This paper discusses the congestion control challenges in a network employing multi-bottleneck Transmission Control Protocol/Active Queue Management (TCP/AQM). The study specifically focuses on networks characterized by input nonlinearity and unknown disturbances. We regard the network as a whole, and consider the influence between multiple nodes and unknown disturbance, a dynamic model of multi-bottleneck network is established. And the impact of dead zone and saturation on the system is taken into account for the first time in the model, the builded TCP/AQM model is more practicable. Based on the characteristics of fuzzy logic systems (FLS), combined with backstepping technology and Lyapunov function, an adaptive congestion control algorithm is designed to make full use of the link resources of each node and improve the network utilization. Ultimately, the proposed algorithm's efficacy and superiority are substantiated through simulation.
Citation: Yanxin Li, Shangkun Liu, Jia Li, Weimin Zheng. Congestion tracking control of multi-bottleneck TCP networks with input-saturation and dead-zone[J]. AIMS Mathematics, 2024, 9(5): 10935-10954. doi: 10.3934/math.2024535
This paper discusses the congestion control challenges in a network employing multi-bottleneck Transmission Control Protocol/Active Queue Management (TCP/AQM). The study specifically focuses on networks characterized by input nonlinearity and unknown disturbances. We regard the network as a whole, and consider the influence between multiple nodes and unknown disturbance, a dynamic model of multi-bottleneck network is established. And the impact of dead zone and saturation on the system is taken into account for the first time in the model, the builded TCP/AQM model is more practicable. Based on the characteristics of fuzzy logic systems (FLS), combined with backstepping technology and Lyapunov function, an adaptive congestion control algorithm is designed to make full use of the link resources of each node and improve the network utilization. Ultimately, the proposed algorithm's efficacy and superiority are substantiated through simulation.
[1] | V. Jacobson, Congestion avoidance and control, ACM SIGCOMM Comput. Commun. Rev., 18 (1988), 314–329. https://doi.org/10.1145/52325.52356 doi: 10.1145/52325.52356 |
[2] | M. Mathis, J. Mahdavi, S. Floyd, A. Romanow, TCP selective acknowledgment options, Tech. Rep., 1996. |
[3] | S. Ryu, C. Rump, C. Qiao, Advances in internet congestion control, IEEE Commun. Surv. Tut., 5 (2003), 28–39. https://doi.org/10.1109/COMST.2003.5342228 doi: 10.1109/COMST.2003.5342228 |
[4] | G. Chatranon, M. A. Labrador, S. Banerjee, A survey of tcp-friendly router-based AQM schemes, Comput. Commun., 27 (2004), 1424–1440. https://doi.org/10.1016/j.comcom.2004.05.001 doi: 10.1016/j.comcom.2004.05.001 |
[5] | T. A. N. Nguyen, S. Gangadhar, J. P. Sterbenz, Performance evaluation of TCP congestion control algorithms in data center networks, In: Proceedings of the 11th International Conference on Future Internet Technologies, 2016, 21–28. https://doi.org/10.1145/2935663.2935669 |
[6] | B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, et al., Recommendations on queue management and congestion avoidance in the internet, Tech. Rep., 1998. |
[7] | S. Floyd, V. Jacobson, Random early detection gateways for congestion avoidance, IEEE/ACM T. Network., 1 (1993), 397–413. https://doi.org/10.1109/90.251892 doi: 10.1109/90.251892 |
[8] | T. J. Ott, T. Lakshman, L. H. Wong, SRED: stabilized RED, In: IEEE INFOCOM'99. Conference on Computer Communications. Proceedings. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies, 3 (1999), 1346–1355. |
[9] | D. Lin, R. Morris, Dynamics of random early detection, In: Proceedings of the ACM SIGCOMM'97 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, 1997,127–137. |
[10] | R. Adams, Active queue management: a survey, IEEE Commun. Surv. Tut., 15 (2012), 1425–1476. https://doi.org/10.1109/SURV.2012.082212.00018 doi: 10.1109/SURV.2012.082212.00018 |
[11] | V. Misra, W. B. Gong, D. Towsley, Fluid-based analysis of a network of AQM routers supporting TCP flows with an application to RED, In: Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, 2000,151–160. https://doi.org/10.1145/347059.347421 |
[12] | F. Ren, C. Lin, X. Yin, Design a congestion controller based on sliding mode variable structure control, Comput. Commun., 28 (2005), 1050–1061. https://doi.org/10.1016/j.comcom.2004.06.011 doi: 10.1016/j.comcom.2004.06.011 |
[13] | M. Yan, Y. Jing, X. Shen, Sliding mode aqm algorithm for TCP networks with uncertainty, J. Northeast. Uni. (Natural Science), 29 (2008), 157. |
[14] | Y. Liu, X. Liu, Y. Jing, S. Zhou, Adaptive backstepping $h_\infty$ tracking control with prescribed performance for internet congestion, ISA Transact., 72 (2018), 92–99. https://doi.org/10.1016/j.isatra.2017.10.004 doi: 10.1016/j.isatra.2017.10.004 |
[15] | X. Qi, H. Ma, Y. Jing, A novel congestion controller with prescribed settling time for TCP/AQM network system, IEEE Transact. Network Sci. Eng., 9 (2022), 4065–4074. https://doi.org/10.1109/TNSE.2022.3195749 doi: 10.1109/TNSE.2022.3195749 |
[16] | M. Sheikhan, R. Shahnazi, E. Hemmati, Adaptive active queue management controller for tcp communication networks using pso-rbf models, Neural Comput. Applic., 22 (2013), 933–945. https://doi.org/10.1007/s00521-011-0786-0 doi: 10.1007/s00521-011-0786-0 |
[17] | P. Wang, D. Zhu, X. Lu, Active queue management algorithm based on data-driven predictive control, Telecommun. Syst., 64 (2017), 103–111. https://doi.org/10.1007/s11235-016-0162-6 doi: 10.1007/s11235-016-0162-6 |
[18] | W. Chang, Y. Meng, K. Tsai, AQM router design for TCP network via input constrained fuzzy control of time-delay affine takagi-sugeno fuzzy models, Int. J. Syst. Sci., 43 (2012), 2297–2313. https://doi.org/10.1080/00207721.2011.572197 doi: 10.1080/00207721.2011.572197 |
[19] | S. Xu, M. Fei, X. Yang, L. Wu, AQM scheme design for TCP network via takagi-sugeno fuzzy method, Complexity, 21 (2016), 606–612. https://doi.org/10.1002/cplx.21838 doi: 10.1002/cplx.21838 |
[20] | M. Sheikhan, R. Shahnazi, E. Hemmati, Adaptive active queue management controller for tcp communication networks using pso-rbf models, Neural Comput. Applic., 22 (2013), 933–945. https://doi.org/10.1007/s00521-011-0786-0 doi: 10.1007/s00521-011-0786-0 |
[21] | M. Lin, T. Ren, H. Yuan, M. Li, The congestion control for TCP network based on input/output saturation, In: 2017 29th Chinese Control And Decision Conference (CCDC), 2017, 1166–1171. https://doi.org/10.1109/CCDC.2017.7978695 |
[22] | S. Belamfedel Alaoui, E. H. Tissir, N. Chaibi, F. El Haoussi, Regional stabilization and $h_\infty$ congestion control with input saturation, Transact. Inst. Meas. Control, 43 (2021), 2196–2212. https://doi.org/10.1177/0142331221992739 doi: 10.1177/0142331221992739 |
[23] | J. Shen, Y. Jing, T. Ren, Adaptive finite time congestion tracking control for TCP/AQM system with input-saturation, Int. J. Syst. Sci., 53 (2022), 253–264. https://doi.org/10.1080/00207721.2021.1947412 doi: 10.1080/00207721.2021.1947412 |
[24] | B. Sadek, T. El Houssaine, K. Barbosa, A. J. Rojas, Consensus congestion control for ad hoc networks: Time-delay and saturation, IEEE Transact. Network Sci. Eng., 10 (2023), 1809–1821. https://doi.org/10.1109/TNSE.2023.3235303 doi: 10.1109/TNSE.2023.3235303 |
[25] | J. Yan, K. Shyu, J. Lin, Adaptive variable structure control for uncertain chaotic systems containing dead-zone nonlinearity, Chaos Solitons Fract., 25 (2005), 347–355. https://doi.org/10.1016/j.chaos.2004.11.013 doi: 10.1016/j.chaos.2004.11.013 |
[26] | K. Shyu, W. Liu, K. Hsu, Design of large-scale time-delayed systems with dead-zone input via variable structure control, Automatica, 41 (2005), 1239–1246. https://doi.org/10.1016/j.automatica.2005.03.004 doi: 10.1016/j.automatica.2005.03.004 |
[27] | W. Zhao, L. Liu, Y. Liu, Adaptive neural network control for nonlinear state constrained systems with unknown dead-zones input, AIMS Math., 5 (2020), 4065–4084. https://doi.org/10.3934/math.2020261 doi: 10.3934/math.2020261 |
[28] | W. Lv, J. Park, J. Lu, R. Guo, Adaptive fuzzy output feedback control for a class of uncertain nonlinear systems in the presence of sensor attacks, J. Franklin Instit., 360 (2023), 2326–2343. https://doi.org/10.1016/j.jfranklin.2022.10.047 doi: 10.1016/j.jfranklin.2022.10.047 |
[29] | R. Guo, S. Xu, J. Guo, Sliding-mode synchronization control of complex-valued inertial neural networks with leakage delay and time-varying delays, IEEE Transact. Syst. Man Cybernet. Syst., 1095–1103, 2023. https://doi.org/10.1109/TSMC.2022.3193306 doi: 10.1109/TSMC.2022.3193306 |
[30] | S. Arbatsofla, A. Mazinan, M. Mahmoodabadi, M. A. Nekoui, Fuzzy fractional-order adaptive robust feedback linearization control optimized by the multi-objective artificial hummingbird algorithm for a nonlinear ball–wheel system, J. Braz. Soc. Mech. Sci. Eng., 45 (2023), 575. https://doi.org/10.1007/s40430-023-04455-9 doi: 10.1007/s40430-023-04455-9 |
[31] | W. Zheng, Y. Li, X. Jing, S. Liu, Adaptive finite-time congestion control for uncertain TCP/AQM network with unknown hysteresis, Complexity, 2020 (2020), 4138390. https://doi.org/10.1155/2020/4138390 doi: 10.1155/2020/4138390 |
[32] | O. Kahouli, A. Turki, M. Ksantini, M. Ali Hammami, A. Aloui, On the boundedness of solutions of some fuzzy dynamical control systems, AIMS Math., 9 (2024), 5330–5348. https://doi.org/10.3934/math.2024257 doi: 10.3934/math.2024257 |
[33] | X. Liu, Y. Li, Y. Li, Adaptive tracking control for a class of uncertain switched stochastic nonlinear systems, Adv. Differ. Equ., 2019 (2019), 33. https://doi.org/10.1186/s13662-019-1975-x doi: 10.1186/s13662-019-1975-x |
[34] | T. Gao, T. Li, Y. Liu, S. Tong, F. Sun, Observer-based adaptive fuzzy control of non-strict feedback nonlinear systems with function constraints, IEEE Transact. Fuzzy Syst., 31 (2022), 2556–2567. https://doi.org/10.1109/TFUZZ.2022.3228319 doi: 10.1109/TFUZZ.2022.3228319 |
[35] | S. Mohammadi, H. Pour, M. Jafari, A. Javadi, Fuzzy-based pid active queue manager for TCP/IP networks, In: 10th International Conference on Information Science, Signal Processing and their Applications (ISSPA 2010), 2010,434–439. https://doi.org/10.1109/ISSPA.2010.5605462 |
[36] | J. Chen, Y. Jing, X. Qi, TCP/AQM network congestion prescribed performance event-triggered control with input saturation, In: 2021 33rd Chinese Control and Decision Conference (CCDC), 2021, 6602–6607. https://doi.org/10.1109/CCDC52312.2021.9602224 |
[37] | Z. Zhang, Z. Liu, N. Liu, W. He, F. Yang, Adaptive tracking control for nonlinear systems with uncertain control gains and its application to a TCP/AQM network, Sci. Rep., 13 (2023), 14625. https://doi.org/10.1038/s41598-023-41799-7 doi: 10.1038/s41598-023-41799-7 |
[38] | L. Wang, Adaptive Fuzzy Systems and Control: Design and Stability Analysis, Upper Saddle River: Prentice-Hall, Inc., 1994. |
[39] | O. Micev, M. Calasan, Design and robustness analysis of an automatic voltage regulator system controller by using equilibrium optimizer algorithm, Compute. Elect. Eng., 89 (2021), 106930. https://doi.org/10.1016/j.compeleceng.2020.106930 doi: 10.1016/j.compeleceng.2020.106930 |