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1. Introduction

Feedforward systems (namely upper-triangular systems) are a class of important nonlinear systems.
A mass of physical devices, such as the planar vertical takeoff and landing aircraft [1], the ball-beam
with a friction term and the translational oscillator with a rotational actuator system [2], the cart-
pendulum system [3, 4], can be described by equations with the upper-triangular structure. Moreover,
feedforward nonlinear systems cannot be linearized, which results that it is more hard to researchers
to find appropriate control method. Based on this, the research of feedforward nonlinear systems has
attracted considerable attention, see [5–9] and the references therein.

On the other hand, time-delay systems constitute basic mathematical models of real phenomena
and time delays are often encountered in multifarious engineering systems. Hence, the research of
control problem for time-delay systems is one of the most interesting and significant problems, and
the Lyapunov-Krasovskii method and Lyapunov-Razumikhin method are two powerful tools in the
stability analysis and controller design for time-delay systems [10,11]. There are many results focused
on time-delay systems. [12–15] considered the one-order feedforward nonlinear systems, [16–18]
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considered high-order feedforward nonlinear systems. However, these results only considered state
time delay or input delay only appearing in the nonlinearities. Input delay is often unavoidable in
practice and often generate instability due to sensors, information processing or transport [19]. [20]
considered adaptive dynamic high-gain scaling based output-feedback control of nonlinear feedforward
systems with time delays in input and state. [21–23] considered the stabilization of feedforward
nonlinear systems with linear growth condition. [24] designed stabilizing controllers for high order
feedforward nonlinear systems with input delay. [25] studied memoryless linear feedback control
for a class of upper-triangular systems with large delays in state and input. [26] considered global
stabilization by memoryless feedback for nonlinear systems with a small input delay and large state
delays. [27] developed homogeneous output feedback design for time-delay nonlinear integrators and
beyond.

It is worth noting that the most mentioned above conclusions on feedforward time-delay systems
take advantage of the homogeneous domination approach and it is useful to handle the special structure
of feedforward nonlinear systems (see Remark 1 for the detailed discussion). However, this method
does not work well for strict-feedforward nonlinear systems with state and input delays. The purpose
of this paper is to find a useful method. The main contributions are:

(i) By applying the stability criterion on time-delay system, a novel parameter-dependent state
feedback controller is proposed to guarantee the global asymptotic stabilization of strict-feedforward
nonlinear systems with time delay in state and input.

(ii) The parameter-dependent state feedback controller is very simple and flexible, because this
controller only depends on a positive parameter. And the design process and computing effort are
greatly reduced.

(iii) Due to the appearance of time-delay in control input, the L-K functionals in the existing papers
are no longer applicable, a difficult work is how to find an appropriate L-K functional. And how to
deal with the terms related to nonlinear function and controller is another difficulty.

This paper is organized as follows. Section 2 gives some preliminaries. The main results is given
in Section 3. Section 4 presents the extended results. Two numerical examples are given in Section 5.
Section 6 concludes this paper.

2. Preliminaries

Some notions and lemmas are to be used throughout this paper.
Notations. | · | is the Euclidean norm of a vector and ∥ · ∥ stands for the Frobenius norm of a matrix. A
function f : Rn → R is C if it is continuous and is C1 if it is continuously differential. K denotes the set
of all functions: R+ → R+ that are continuous, strictly increasing and vanishing at zero. K∞ denotes
the set of all functions that are of class K and unbounded.
Lemma 2.1: [28] Consider system

ẋ = f (t, x(t + θ)), (2.1)

where θ ∈ [−d, 0], x(t) ∈ Rn and f : R × C → Rn with f (t, 0) ≡ 0. Suppose that f : R × C → Rn

given in (2.1), maps every R× (bounded set in C) into a bounded set in Rn, and that u, v,w : R+ → R+

are continuous nondecreasing functions, where additionally u(s) and v(s) are positive for s > 0, and
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u(0) = v(0) = 0. If there exists a continuous differentiable functional V : R × C → R such that

u(∥x(0)∥) ≤ V(t, x) ≤ v
(

sup
−d≤θ≤0

|x(t + θ)|
)

and

V̇(t, x) ≤ −w(∥x(0)∥),

then the trivial solution of (2.1) is uniformly stable. If w(s) > 0 for s > 0, then it is uniformly
asymptotically stable. In addition, if lims→∞ u(s) = ∞, then it is globally uniformly asymptotically
stable.
Lemma 2.2: [29]. For any given vectors y, z and constant a > 0, there are real numbers µ > 1 and
ν > 1 satisfying (µ − 1)(ν − 1) = 1 such that

y⊤z ≤
aµ

µ
|y|µ +

1
νaν
|z|ν.

Lemma 2.3: [30]. For any function f (t) ∈ C([−τ,∞) : R+) and positive integer p, τ ∈ R+, then(∫ t

t−τ
f (σ)dσ

)p

≤ τp−1
∫ t

t−τ
f p(σ)dσ.

3. Main result

In this paper, we consider the following strict-feedforward nonlinear systems with state and input
delays described by

ẋ1(t) = x2(t) + f1(x2(t), · · · , xn(t), x2(t − τ2), · · · , xn(t − τn)),
ẋ2(t) = x3(t) + f2(x3(t), · · · , xn(t), x3(t − τ3), · · · , xn(t − τn)),

...

ẋn(t) = u(t − τ1), (3.1)

where x(t) = (x1(t), · · · , xn(t))⊤ ∈ Rn and u(t) ∈ R are system state and control input, respectively.
For i = 1, · · · , n, τi > 0 is time-invariant delay, τ̄ = max{τ1, τ2, · · · , τn}, xi(t − τi) and u(t − τ1) are
time-delayed systems state and time-delayed control input. Nonlinear functions fi, i = 1, · · · , n − 1,
are continuous.

This paper aims to construct a novel parameter-dependent state feedback controller of system (3.1)
such that the eqailibrium at the origin of the closed-loop system is global asymptotically stable. In
order to achieve this purpose, the following assumption is needed.
Assumption 3.1: There is a known positive constant c such that

| fi(·)| ≤ c
n∑

j=i+1

(|x j(t)| + |x j(t − τ j)|), i = 1, · · · , n − 1.

Remark 3.1: As discussed in feedforward nonlinear systems [14, 21–23], the linear growth condition
in Assumption 1 is a general condition for dealing with the nonlinearity fi(·) in feedforward systems.
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It is not hard to see from Assumption 3.1 that the nonlinear term fi(·) in this paper contains system
states xi+1, · · · , xn rather than xi+2, · · · , xn in [14, 21–23]. Hence, system (3.1) can be viewed as a class
of strict-feedfroward nonlinear systems. □

It is obvious that system (3.1) can be rewritten as

ẋ = Ax + Bu(t − τ1) + F , (3.2)

where

A =

[
0(n−1)×1 I(n−1)×(n−1)

0 01×(n−1)

]
,B =

[
0(n−1)×1

1

]
,F =


f1(·)
...

fn−1(·)
0

 .
The main result of this paper is stated in the following theorem.

Theorem 3.1: If Assumption 3.1 holds for system (3.1) and there exists a positive parameter λ such
that Φ̄(λ) − Φ̃(λ) − 2τ̄Φ̂(λ) > 0, then the equilibrium at the origin of closed-loop system is global
asymptotically stable by adopting the parameter-dependent state feedback controller

u =
[
Θ1

λn ,
Θ2

λn−1 , · · · ,
Θn

λ

]
x =: Θ(λ)x, (3.3)

where Φ̄(λ), Φ̃(λ) and Φ̂(λ) are defined in (3.14) and τ̄ is defined in system (3.1), [Θ1, · · · ,Θn] = Θ̄
satisfyingAΘ̄ =: A + BΘ̄ is Hurwitz.
Proof. The proof procedure of Theorem 3.1 can be divided into two parts.

Part I: Introduce the coordinate transformations:

ξ =


x1

λx2
...

λn−1xn

 =: Γ(λ)x, (3.4)

where ξ = [ξ1, ξ2, · · · , ξn]⊤ and Γ(λ) =diag[1, λ, · · · , λn−1].
Meanwhile, according to (3.2)-(3.4) and using the fact of λΓ(λ)(A+BΘ(λ)) = AΘ̄Γ(λ), the closed-

loop system is transformed into

ξ̇ = λ−1AΘ̄ξ + Γ(λ)B(u(t − τ1) − u(t)) + Γ(λ)F . (3.5)

Choose the candidate Lyapunov function

V(ξ) =
δ1

2
ξ⊤Pξ, (3.6)

where δ1 is a positive constant and P is a symmetric positive definite matrix that satisfies PAΘ̄+A⊤Θ̄P =
−I. Applying (3.5) and (3.6), one has

V̇ ≤ −δ1λ
−1|ξ|2 + 2δ1(ξ⊤P)(Γ(λ)F ) + 2δ1(ξ⊤P)Γ(λ)B(u(t − τ1) − u(t)). (3.7)
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Let us consider the last two terms on the right-hand side.
By Assumption 3.1 and (3.4), one has

|Γ(λ)F | ≤ c
n−1∑
i=1

λi−1(
n∑

l=i+1

|xi| +

n∑
l=i+1

|xl(t − τl)|)

= c
n∑

i=2

i−2∑
k=0

λk(|xi| + |xi(t − τi)|)

= c
n∑

i=2

i−1∑
k=1

1
λk (|ξi| + |ξi(t − τi)|)

≤ c
n−1∑
i=1

1
λi

n∑
i=2

(|ξi| + |ξi(t − τi)|)

≤ c
√

n − 1
n−1∑
i=1

1
λi |ξ| + c

n−1∑
i=1

1
λi

n∑
j=2

|ξ j(t − τ j)|. (3.8)

Then, by Lemma 2.2 and (3.8), one can obtain

2δ1(ξ⊤P)(Γ(λ)F ) ≤
√

n − 1Φ1(λ)|ξ|2 + Φ1(λ)
n∑

j=2

|ξ||ξ j(t − τ j)|

≤

(
c2

1(n − 1)
2

+
√

n − 1
)
Φ1(λ)|ξ|2 +

Φ1(λ)
2c2

1

n∑
j=2

|ξ j(t − τ j)|2, (3.9)

where Φ1(λ) = 2cδ1∥P∥
∑n−1

i=1
1
λi and c1 is a positive real number.

By using Lemma 2.2, Assumption 3.1 and (3.3), one leads to

2δ1(ξ⊤P)Γ(λ)B(u(t − τ1) − u(t))

≤ 2
∥Γ(λ)∥
λn

n∑
i=1

Θiδ1∥P∥|ξ|
n∑

j=1

|ξ j(t − τ1) − ξ j(t)|

≤ Φ2(λ)

c2
2|ξ|

2 +
1
c2

2

( n∑
j=1

(ξ j(t − τ1) − ξ j(t))
)2
 , (3.10)

where Φ2(λ) = ∥Γ(λ)∥
λn δ1∥P∥

∑n
i=1 |Θi| and c2 is a positive real number. When i = · · · , n − 1,

|ξ j(t − τ1) − ξ j(t)| ≤

∣∣∣∣∣∣
∫ t

t−τ1

ξ̇ j(σ)dσ

∣∣∣∣∣∣
≤

∫ t

t−τ1

|λ−1ξ j+1 + λ
j−1 f j|dσ

≤ Φ3, j(λ)
∫ t

t−τ1

n∑
j=2

(|ξ j(σ)| + |ξ j(σ − τ j)|)dσ, (3.11)

where Φ3, j(λ) = (c + 1)( 1
λ
+

∑n
l= j+1

1
λl− j ).
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When i = n,

|ξn(t − τ1) − ξn(t)| ≤

∣∣∣∣∣∣
∫ t

t−τ1

ξ̇n(σ)dσ

∣∣∣∣∣∣
≤

1
λ

∫ t

t−τ1

n∑
j=1

|Θ jξ j(σ − τ1)|dσ

≤ Φ4(λ)
∫ t

t−2τ̄

( n∑
j=1

|ξ j(σ)|
)
dσ, (3.12)

where Φ4(λ) = 1
λ

∑n
j=1 |Θ j|. With the help of Lemma 2.3, (3.10)-(3.12), one can obtain

2δ1(ξ⊤P)Γ(λ)B(u(t − τ1) − u(t))

≤ Φ2(λ)

c2
2|ξ|

2 +
2τ̄((

∑n−1
j=1 Φ3, j(λ))2 + Φ4(λ)2)

c2
2

∫ t

t−2τ̄

n∑
i=2

|ξi(σ)|2dσ

 . (3.13)

Combining (3.9) and (3.13), one leads to

V̇ ≤ −

{
δ1λ

−1 −

(
c2

1(n − 1)
2

+
√

n − 1
)
Φ1(λ) − c2

2Φ2(λ)
}
|ξ|2

+
1

2c2
1

Φ1(λ)
n∑

j=1

|ξ j(t − τ j)|2

+
1
c2

2

Φ2(λ)
(
2τ̄

(
(

n−1∑
j=1

Φ3, j(λ))2 + Φ4(λ)2
)) ∫ t

t−2τ̄

n∑
j=1

ξ2
j (σ)dσ

=: −Φ̄(λ)|ξ|2 + Φ̃(λ)
n∑

j=1

|ξ j(t − τ j)|2 + Φ̂(λ)
∫ t

t−2τ̄

n∑
j=1

|ξ j(σ)|2dσ. (3.14)

Construct the following L-K functional

V̄ = V + Φ̃(λ)
n∑

i=1

∫ t

t−τ j

|ξ j(σ)|2dσ + Φ̂(λ)
∫ t

t−2τ̄

∫ t

µ

n∑
j=1

|ξ j(σ)|2dσdµ, (3.15)

then

˙̄V ≤ −(Φ̄(λ) − Φ̃(λ) − 2τ̄Φ̂(λ))|ξ|2 =: −ϕ(λ)|ξ|2. (3.16)

Taking γ(s) = ϕ(λ)s2 and applying Φ̄(λ) − Φ̃(λ) − 2τ̄Φ(λ) > 0, then γ(s) is a K function and (3.16)
is changed into

˙̄V ≤ −γ(|ξ|). (3.17)

Part II: Next, we verify that V̄ satisfies the first condition of Lemma 2.1.
On the basis of |ξ| ≤ sup−2τ̄≤θ≤0 |ξ(θ + t)| and (3.6), one has

π1(|ξ|) ≤ V ≤ π21( sup
−2τ̄≤θ≤0

|ξ(θ + t)|), (3.18)
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where π21(s) = δ1
2 λ

2
min(P)s2 and π21(s) = δ1

2 λ
2
max(P)s2 are class K∞ functions.

Φ̃(λ)
n∑

i=2

∫ t

t−τ j

|ξ j(σ)|2dσ ≤ Φ̃(λ)
n∑

i=2

∫ 0

−τ̄

|ξ j(θ + t)|2dθ

≤ Φ̃(λ)τ̄ sup
−τ̄≤θ≤0

|ξ(θ + t)|2

≤ Φ̃(λ)τ̄( sup
−2τ̄≤θ≤0

|ξ(θ + t)|)2

=: π22( sup
−2τ̄≤θ≤0

|ξ(θ + t)|), (3.19)

where π22(s) = Φ̃(λ)τ̄s2 is a class K∞ function.

Φ̂(λ)
∫ t

t−2τ̄

∫ t

µ

n∑
j=2

|ξ j(σ)|2dσdµ

≤ 2Φ̂(λ)τ̄
∫ t

t−2τ̄

n∑
j=2

|ξ j(σ)|2dσ

≤ 2Φ̂(λ)τ̄
∫ 0

−2τ̄

n∑
j=2

|ξ j(s + θ)|2d(s + θ)

≤ 2Φ̂(λ)τ̄( sup
−2τ̄≤θ≤0

|ξ(θ + t)|)2

=: π23( sup
−2τ̄≤θ≤0

|ξ(θ + t)|), (3.20)

where π23(s) = Φ̂(λ)τ̄s2 is a class K∞ function. Choosing π2 = π21 + π22 + π23, one has

π1(|ξ|) ≤ V̄ ≤ π2( sup
−2τ̄≤θ≤0

|ξ(θ + t)|). (3.21)

According to (3.17), (3.21) and Lemma 2.1, one concludes that the equilibrium at the origin of closed-
loop system is global asymptotic stabilization.
Remark 3.2: In the existing atricles, backstepping method is a usually method to design state feedback
controller. However, this method requires calculation step-by-step. For n-order systems, the nonlinear
term must be calculated at each step. From the above calculation process, it can be seen that the form
of controller u has been given. We only need to calculate the last two terms of (3.7). And then the
appropriate parameter λ can be selected according to (3.16). □

4. Extension

As a matter of fact, the design scheme of section 3 can also be generalized to a class of strict-
feedforward stochastic nonlinear systems with multiple time-variant delays in the following form

ẋ1(t) = x2(t) + f̃1(x2(t), · · · , xn(t), x2(t − τ2(t)), · · · , xn(t − τn(t))),
ẋ2(t) = x3(t) + f̃2(x3(t), · · · , xn(t), x3(t − τ3(t)), · · · , xn(t − τn(t))),

...

AIMS Mathematics Volume 9, Issue 4, 9494–9507.



9501

ẋn(t) = u(t − τ1(t)), (4.1)

where τ j(t) : R+ → [0, τ∗] is time-variant delay, τ∗ > 0, j = 1, · · · , n. Nonlinear functions f̃i, i =
1, · · · , n − 1, are continuous.

To obtain the stability theorem of system (4.1), we need the following assumptions.
Assumption 4.1: There is a known positive constant c̄ such that

| f j| ≤ c̄
n∑

j=i+1

(|x j(t)| + |x j(t − τ j(t))|), j = 1, · · · , n − 1.

Assumption 4.2: For j = 1, · · · , n, there is a known constant β such that τ̇ j(t) ≤ β < 1.
Similar to (3.2), system (4.1) can be rewritten as

ẋ = Ax + Bu(t − τ1(t)) + F̃ , (4.2)

where

F̃ =


f̃1(·)
...

f̃n−1(·)
0

 .
Then the extended result is summarized in the following theorem.

Theorem 4.1: If Assumptions 4.1 and 4.2 hold for systems (4.1) and there exists a positive parameter
λ such that Ψ̄(λ)− Ψ̃(λ)

1−β −2τ∗Ψ̂(λ) > 0, then the equilibrium at the origin of closed-loop system is global
asymptotically stable by adopting the parameter-dependent state feedback controller (3.3), where Ψ̄(λ),
Ψ̃(λ) and Φ̂(λ) are defined in (4.8).
Proof. We will prove it by two parts as well as Theorem 4.1.

Part I: Using (3.4)-(3.5) and (4.2), the closed-loop system is transformed into

ξ̇ = λ−1AΘ̄ξ + +Γ(λ)B(u(t − τ1(t)) − u(t)) + Γ(λ)F̃ . (4.3)

Choose the candidate Lyapunov function

V1(ξ) =
δ2

2
ξ⊤Qξ, (4.4)

where δ2 is a positive constant and Q is a symmetric positive definite matrix that satisfies QAΘ̄+A⊤Θ̄Q =
−I. Applying (3.5) and (3.6), one has

V̇1 ≤ −δ2λ
−1|ξ|2 + 2δ2(ξ⊤Q)(Γ(λ)F̃ ) + 2δ2(ξ⊤Q)Γ(λ)B(u(t − τ1(t)) − u(t)). (4.5)

Similar to inequality (3.9), according to Assumption 4.1, one has

2δ2(ξ⊤P)(Γ(λ)F̃ ) ≤
√

n − 1Ψ1(λ)|ξ|2 + Ψ1(λ)
n∑

j=2

|ξ||ξ j(t − τ j)|

AIMS Mathematics Volume 9, Issue 4, 9494–9507.
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≤

(
c2

3(n − 1)
2

+
√

n − 1
)
Ψ1(λ)|ξ|2

+
1

2c2
3

Ψ1(λ)
n∑

j=1

|ξ j(t − τ j(t))|2, (4.6)

where Ψ1(λ) = 2δ2∥Q∥
∑n−1

k=1
1
λk and c3 is a positive real number.

Similar to the proof of (3.13), using Assumptions 4.1,4.2 and (3.4), one leads to

2δ2(ξ⊤P)Γ(λ)B(u(t − τ1(t)) − u(t))

≤ Ψ2(λ)
(
c2

4|ξ|
2 +

2τ∗
(
(
∑n−1

j=1 Ψ3, j)2 + Ψ4(λ)2
)

c2
4

∫ t

t−2τ∗

n∑
i=1

|ξi(σ)|2dσ
)
, (4.7)

where Ψ2(λ) = 1
λn δ2∥P∥

∑n
j=1 |Θi|, Ψ3, j(λ) = (c̄ + 1)( 1

λ
+

∑n
l= j+1

1
λl− j ), Ψ4(λ) = 1

λn

∑n
j=1 |Θi| and c4 is a

positive real number. Combining (4.6) and (4.7), one leads to

V̇1 ≤ −

{
δ2λ

−1 −

(
c2

3(n − 1)
2

+
√

n − 1
)
Ψ1(λ) − c2

4ψ2(λ)
}
|ξ|2

+
1

2c2
3

Ψ1(λ)
n∑

j=1

|ξ j(t − τ j)|2

+
2τ∗

c2
4

Ψ2(λ)
(
(

n−1∑
j=1

Ψ3, j)2 + Ψ4(λ)2
) ∫ t

t−2τ∗

n∑
j=1

ξ2
j (σ)dσ

=: −Ψ̄(λ)|ξ|2 + Ψ̃(λ)
n∑

j=1

|ξ j(t − τ j)|2 + Ψ̂(λ)
∫ t

t−2τ∗

n∑
j=1

|ξ j(σ)|2dσ. (4.8)

Introduce the following L-K functional

V̄1 = V1 +
Ψ̃(λ)
1 − β

n∑
i=2

∫ t

t−τ j(t)
|ξ j(σ)|2dσ + Ψ̂(λ)

∫ t

t−2τ∗

∫ t

µ

n∑
j=2

|ξ j(σ)|2dσdµ, (4.9)

then

˙̄V1 ≤ −

(
Ψ̄(λ) −

Ψ̃(λ)
1 − β

− 2τ∗Ψ̂(λ)
)
|ξ|2 =: −ψ(λ)|ξ|2. (4.10)

Taking γ̃(s) = ψ(λ)s2 and applying Ψ̄(λ) − Ψ̃(λ)
1−β − 2τ∗Ψ(λ) > 0, then γ̃(s) is a class K function and

(3.16) is changed into

˙̄V1 ≤ −γ̃(|ξ|). (4.11)

Part II: Next, we verify that V̄1 satisfies the first condition of Lemma 2.1.
On the basis of |ξ| ≤ sup−2τ∗≤θ≤0 |ξ(θ + t)| and (3.6), one has

π3(|ξ|) ≤ V1 ≤ π41( sup
−2τ∗≤θ≤0

|ξ(θ + t)|), (4.12)
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where π31(s) = δ2
2 λ

2
min(Q)s2 and π41(s) = δ2

2 λ
2
max(Q)s2 are class K∞ functions.

Ψ̃(λ)
1 − β

n∑
j=1

∫ t

t−τ j(t)
|ξ j(σ)|2dσ ≤ π42( sup

−2τ∗≤θ≤0
|ξ(θ + t)|), (4.13)

where π42(s) = Ψ̃(λ)
1−β is a class K∞ function.

Ψ̂(λ)
∫ t

t−2τ∗

∫ t

µ

n∑
j=1

|ξ j(σ)|2dσdµ ≤ π43( sup
−2τ∗≤θ≤0

|ξ(θ + t)|), (4.14)

where π23(s) = Ψ̃(λ)τ̄s2 is a class K∞ function. Choosing π4 = π41 + π42 + π43, one has

π3(|ξ|) ≤ V̄1 ≤ π4( sup
−2τ∗≤θ≤0

|ξ(θ + t)|). (4.15)

According to (4.12), (4.15) and Lemma 2.1, one concludes that the equilibrium at the origin of closed-
loop system is global asymptotic stabilization.

5. Simulation example

For the sake of verifying the effectiveness of the proposed controller, we consider the following
numerical example.

ẋ1(t) = x2(t) +
1
10

x2(t − 2) +
1
3

ln(1 + x2
3(t)),

ẋ2(t) = x3(t) +
1
5

sin(x3(t − 1))),
ẋ3(t) = u(t − 1). (5.1)

With the help of | sin x| ≤ |x|, ln(1 + x2) ≤ |x|, Assumption 3.1 is held with c = 1
3 .

It is obvious that Assumption 3.1 holds. By system (5.1), A =


0 1 0
0 0 1
0 0 0

 ,B =


0
0
1

 . Choosing

Θ1 = −
3
8 ,Θ2 = −

11
8 ,Θ3 = −

5
2 , one hasAΘ̄ = A+BΘ̄ =


0 1 0
0 0 1
−3

8 −
11
8 −5

2

 .According to PAΘ̄+A⊤Θ̄P =

−I, one obtains P =


3.0298 3.8869 1.3333
3.8869 8.6726 3.1905
1.3333 3.1905 1.4762

 . Constructing the parameter-dependent controller

u = −
3

8λ3 x1 −
11
8λ2 x2 −

5
2λ

x3. (5.2)

Define ξ =


ξ1

ξ2

ξ3

 =


x1

λx2

λ2x3

 , consider the L-K functional V̄ = 1
2ξ
⊤Pξ + 0.258( 1

λ
+ 2

λ2 +

2
λ3 )

∑3
i=1

∫ t

t−τi
|ξi(σ)|2dσ + 0.0446( 1

λ
+ 2

λ2 +
4
λ3 )

∑3
i=1

∫ t

t−4

∫ µ

t
|ξi(σ)|2dσdµ. According to the design
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procedure, one can deduce Φ̄(λ) = 0.258
λ
− 0.0516( 1

λ
+ 1

λ2 ) − 0.067
√

1+λ2+λ4

λ3 , Φ̃(λ) = 0.021( 1
λ
+ 1

λ2 ),

Φ̂(λ) = 0.0016
√

1+λ2+λ4

λ3 (48
λ3 +

4.16
λ2 ). Then Φ̄(λ) − Φ̃(λ) − 2τ̄Φ̂(λ) > 0 by taking λ = 2. Therefore, the

condition of Theorem 3.1 is satisfied.

In the simulation, we take the initial data x1(0) = 1, x2 = −0.5, x3 = 0.5, Figure 1 demonstrates the
effectiveness of the controller.

0 50 100
−0.5

0

0.5

1

1.5

Time(s)

 

 
x1

0 50 100
−0.6

−0.4

−0.2

0

0.2

Time(s)

 

 
x2

0 50 100
−0.5

0

0.5

Time(s)

 

 
x3

0 50 100
−1

−0.5

0

0.5

1

Time(s)

 

 
u

Figure 1. The responses of the closed-loop systems (5.1) and (5.2).

6. Conclusions

By introducing the Lyapunov-Krasoviskii functional and applying the stability criterion on time-
delay system, a novel parameter-dependent state feedback controller is proposed to guarantee the
global asymptotic stabilization of strict-feedforward nonlinear systems with time delays in state and
input.

Some problems are still remained, e.g., 1) How to solve the problem of output feedback stabilization
of the nonlinear strict-feedforward systems? 2) For the stochastic nonlinear systems with state and
input delays, can we design the parameter-dependent state feedback controller?
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