Research article Special Issues

Comparative analysis of feed-forward neural network and second-order polynomial regression in textile wastewater treatment efficiency

  • Received: 12 December 2023 Revised: 20 February 2024 Accepted: 27 February 2024 Published: 20 March 2024
  • MSC : 65C20, 65D10, 65K99, 68T01

  • This study refines a single-layer Feed-Forward Neural Network (FFNN) for the treatment of textile dye wastewater, concentrating on percentage decolorization (%DEC) and percentage chemical oxygen demand (%COD) reduction. The optimized neural network configuration comprises four input and one output neuron, fine-tuned based on the mean squared error (MSE). The training phase demonstrates a consistent MSE decline, reaching its lowest at epoch 209 for %DEC and epoch 34 for %COD, with corresponding MSEs of $1.799 \times 10^{-5}$ and $ 1.4 \times 10^{-3} $, respectively. The maximum absolute errors for %DEC and %COD were found to be $ 4.0787 $ and $ 2.4486 $, while the mean absolute errors were $ 0.4821 $ and $ 0.7256 $, respectively. In contrast to second-degree polynomial regression, the FFNN model exhibits enhanced predictive accuracy, as indicated by higher $ R^2 $ values of $ 0.99363 $ for %DEC and $ 0.99716 $ for %COD, and reduced error metrics.

    Citation: Ali S. Alkorbi, Muhammad Tanveer, Humayoun Shahid, Muhammad Bilal Qadir, Fayyaz Ahmad, Zubair Khaliq, Mohammed Jalalah, Muhammad Irfan, Hassan Algadi, Farid A. Harraz. Comparative analysis of feed-forward neural network and second-order polynomial regression in textile wastewater treatment efficiency[J]. AIMS Mathematics, 2024, 9(5): 10955-10976. doi: 10.3934/math.2024536

    Related Papers:

  • This study refines a single-layer Feed-Forward Neural Network (FFNN) for the treatment of textile dye wastewater, concentrating on percentage decolorization (%DEC) and percentage chemical oxygen demand (%COD) reduction. The optimized neural network configuration comprises four input and one output neuron, fine-tuned based on the mean squared error (MSE). The training phase demonstrates a consistent MSE decline, reaching its lowest at epoch 209 for %DEC and epoch 34 for %COD, with corresponding MSEs of $1.799 \times 10^{-5}$ and $ 1.4 \times 10^{-3} $, respectively. The maximum absolute errors for %DEC and %COD were found to be $ 4.0787 $ and $ 2.4486 $, while the mean absolute errors were $ 0.4821 $ and $ 0.7256 $, respectively. In contrast to second-degree polynomial regression, the FFNN model exhibits enhanced predictive accuracy, as indicated by higher $ R^2 $ values of $ 0.99363 $ for %DEC and $ 0.99716 $ for %COD, and reduced error metrics.



    加载中


    [1] G. M. Walker, L. R. Weatherley, Adsorption of acid dyes on to granular activated carbon in fixed beds, Water Res., 31 (1997), 2093–2101. https://doi.org/10.1016/S0043-1354(97)00039-0 doi: 10.1016/S0043-1354(97)00039-0
    [2] A. H. Hassani, S. Seye, A. H. Javid, M. Borgheei, Comparison of adsorption process by GAC with novel formulation of coagulation–flocculation for color removal of textile wastewater, Int. J. Environ. Res., 2 (2008), 239–248.
    [3] S. Wijannarong, S. Aroonsrimorakot, P. Thavipoke, S. Sangjan, Removal of reactive dyes from textile dyeing industrial effluent by ozonation process, APCBEE procedia, 5 (2013), 279–282. https://doi.org/10.1016/j.apcbee.2013.05.048 doi: 10.1016/j.apcbee.2013.05.048
    [4] V. K. Gupta, A. Nayak, S. Agarwal, I. Tyagi, Potential of activated carbon from waste rubber tire for the adsorption of phenolics: Effect of pre-treatment conditions, J. Colloid Interf. Sci., 417 (2014), 420–430. https://doi.org/10.1016/j.jcis.2013.11.067 doi: 10.1016/j.jcis.2013.11.067
    [5] X. R. Xu, H. B. Li, W. H. Wang, J. D. Gu, Decolorization of dyes and textile wastewater by potassium permanganate, Chemosphere, 59 (2005), 893–898. https://doi.org/10.1016/j.chemosphere.2004.11.013 doi: 10.1016/j.chemosphere.2004.11.013
    [6] A. A. Ansari, B. D. Thakur, Bio-chemical reactor for treatment of concentrated textile effluent, Colourage, 49 (2002), 27–30.
    [7] F. Zhang, A. Yediler, X. Liang, A. Kettrup, Ozonation of the purified hydrolyzed azo dye reactive red 120 (CI), J. Environ. Sci. Health Part A, 37 (2002), 707–713. https://doi.org/10.1081/ESE-120003248 doi: 10.1081/ESE-120003248
    [8] R. Rajeshkannan, M. Rajasimman, N. Rajamohan, Sorption of acid blue 9 using Hydrilla verticillata biomass—optimization, equilibrium, and kinetics studies, Bioremediat. J., 15 (2011), 57–67. https://doi.org/10.1080/10889868.2010.548002 doi: 10.1080/10889868.2010.548002
    [9] R. Krull, M. Hemmi, P. Otto, D. C. Hempel, Combined biological and chemical treatment of highly concentrated residual dyehouse liquors, Water Sci. Technol., 38 (1998), 339–346. https://doi.org/10.1016/S0273-1223(98)00517-4 doi: 10.1016/S0273-1223(98)00517-4
    [10] P. Verma, D. Madamwar, Decolourization of synthetic dyes by a newly isolated strain of Serratia marcescens, World J. Micro. Biotechnol., 19 (2003), 615–618. https://doi.org/10.1023/A:1025115801331 doi: 10.1023/A:1025115801331
    [11] V. Arutchelvan, D. J. Albino, V. Muralikaishnan, S. Nagarajan, Decolourization of textile mill effluent by Sporotrichum pulverulentum, Indian J. Environ. Ecoplaning, 7 (2003), 59–62.
    [12] J. P. Jadhav, S. P. Govindwar, Biotransformation of malachite green by Saccharomyces cerevisiae MTCC 463, Yeast, 23 (2006), 315–323. https://doi.org/10.1002/yea.1356 doi: 10.1002/yea.1356
    [13] J. S. Chang, C. Chou, S. Y. Chen, Decolorization of azo dyes with immobilized pseudomonas luteola, Process Biochem., 36 (2001), 757–763. https://doi.org/10.1016/S0032-9592(00)00274-0 doi: 10.1016/S0032-9592(00)00274-0
    [14] M. S. Khehra, H. S. Saini, D. K. Sharma, B. S. Chadha, S. S. Chimni, Decolorization of various azo dyes by bacterial consortium, Dyes Pigments, 67 (2005), 55–61. https://doi.org/10.1016/j.dyepig.2004.10.008 doi: 10.1016/j.dyepig.2004.10.008
    [15] S. Pointing, Feasibility of bioremediation by white-rot fungi, Appl. Microbiol. Biotechnol., 57 (2001), 20–33. https://doi.org/10.1007/s002530100745 doi: 10.1007/s002530100745
    [16] S. Sathian, G. Radha, V. Shanmugapriya, M. Rajasimman, C. Karthikeyan, Optimization and kinetic studies on treatment of textile dye wastewater using Pleurotus floridanus, Appl. Water Sci., 3 (2013), 41–48. https://doi.org/10.1007/s13201-012-0055-0 doi: 10.1007/s13201-012-0055-0
    [17] E. Pérez-Santín, L. de-la-Fuente-Valentín, M. G. García, K. A. S. Bravo, F. C. L. Hernández, J. I. L. Sánchez, Applicability domains of neural networks for toxicity prediction, AIMS Mathematics, 8 (2023), 27858–27900. https://doi.org/10.3934/math.20231426 doi: 10.3934/math.20231426
    [18] H. Najafi, A. Bensayah, B. Tellab, S. Etemad, S. K. Ntouyas, S. Rezapour, et al., Approximate numerical algorithms and artificial neural networks for analyzing a fractal-fractional mathematical model, AIMS Mathematics, 8 (2023), 28280–28307. https://doi.org/10.3934/math.20231447 doi: 10.3934/math.20231447
    [19] N. Ruttanaprommarin, Z. Sabir, R. A. S. Núñez, S. Salahshour, J. L. G. Guirao, W. Weera, et al., Artificial neural network procedures for the waterborne spread and control of diseases, AIMS Mathematics, 8 (2023), 2435–2452. https://doi.org/10.3934/math.2023126 doi: 10.3934/math.2023126
    [20] S. D. Mourtas, E. Drakonakis, Z. Bragoudakis, Forecasting the gross domestic product using a weight direct determination neural network, AIMS Mathematics, 8 (2023), 24254–24273. https://doi.org/10.3934/math.20231237 doi: 10.3934/math.20231237
    [21] N. Alruwais, H. Alamro, M. M. Eltahir, A. S. Salama, M. Assiri, N. A. Ahmed, Modified arithmetic optimization algorithm with Deep Learning based data analytics for depression detection, AIMS Mathematics, 8 (2023), 30335–30352. https://doi.org/10.3934/math.20231549 doi: 10.3934/math.20231549
    [22] J. E. F. Moraes, F. H. Quina, C. A. O. Nascimento, D. N. Silva, O. Chiavone-Filho, Treatment of saline wastewater contaminated with hydrocarbons by the photo-Fenton process, Environ. Sci. Technol., 38 (2004), 1183–1187. https://doi.org/10.1021/es034217f doi: 10.1021/es034217f
    [23] V. K. Pareek, M. P. Brungs, A. A. Adesina, R. Sharma, Artificial neural network modeling of a multiphase photodegradation system, J. Photoch. Photobio. A: Chem., 149 (2002), 139–146. https://doi.org/10.1016/S1010-6030(01)00640-2 doi: 10.1016/S1010-6030(01)00640-2
    [24] A. M. Ghaedi, A. Vafaei, Applications of artificial neural networks for adsorption removal of dyes from aqueous solution: A review, Adv. Colloid Interfac. Sci., 245 (2017), 20–39. https://doi.org/10.1016/j.cis.2017.04.015 doi: 10.1016/j.cis.2017.04.015
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(864) PDF downloads(53) Cited by(0)

Article outline

Figures and Tables

Figures(24)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog