This paper studies the global asymptotic stabilization problem of strict-feedforward nonlinear systems with state and input delays. We will first transform the considered system into an equivalent system by constructing the novel parameter-dependent state feedback controller and introducing the appropriate coordinate transformation. After that, the global asymptotic stability of the closed system is proved by giving the proper Lyapunov-Krasovskii functional and using the stability criterion of time-delay system.
Citation: Mengmeng Jiang, Xiao Niu. A new design method to global asymptotic stabilization of strict-feedforward nonlinear systems with state and input delays[J]. AIMS Mathematics, 2024, 9(4): 9494-9507. doi: 10.3934/math.2024463
This paper studies the global asymptotic stabilization problem of strict-feedforward nonlinear systems with state and input delays. We will first transform the considered system into an equivalent system by constructing the novel parameter-dependent state feedback controller and introducing the appropriate coordinate transformation. After that, the global asymptotic stability of the closed system is proved by giving the proper Lyapunov-Krasovskii functional and using the stability criterion of time-delay system.
[1] | A. L. Teel, A nonlinear small gain theorem for the analysis of control systems with saturation, IEEE T. Automat. Contr., 41 (1996), 1256–1270. https://doi.org/10.1109/9.536496 doi: 10.1109/9.536496 |
[2] | R. Sepulchre, M. Janković, P. V. Kokotović, Constructive Nonlinear Control, Springer: London, 1997. https://doi.org/10.1007/978-1-4471-0967-9 |
[3] | F. Mazenc, L. Parly, Adding integrations, saturated controls, and stabilization of feedback systems, IEEE T. Automat. Contr. 41 (1996), 1559–1578. https://doi.org/10.1109/9.543995 |
[4] | F. Mazenc, L. Parly, Tracking trajectories of the cart-pendulum system. Automatica, 39(2003), 677–684. https://doi.org/10.1016/S0005-1098(02)00279-0 |
[5] | G. Kaliora, A. Astolfi, Nonlinear control of feedforward systems with bounded signals, IEEE T. Automat. Contr., 49 (2004), 1975–1990. https://doi.org/10.1109/TAC.2004.837572 doi: 10.1109/TAC.2004.837572 |
[6] | J. Y. Zhai, C. J. Qian, Global control of nonlinear systems with uncertain output function using homogeneous domination approach, Int. J. Robust Nonlin., 22 (2012), 1543–1561. https://doi.org/10.1002/rnc.1765 doi: 10.1002/rnc.1765 |
[7] | Q. Liu, Z. Liang, X. Zhang, Global state feedback stabilization of a class of feedforward systems under sampled-data control, In: Proceedings of the 33rd Chinese Control Conference, Nanjing, China, 2014, 2293–2298. https://doi.org/10.1109/ChiCC.2014.6896990 |
[8] | L. J. Long, Stabilization by forwarding design for switched feedforward systems with unstable modes, Int. J. Robust Nonlin., 27 (2017), 4808–4824. https://doi.org/10.1002/rnc.3832 doi: 10.1002/rnc.3832 |
[9] | H. W. Ye, Stabilization of uncertain feedforward nonlinear systems with ation to underactuated systems, IEEE T. Autom. Contr., 64 (2019), 3484–3491. https://doi.org/10.1109/TAC.2018.2882479 doi: 10.1109/TAC.2018.2882479 |
[10] | J. P. Richard, Time-delay systems: An overview of some recent advances and open problems, Automatica, 39 (2003), 1667–1694. https://doi.org/10.1016/S0005-1098(03)00167-5 doi: 10.1016/S0005-1098(03)00167-5 |
[11] | H. Zhang, G. Duan, L. Xie, Linear quadratic regulation for linear time-varying systems with multiple input delays, Automatica, 42 (2006), 1465–1476. https://doi.org/10.1016/j.automatica.2006.04.007 doi: 10.1016/j.automatica.2006.04.007 |
[12] | N. Bekiaris-Liberis, M. Krstić, Delay-adaptive feedback for linear feedforward systems, Syst. Control. Lett, 59 (2010), 277–283. https://doi.org/10.1016/j.sysconle.2010.03.001 doi: 10.1016/j.sysconle.2010.03.001 |
[13] | X. D. Ye, Adaptive stabilization of time-delay feedforward nonlinear systems, Automatica, 47 (2011), 950–955. https://doi.org/10.1016/j.automatica.2011.01.006 doi: 10.1016/j.automatica.2011.01.006 |
[14] | G. Z. Meng, K. M. Ma, Global output feedback stabilization of upper-triangular nonlinear time-delay systems, J. Control Theory Appl., 10 (2012), 533–538. https://doi.org/10.1007/s11768-012-0216-6 doi: 10.1007/s11768-012-0216-6 |
[15] | X. F. Zhang, L. Baron, Q. R. Liu, E. K. Boukas, Design of stabilizing controllers with a dynamic gain for feedforward nonlinear time-delay systems, IEEE T. Automat. Contr., 56 (2011), 692–697. https://doi.org/10.1109/TAC.2010.2097150 doi: 10.1109/TAC.2010.2097150 |
[16] | X. F. Zhang, Q. R. Liu, L. Baron, E. K. Boukas, Feedback stabilization for high order feedforward nonlinear time-delay systems, Automatica, 47 (2011), 962–967. https://doi.org/10.1016/j.automatica.2011.01.018 doi: 10.1016/j.automatica.2011.01.018 |
[17] | M. M. Jiang, K. M. Zhang, X. J. Xie, Output feedback stabilisation of high-order nonlinear feedforward time-delay systems, Int. J. Syst. Sci., 48 (2017), 1692–1707. https://doi.org/10.1080/00207721.2017.1280556 doi: 10.1080/00207721.2017.1280556 |
[18] | L. Liu, Y. Wang, Decentralized output feedback control of large-scale stochastic high-order feedforward time-delay systems, In: Proceedings of 2019 Chinese Control Conference, Guangzhou, China, 2019, 1364–1369. https://doi.org/10.23919/ChiCC.2019.8865340 |
[19] | W. Michiels, S. I. Niculescu, Stability and stabilization of time-delay systems: An eigenvalue-based approach, SIAM: Singapore, 1965. https://doi.org/10.1137/1.9780898718645 |
[20] | P. Krishnamurthy, F. Khorrami, Adaptive dynamic high-gain scaling based output-feedback control of nonlinear feedforward systems with time delays in input and state, In: Proceedings of 2010 American Control Conference, Baltimore, USA, pp.5794–5799. https://doi.org/10.1109/ACC.2010.5530429 |
[21] | X. D. Ye, Universal stabilization of feedforward nonlinear systems, Automatica, 39 (2003), 141–147. https://doi.org/10.1016/S0005-1098(02)00196-6 doi: 10.1016/S0005-1098(02)00196-6 |
[22] | X. Zhang, H. Gao, C. Zhang, Global asymptotic stabilization of feedforward nonlinear systems with a delay in the input, Int. J. Syst. Sci., 37 (2006), 141–148. https://doi.org/10.1080/00207720600566248 doi: 10.1080/00207720600566248 |
[23] | H. L. Choi, J. T. Lim, Stabilization of a chain of integrators with an unknown delay in the input by adaptive output feedback. IEEE T. Automat. Contr., 51 (2006), 1359–1363. https://doi.org/10.1109/TAC.2006.878742 |
[24] | W. T. Zha, J. Y. Zhai, S. M. Fei, Global output feedback control for a class of high-order feedforward nonlinear systems with input delay, ISA Trans., 52 (2013), 494–500. https://doi.org/10.1016/j.isatra.2013.04.001 doi: 10.1016/j.isatra.2013.04.001 |
[25] | C. R. Zhao, W. Lin, Memoryless linear feedback control for a class of upper-triangular systems with large delays in state and input, Syst. Control. Lett., 139 (2020), 104679. https://doi.org/10.1016/j.sysconle.2020.104679 doi: 10.1016/j.sysconle.2020.104679 |
[26] | C. R. Zhao, W. Lin, Global stabilization by memoryless feedback for nonlinear systems with a limited input delay and large state delays, IEEE T. Automat. Contr., 66 (2021), 3702–3709. https://doi.org/10.1109/TAC.2020.3021053 doi: 10.1109/TAC.2020.3021053 |
[27] | C. R. Zhao, W. Lin, Homogeneous output feedback design for time-delay nonlinear integrators and beyond: an emulation, Automatica, 146 (2022), 110641. https://doi.org/10.1016/j.automatica.2022.110641 doi: 10.1016/j.automatica.2022.110641 |
[28] | K. Q. Gu, V. L. Kharitonov, J. Chen, Stability of time-delay systems, Berlin: Birkhauser, 2003. https://doi.org/10.1007/978-1-4612-0039-0 |
[29] | L. Liu, M. Kong, A new design method to global asymptotic stabilization of strict-feedforward stochastic nonlinear time delay systems, Automatica, 151 (2023), 110932. https://doi.org/10.1016/j.automatica.2023.110932 doi: 10.1016/j.automatica.2023.110932 |
[30] | X. F. Zhang, E. K. Boukas, Y. G. Liu, L. Baron, Asymptotic stabilization of high-order feedforward systems with delays in the input, Int. J. Robust Nonlin., 20 (2010), 1395–1406. https://doi.org/10.1002/rnc.1521 doi: 10.1002/rnc.1521 |