporal corridors that incorporate risk fields. Additionally, the authors
devised a trajectory optimization strategy employing the Iterative Linear Quadratic Regulator (ILQR)
and considering coupled lateral-longitudinal dynamics. This approach facilitates rolling iterative
optimization within the defined spatiotemporal corridors.

Building on the insights from the literature mentioned above, this study concentrates on addressing
the elliptical boundary problem of RS for time-delay neutral systems. By introducing novel
Lyapunov functions and employing matrix inequality techniques, we propose several methodologies
for determining the elliptical boundaries of RS. The primary contributions of this study are outlined as
follows

(1) First of all, the investigation of neutral time-delay systems reveals intricate dynamical behaviors,
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rendering stability analysis and control design notably intricate. Delving into neutral time-
delay systems holds paramount importance in tackling delay-associated challenges in practical
engineering scenarios. Such research endeavors contribute significantly to bolstering system
stability, robustness, and overall performance.

(2) Additionally, the elliptical boundary problem of RS for time-delay neutral systems was
investigated. Through the construction of innovative Lyapunov functionals and the application of
matrix inequality techniques, diverse approaches have been developed to determine the smallest
feasible elliptical boundaries of RS. This research significantly advances both comprehension and
computational methodologies for analyzing reachable sets in time-delay neutral systems. Such
advancements are pivotal for applications in control, optimization, and ensuring system safety.

(3) Ultimately, compared with other studies (see [33] and [39]), the effectiveness of the proposed
method is further validated through numerical simulations conducted using MATLAB/Simulink.
These simulations demonstrate the capability of the method to identify a smaller and more
efficient boundary for the RS.

The remainder of this paper is structured as follows: Section 2 provides the model of neutral-type
time-delay systems, introduces key lemmas, and delineates the control objectives briefly. Section 3
introduces a RS method utilizing ellipsoidal boundaries, applies the Lyapunov direct method, and
verifies stability. In Section 4, numerical simulation results, from MATLAB, are presented to validate
that the proposed approach produces smaller RS boundaries through comparative analysis. Finally,
Section 5 offers concluding remarks and outlines avenues for future research.

2. System description and main lemmas

2.1. System model

The neutral delay system studied in this section can be described as{
ẋ(t) −Cẋ(t − τ) = Ax(t) + Bx(t − h(t)) + Dw(t),
x (t0 + θ) = ϕ(θ), ∀θ ∈ [−τ∗, 0] ,

(2.1)

where, x(t) ∈ <n denotes the system’s state vector, while w(t) ∈ <l represents the disturbance. The
function ϕ(·) is a differentiable function defining initial values for the system. The parameter τ > 0
signifies a time-varying neutral type delay, and h(t) denotes a time-varying discrete delay. Additionally,
both the neutral type delay and the disturbances are subject to specific conditions

0 6 h(t) 6 h 6 +∞, (2.2)

ḣ(t) 6 hd 6 1, (2.3)

wT(t)w(t) 6 1, (2.4)

where, h and hD are constants, and τ∗ = max(τ, h) denotes the maximum delay in the system,
incorporating both the neutral type delay τ and the discrete delay h. The matrices A, B, C, and D
are known real matrices with dimensions A, B,C ∈ <n×n and D ∈ <n×l, defining the linear dynamics
and interactions within the system and with external disturbances. In addition, wm is the maximum
value of w and satisfies 0 < wm ≤ 1.
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The RS of the system is denoted as

Rx =
{
x(t) ∈ Rn | x(t),w(t) satisfy: (2 − 1), (2 − 2)

}
. (2.5)

The RS Rx is represented by the ellipsoidal boundary defined as J(P1, 1):

= (P1, 1) =
{
x(t) ∈ Rn | x(t) satisfies (2 − 1), (2 − 2), and xT(t)P1x(t) ≤ 1

}
. (2.6)

Remark 1. This section delves into the dynamics of a specific class of delay systems known as neutral
type systems. These systems are characterized by a differential equation capturing the current rate of
change of the state vector x(t), as well as its rate of change at a previous time, incorporating both a
neutral type delay τ and a discrete delay h(t). The state vector x(t) ∈ Rn evolves under the influence
of a disturbance vector w(t) ∈ Rl. Moreover, the system initializes from an initial state defined by a
differentiable function ϕ(·) over the interval [−τ, 0], where τ = max(τ, h) denotes the maximum delay
experienced by the system.

Remark 2. The delays within the system, including both the neutral and discrete components, are
bounded, thereby ensuring that the system’s dynamics remain well-defined within these constraints.
This boundedness of delays is crucial for maintaining the stability and predictability of the system’s
behavior under varying conditions. The matrices A, B, C, and D are known real matrices that
characterize the interactions within the system and with external disturbances. To analytically describe
the reachability set, an ellipsoidal boundary =(P1, 1) is defined, encompassing all states x(t) that not
only satisfy the system’s differential equations but also adhere to a quadratic constraint defined by the
matrix P1.

2.2. Main useful lemmas

Definition 1. Nonlinear systems exhibit diverse equilibrium point configurations, which can range
from none to one or multiple. Unlike their linear counterparts, nonlinear systems often display a
richer array of equilibrium behaviors, frequently featuring multiple equilibrium points or lacking any
at all. Linear systems, on the other hand, are characterized by a more straightforward equilibrium
point analysis.

ẋ = Ax,

and when A is non-singular, the system has a unique equilibrium point at x = 0.

Definition 2. [40] If there exist constants α > 0 and γ > 1 such that for any x(t) the inequality

‖x(t)‖ 6 γ sup
−γ∗<s<0

√
‖ϕ(s)‖2 + ‖φ(s)‖2e−αt, (2.7)

hold, then the system Eq (2.1) is said to be exponentially stable, with a decay rate of α.

Lemma 1. [41] For the provided symmetric positive definite matrices Σ1 and Σ2, along with any
matrix Σ3, the condition Σ1 + ΣT

3 Σ−1
2 Σ3 < 0 is met if and only if both of the following matrix inequalities

hold: [
Σ1 ΣT

3
Σ3 −Σ2

]
< 0,

[
−Σ2 Σ3

ΣT
3 Σ1

]
< 0. (2.8)
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Lemma 2. [42] For any matrix Φ ∈ Rn×n and a constant γ > 0, if the function w : [0, γ] → Rn is
integrable, then the following equation holds:(∫ γ

0
w(s)ds

)T

Φ

(∫ γ

0
w(s)ds

)
6 γ

∫ γ

0
wT(s)Φw(s)ds. (2.9)

Lemma 3. [43] Let V(x(0)) = 0 and wT(t)w(t) 6 w2
m. If

V̇ (t, xt) + αV (t, xt) − βwT(t)w(t) 6 0, (2.10)

then, for all t > t0, it holds that

V (t, xt) 6
β

α
w2

m. (2.11)

Lemma 4. [44] Given α ∈ Rna , β ∈ Rnb , and N ∈ Rna×nb , if the block matrix
[

X Y
YT Z

]
> 0, then for

any matrices X ∈ Rna×na ,Y ∈ Rna×nb , and Z ∈ Rnb×nb , the following inequality holds:

− 2αTNβ 6
[
α

β

]T [
X Y − N

YT − NT Z

] [
α

β

]
. (2.12)

Lemma 5. [40] Given matrices Q = QT, H, E, and R = RT of appropriate dimensions, it holds that
for all FTF 6 R

Q + HFE + ETFTHT < 0. (2.13)

If and only if ∃ε > 0,
Q + εHHT + η−1ETRE < 0. (2.14)

2.3. Control objective

This study addresses the intricate task of delineating the ellipsoidal boundaries of RS for neutral-
type systems, particularly in the presence of bounded and nonlinear disturbances. It investigates
methodologies aimed at precisely defining the RS boundaries, ensuring comprehensive coverage under
specified conditions. Leveraging the direct Lyapunov method, the concept of free-weighting matrices,
and techniques involving matrix inequalities, a suitable Lyapunov function is selected to tackle this
challenge. A novel approach for determining the ellipsoidal boundaries of the system’s RS is proposed.
Through numerical examples, this paper showcases that the proposed method excels in accurately
identifying smaller and more effective RS boundaries compared to existing research.

3. Ellipsoidal boundary of RS

In this section, we will address the RS boundary problem for the aforementioned neutral-type
system using the direct Lyapunov method and various techniques involving matrix inequalities. We
will present the following theorem:
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Theorem 1. There exist matrices Y, Q12, P2, and P3 are postulated to exist, alongside matrices X, Z,
Q11, Q22, P1 > 0, R > 0, S 1 > 0, S 2 > 0, G > 0 and M > 0 and the real number α > 0, satisfying the
following linear matrix inequality:

Φ11 Φ12 Φ13 PT
2C − Y 0 αY PT

2 D
∗ Φ22 PT

3 B PT
3C 0 Y + Z PT

3 D
∗ ∗ Φ33 0 0 0 0
∗ ∗ ∗ −e−ατR 0 −Z 0
∗ ∗ ∗ ∗ −e−αhS 2 0 0
∗ ∗ ∗ ∗ ∗ αZ − e−ατG 0
∗ ∗ ∗ ∗ ∗ ∗ − α

w2 I


6 0, (3.1)

[
Q11 Q12

QT
12 Q22

]
> 0, (3.2)[

X Y
YT Z + 1

τ
e−ατR

]
> 0, (3.3)

where
Φ11 = αP1 + αX + PT

2 A + ATP2 + M − e−αhS 1, (3.4)

Φ12 = P1 − PT
2 + ATP3 + X + Y, (3.5)

Φ13 = PT
2 B + Q12 + e−αhS 1, (3.6)

Φ22 = R + τ2G + h2 (S 1 + S 2) + he−αhQ11 − P3 − PT
3 , (3.7)

Φ33 = hQ22 − Q12 − QT
12 −min

(
(1 − hd) e−αh, 1 − hd

)
M − e−αhS 1. (3.8)

Therefore, the ellipsoid J (P1, 1) constitutes the boundary of the RS for the neutral type system
Eq (2.1).

Remark 3. This statement underscores the significance of employing linear matrix inequalities (LMIs)
and specific matrix conditions to establish the boundaries of the Reachability Set (RS) in control theory.
Defining these boundaries is pivotal for comprehending the system’s capabilities and limitations,
especially in the context of neutral-type systems where factors like time delays can introduce complexity
to the dynamics. By characterizing the ellipsoid J (P1, 1), we obtain valuable insights into the spectrum
of states achievable by the system under specified conditions. This understanding is indispensable for
devising control strategies, ensuring stability, and optimizing system performance.

Proof. In order to derive a smaller boundary for the RS of the system described by Eq (2.1), we select
the following Lyapunov functional:

V(t) = V1(t) + V2(t) + V3(t) + V4(t) + V5(t), (3.9)

where

V1(t) =
[

xT(t) ẋT(t)
] [ I 0

0 0

] [
P1 0
P2 P3

] [
x(t)
ẋ(t)

]
, (3.10)

V2(t) =

∫ t

t−h(t)
eα(s−t)xT(s)Mx(s)ds +

∫ t

t−τ
eα(s−t) ẋT(s)Rẋ(s)ds, (3.11)
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V3(t) = h
∫ 0

−h
dθ

∫ t

t+θ
eα(s−t) ẋT(s) (S 1 + S 2) ẋ(s)ds + τ

∫ 0

−τ

dθ
∫ t

t+θ
eα(s−t)xT(s)Gx(s)ds, (3.12)

V4(t) =

∫ t

0
dθ

∫ θ

θ−h(θ)
eα(θ−t)

[
ẋT(s) xT(θ − h(θ))

] [ Q11 Q12

QT
12 Q22

] [
ẋ(s)

x(θ − h(θ))

]
ds

+ eαh
∫ t

0
dθ

∫ θ

θ−h(θ)
eα(s−t) ẋT(s)Q11 ẋ(s)ds,

(3.13)

V5(t) =

[
xT(t)

(∫ t

t−τ
ẋ(s)ds

)T
] [ G11 G12

GT
12 G22

] [
x(t)∫ t

t−τ
ẋ(s)ds

]
. (3.14)

The matrices Q11, Q22, Q12, P1 > 0, P2, P3, R > 0, S 1 > 0, S 2 > 0, G > 0, M > 0, X, Y , and Z
and the scalar ε > 0 are solutions to matrix inequalities (3.1) and (3.2). Initially, it is evident that for
t − h 6 s 6 t, the following condition holds:

0 < e−αh 6 eα(s−t) 6 1, (3.15)

0 6 h − t + s 6 h. (3.16)

Therefore, it can be inferred that
V3(t) > 0. (3.17)

By applying a lemma, we establish the validity of the inequality:

V2(t) > e−ατ
∫ t

t−τ)
ẋT(s)Rx(s)ds >

1
τ

e−ατ
(∫ t

t−τ
ẋ(s)ds

)T

R
(∫ t

t−τ
ẋ(s)ds

)
. (3.18)

Moreover, it leads us to the conclusion that

V4(t) > 0. (3.19)

Furthermore, the following inequality holds:

5∑
i=2

Vi(t) >
[

xT(t)
(∫ t

t−τ
ẋ(s)ds

)T
] [ X Y

YT Z + 1
τ
e−ατR

] [
x(t)∫ t

t−τ
ẋ(s)ds

]
> 0. (3.20)

Therefore, we can deduce that

V(t) =

5∑
i=1

Vi > V1

(
x(t) = xT(t)P1x(t)

)
. (3.21)

Following the trajectory of the system as defined in Eq (2.1), we proceed to differentiate the Lyapunov
functional V(t), resulting in

V(t) = V̇1(t) + V̇2(t) + V̇3(t) + V̇4(t) + V̇5(t). (3.22)
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Through Eq (3.9), we have

V̇1(t) =
[

xT(t) ẋT(t)
] [ P1 PT

2
0 PT

3

] [
x(t)
0

]

=
[

xT(t) ẋT(t)
] [ P1 PT

2
0 PT

3

] 
ẋ(t)(

Ax(t) − ẋ(t) + Bx(t − h(t))
+Cẋ(t − d(t)) + Dw(t)

] 
=xT(t)

[
PT

2 A + ATP2

]
x(t) + 2xT(t)

[
P1 − PT

2 + ATP3

]
ẋ(t)

+ 2xT(t)PT
2 Bx(t − h(t)) + 2xT(t)PT

2Cẋ(t − τ)

+ 2xT(t)PT
2 Dw(t) − ẋT(t)

[
P3 + PT

3

]
ẋ(t)

+ 2ẋT(t)PT
3 Bx(t − h(t)) + +2ẋT(t)PT

3Cẋ(t − τ) + 2xT(t)PT
3 Dw(t),

(3.23)

V̇2(t) =xT(t)Mx(t) + ẋT(t)Rẋ(t) − (1 − ḣ(t))e−αh(t)xT(t − h(t))Mx(t − h(t))

− e−ατ ẋT(t − τ)Rẋ(t − τ) − α
∫ t

t−h(t)
e2α(s−t)xT(s)Mx(s)ds

− α

∫ t

t−τ
e2α(s−t) ẋT(s)Rẋ(s)ds

6xT(t)Mx(t) + ẋT(t)Rẋ(t) − e−ατ ẋT(t − τ)Rẋ(t − τ)

−min
(
(1 − hd) e−αh, 1 − hd

)
xT(t − h(t))Mx(t − h(t)) − αV2,

(3.24)

V̇3(t) 6
[

xT(t) ẋT(t)
] [ S 11 S 12

S T
12 S 22

] [
x(t)
ẋ(t)

]
− (1 − τD) ·

[
xT(t − τ) ẋT(t − τ)

] [ S 11 S 12

S T
12 S 22

] [
x(t − τ)
ẋ(t − τ)

]
6xT(t)S 11x(t) + 2xT(t)S 12 ẋ(t) + 2ẋT(t)S 22 ẋ(t) − (1 − τD)

·
[
xT(t − τ)S 11x(t − τ) + 2xT(t − τ)S 12 ẋ(t − τ) + ẋT(t − τ)S 22 ẋ(t − τ)

]
,

(3.25)

V̇4(t) =

∫ t

t−h(t)
ẋT(s)Q11 ẋ(s)ds + 2

(∫ t

t−h(t)
ẋT(s)ds

)T

Q12x(t − h(t))

+ h(t)xT(t − h(t))Q22x(t − h(t)) + heαh ẋT (s)Q11 ẋ(s)

−

∫ t

t−h
ẋT(s)Q11 ẋ(s)ds − αV4

6

∫ t

t−h(t)
ẋT(s)Q11 ẋ(s)ds + 2[x(t) − x(t − h(t))]TQ12x(t − h(t))

+ hxT(t − h(t))Q22x(t − h(t)) + heαh ẋT(s)Q11 ẋ(s)

−

∫ t

t−h
ẋT(s)Q11 ẋ(s)ds − αV4

=2xT(t)Q12x(t − h(t)) + heαh ẋT(s)Q11 ẋ(s)

+xT(t − h(t))
[
hQ22 − Q12 − QT

12

]
x(t − h(t)) − αV4

]
,

(3.26)
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V̇5(t) =

[
xT(t)

(∫ t

t−τ
ẋ(s)ds

)T
] [ X Y

YT Z

] [
ẋ(t)

ẋ(t) − ẋ(t − τ)

]
62

[
xT(t)[X + Y]ẋ(t) − xT(t)Y ẋ(t − τ) + ẋT(t)[Y + Z] ·

(∫ t

t−τ
ẋ(s)ds

)
−ẋT(t − τ)Z

(∫ t

t−τ
ẋ(s)ds

)]
.

(3.27)

Then, we have

V̇(t) + αV(t) −
α

w2
m

wT(t)w(t)

6xT(t)
[
αP1 + αX + PT

2 A + ATP2 + M − e−αhS 1

]
x(t) + 2xT(t)

[
P1 − PT

2 + ATP3 + X + Y
]

ẋ(t)

+ 2xT(t)
[
PT

2 B + Q12 + e−αhS 1

]
x(t − h(t)) + 2xT(t)

[
PT

2C − Y
]

ẋ(t − τ)

+ 2αxT(t)Y ·
(∫ t

t−τ
ẋ(s)ds

)
+ 2xT(t)PT

2 Dw(t)

+ ẋT(t)
[
R + τ2G + h2 (S 1 + S 2) + he−αhQ11 − P3 − PT

3

]
ẋ(t)

+ 2ẋT(t)PT
3 Bx(t − h(t)) + 2ẋT(t)PT

3Cẋ(t − τ)

+ 2ẋT(t)[Y + Z]
(∫ t

t−τ
ẋ(s)ds

)
+ 2ẋT(t)PT

3 Dw(t)

+ 2xT(t − h(t))
[
hQ22 − Q12 − QT

12 −min
(
(1 − hd) e−αh, 1 − hd

)
M − e−αhS 1

]
x(t − h(t))

− e−ατ ẋT(t − τ)R · ẋ(t − τ) − 2ẋT(t − τ)Z
(∫ t

t−τ
ẋ(s)ds

)
− e−αh

(∫ t

t−h(t)
ẋ(s)ds

)T

S 2

(∫ t

t−h(t)
ẋ(s)ds

)
−

(∫ t

t−τ
ẋ(s)ds

)T [
αZ − e−ατG

] (∫ t

t−τ
ẋ(s)ds

)
−

α

w2
m

wT(t)w(t)

=XT(t)ΦX(t),

(3.28)

where

X(t) =

xT(t), ẋT(t), xT(t − h(t)), ẋT(t − τ),
(∫ t

t−h(t)
ẋ(s)ds

)T

,

(∫ t

t−τ
ẋ(s)ds

)T

,wT(t)
T

.

The function Φ is defined as given in Theorem 1. Furthermore, through matrix inequalities (3.1)
to (3.3) , we can derive the following inequality:

V̇(t) + αV(t) −
α

w2
m

wT(t)w(t) ≤ 0. (3.29)

According to Lemma 3, it follows that

V(t) = V1(t) + V2(t) + V3(t) + V4(t) + V5(t) ≤ 1. (3.30)
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From inequality Eq (3.9), we deduce that V2(t) + V3(t) + V4(t) + V5(t) > 0, which implies that

V1(t) = xT(t)P1x(t) ≤ 1. (3.31)

Thus, the theorem is proven. �

The ellipsoid J (P1, 1) serves as the boundary of the RS for the neutral type system Eq (2.1). It is
important to note, as mentioned in Theorem 1, that if solutions to the matrix inequalities exist, they are
not necessarily unique. This is because when the value of log det (P1)1/2 is minimized, the volume of
the ellipsoid = (P1, 1) is also minimized. Therefore, log det (P1)1/2 is commonly used to measure the
volume of the ellipsoid = (P1, 1). However, finding the minimum value of log det (P1)1/2 can be quite
challenging. Thus, this problem is often simplified to finding the maximum value of δ that satisfies
δI 6 P1, which can be formulated as

min δ̄
(
δ̄ =

1
δ

)

s.t.

 (a)
[
δ̄I I
I P1

]
> 0,

(b) P1 > 0 and satisfies the matrix inequality (3.1).

(3.32)

Remark 4. The derivation process primarily relied on Leibniz’s integral rule for managing derivatives
of integrals with varying limits, along with the chain rule for handling derivatives of composite
functions. This method facilitated accurate computation of the time rate of change for integral
expressions, even in scenarios involving time-sensitive integral bounds and integrands. Additionally,
fundamental theorems of integration and differentiation, coupled with knowledge of derivatives of
matrix multiplication, were leveraged. These mathematical tools are widely employed in the analysis
of dynamic systems. By employing a comprehensive array of mathematical techniques, including these
fundamental principles, the solutions of derivative problems concerning complex integral expressions
are efficiently and precisely achieved. This underscores a profound grasp of essential mathematical
concepts in dynamic systems and control theory.

Remark 5. When the scalar parameter α in Theorem 1’s matrix inequality remains constant, (3.32)
simplifies to a linear matrix inequality. Therefore, we can utilize the MATLAB function fminsearch.m
to find a local optimal value of α such that the matrix inequality (3.32) has a feasible solution. This
approach facilitates an efficient search for an optimal value of α, guaranteeing the existence of a
feasible solution for the matrix inequality under consideration.

Remark 6. In our study on system reachable sets, we prioritize system control and stability. Therefore,
our research and design objective is to minimize the system RS. While there are various methods to
investigate RS for the same system, based on the same LMI technique, we devise different Lyapunov
functionals. We then compare these methods with others to identify an approach that yields a smaller
RS for the system.

4. Numerical simulation verification

Consider the RS boundary problem for the following time-delay system:

ẋ(t) =

[
−2 0

0 −0.9 + ρ

]
x(t) +

[
−1 0
−1 −1 + 0.5ρ

]
x(t − h(t)) +

[
−0.5

1

]
w(t), (4.1)
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where,

A =

[
−2 0

0 −0.9

]
, B =

[
−1 0
−1 −1

]
,C =

[
0 0
0 0

]
,D =

[
−0.5

1

]
,

wT(t)w(t) < w2
m = 1, |ρ| 6 0.2.

The incorporation of a fixed constant time delay, represented by h(t), introduces a memory effect
into the system, potentially leading to reduced stability, oscillatory behavior, or even instability.
Conversely, time-varying delays represented by h(t) add complexity to the system dynamics, as the
delay varies dynamically over time. Consequently, this study establishes two simulation scenarios to
validate the efficacy of the proposed theory and to explore the impact on the RS. Hence, we select two
distinct scenarios: one with a constant delay of h(t) = 0.70 and another with a time-varying delay of
h(t) = 0.2 + 0.2 ∗ sin(t).

Figure 1 depicts the time response plot of the system state vector when the time delay parameter is
constant at h = 0.70. Figure 2 illustrates the trajectory plot of the system states under the constant time
delay of h = 0.70. Meanwhile, Figure 3 contrasts the system state trajectories under the time delay
parameter h = 0.70 with the ellipsoidal RS boundaries obtained from Theorem 1 proposed in this paper,
the Kim method (see [33]), and the Zuo method (see [39]). Observing Figure 3, it is apparent that the
approach outlined in Theorem 1 results in more compact ellipsoidal boundaries for the reachable sets
(RS) of system states compared to two other methodologies from the literature. However, when the
time delay follows the function h(t) = 0.2 + 0.2 ∗ sin(t), the time response plot of the system state
vector is depicted in Figure 4. Similar to Figure 2, Figure 5 showcases the trajectory plot of the
system states with a constant time delay of h(t) = 0.2 + 0.2 ∗ sin(t). Furthermore, Figure 6 provides a
comparative analysis of system state trajectories under the time delay parameter h(t) = 0.2+0.2∗ sin(t)
with ellipsoidal RS boundaries derived from Theorem 1 proposed in this paper, the Kim method, and
the Zuo method. Exploring these results sheds light on the efficacy and robustness of the proposed
methodology across varying conditions, suggesting avenues for further refinement and application in
real-world scenarios.
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Figure 1. The response diagram of system state vector x(t) when h = 0.7.
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Figure 2. The diagram of system state trajectories under the time delay h = 0.70.
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Figure 3. The RS system state trajectory diagram of different methods with time delay
h = 0.70.
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Figure 4. The response diagram of system state vector x(t) when h = 0.2 + 0.2 ∗ sin(t).
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Figure 5. The diagram of system state trajectories under the time delay h = 0.2 + 0.2 ∗ sin(t).
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Figure 6. The RS system state trajectory diagram of different methods with time delay
h = 0.2 + 0.2 ∗ sin(t).

5. Conclusions

The study delves into the ellipsoidal boundary issue of reachable sets (RS) for neutral-type systems
under bounded disturbances. Through the development of a novel Lyapunov functional and the
application of matrix inequality techniques, the paper introduces several approaches for delineating
the ellipsoidal boundary of reachable sets. Moreover, numerical demonstrations showcase that
the proposed methodologies yield more compact and efficient RS boundaries compared to existing
literature. Future endeavors might encompass further investigation into RS boundary challenges across
different system paradigms, along with applying these techniques to enhance the design of safety
measures in control systems.
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