This paper was concerned with a new class of Schrödinger equations involving double phase operators with variable exponent in $ \mathbb R^{N} $. We gave the corresponding Musielak-Orlicz Sobolev spaces and proved certain properties of the double phase operator. Moreover, our main tools were the topological degree theory and Galerkin method, since the equation contained a convection term. By using these methods, we derived the existence of weak solution for the above problems. Our result extended some recent work in the literature.
Citation: Shuai Li, Tianqing An, Weichun Bu. Existence results for Schrödinger type double phase variable exponent problems with convection term in $ \mathbb R^{N} $[J]. AIMS Mathematics, 2024, 9(4): 8610-8629. doi: 10.3934/math.2024417
This paper was concerned with a new class of Schrödinger equations involving double phase operators with variable exponent in $ \mathbb R^{N} $. We gave the corresponding Musielak-Orlicz Sobolev spaces and proved certain properties of the double phase operator. Moreover, our main tools were the topological degree theory and Galerkin method, since the equation contained a convection term. By using these methods, we derived the existence of weak solution for the above problems. Our result extended some recent work in the literature.
[1] | V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR-Izvestiya, 29 (1987), 33–66. https://doi.org/10.1070/im1987v029n01abeh000958 doi: 10.1070/im1987v029n01abeh000958 |
[2] | F. Colasuonno, M. Squassina, Eigenvalues for double phase variational integrals, Ann. Mat. Pur. Appl., 195 (2016), 1917–1959. https://doi.org/10.1007/s10231-015-0542-7 doi: 10.1007/s10231-015-0542-7 |
[3] | W. Liu, G. Dai, Existence and multiplicity results for double phase problem, J. Differ. Equ., 265 (2018), 4311–4334. https://doi.org/10.1016/j.jde.2018.06.006 doi: 10.1016/j.jde.2018.06.006 |
[4] | K. Perera, M. Squassina, Existence results for double phase problems via Morse theory, Commun. Contemp. Math., 20 (2018), 1750023. https://doi.org/10.1142/S0219199717500237 doi: 10.1142/S0219199717500237 |
[5] | W. Liu, G. Dai, Multiplicity results for double phase problems in $\mathbb{R}^{N}$, J. Math. Phys., 61 (2020), 091508. https://doi.org/10.1063/5.0020702 doi: 10.1063/5.0020702 |
[6] | R. Steglinski, Infinitely many solutions for double phase problem with unbounded potential in $\mathbb{R}^{N}$, Nonlinear Anal., 214 (2022), 112580. https://doi.org/10.1016/j.na.2021.112580 doi: 10.1016/j.na.2021.112580 |
[7] | J. Shen, L. Wang, K. Chi, B. Ge, Existence and multiplicity of solutions for a quasilinear double phase problem on the whole space, Complex Var. Elliptic, 68 (2023), 206–316. https://doi.org/10.1080/17476933.2021.1988585 doi: 10.1080/17476933.2021.1988585 |
[8] | C. Farkas, P. Winkert, An existence result for singular Finsler double phase problems, J. Differ. Equ., 286 (2021), 455–473. https://doi.org/10.1016/j.jde.2021.03.036 doi: 10.1016/j.jde.2021.03.036 |
[9] | N. Cui, H. Sun, Existence and multiplicity results for double phase problem with nonlinear boundary condition, Nonlinear Anal. Real, 60 (2021), 103307. https://doi.org/10.1016/j.nonrwa.2021.103307 doi: 10.1016/j.nonrwa.2021.103307 |
[10] | K. Wang, Q. Zhou, On a double phase problem with sublinear and superlinear nonlinearities, Complex Var. Elliptic, 66 (2021), 1182–1193. https://doi.org/10.1080/17476933.2021.1885383 doi: 10.1080/17476933.2021.1885383 |
[11] | Z. Liu, N.S. Papageorgiou, A double phase equation with convection, Electron. J. Qual. Theory Differ. Equ., 91 (2021), 1–11. https://doi.org/10.14232/ejqtde.2021.1.91 doi: 10.14232/ejqtde.2021.1.91 |
[12] | B. Ge, X. Cao, W. Yuan, Existence of two solutions for double-phase problems with a small perturbation, Appl. Anal., 2021. https://doi.org/10.1080/00036811.2021.1909725 doi: 10.1080/00036811.2021.1909725 |
[13] | L. Gasinski, P. Winkert, Existence and uniqueness results for double phase problems with convection term, J. Differ. Equ., 268 (2020), 4183–4193. https://doi.org/10.1016/j.jde.2019.10.022 doi: 10.1016/j.jde.2019.10.022 |
[14] | C. O. Alves, A. Moussaoui, Existence of solutions for a class of singular elliptic systems with convection term, Asymptotic Anal., 90 (2014), 237–248. https://doi.org/10.3233/ASY-141245 doi: 10.3233/ASY-141245 |
[15] | C. Vetro, Variable exponent $p(x)$-Kirchhoff type problem with convection, J. Math. Anal. Appl., 506 (2022), 125721. https://doi.org/10.1016/j.jmaa.2021.125721 doi: 10.1016/j.jmaa.2021.125721 |
[16] | D. Motreanu, Quasilinear Dirichlet problems with competing operators and convection, Open Math., 18 (2020), 1510–1517. https://doi.org/10.1515/math-2020-0112 doi: 10.1515/math-2020-0112 |
[17] | W. Bu, T. An, Y. Li, J. He, Kirchhoff-type problems involving logarithmic nonlinearity with variable exponent and convection term, Mediterr. J. Math., 20 (2023), 77. https://doi.org/10.1007/s00009-023-02273-w doi: 10.1007/s00009-023-02273-w |
[18] | K. Ho, I. Sim, A-priori bounds and existence for solutions of weighted elliptic equations with a convection term, Adv. Nonlinear Anal., 6 (2017), 427–445. https://doi.org/10.1515/anona-2015-0177 doi: 10.1515/anona-2015-0177 |
[19] | D. Averna, N. S. Papageorgiou, E. Tornatore, Positive solutions for nonlinear Robin problems with convection, Math. Method. Appl. Sci., 42 (2019), 1907–1920. https://doi.org/10.1002/mma.5484 doi: 10.1002/mma.5484 |
[20] | N. S. Papageorgiou, V. D. Radulescu, D. D. Repovs, Positive solutions for nonlinear Neumann problems with singular terms and convection, J. Math. Pur. Appl., 136 (2020), 1–21. https://doi.org/10.1016/j.matpur.2020.02.004 doi: 10.1016/j.matpur.2020.02.004 |
[21] | A. Crespo-Blanco, L. Gasinski, P. Harjulehto, P, Winkert, A new class of double phase variable exponent problems: Existence and uniqueness, J. Differ. Equ., 323 (2022), 182–228. https://doi.org/10.1016/j.jde.2022.03.029 doi: 10.1016/j.jde.2022.03.029 |
[22] | F. Vetro, P. Winkert, Constant sign solutions for double phase problems with variable exponents, Appl. Math. Lett., 135 (2023), 108404. https://doi.org/10.1016/j.aml.2022.108404 doi: 10.1016/j.aml.2022.108404 |
[23] | A. Aberqi. J. Bennouna, O. Benslimane, M. A, Ragusa, Existence results for double phase problem in Sobolev-COrlicz spaces with variable exponents in complete manifold, Mediterr. J. Math., 19 (2022), 158. https://doi.org/10.1007/s00009-022-02097-0 doi: 10.1007/s00009-022-02097-0 |
[24] | I. H. Kim, Y. H. Kim, M. W. Oh, S. Zeng, Existence and multiplicity of solutions to concave-convex-type double-phase problems with variable exponent, Nonlinear. Anal. Real, 67 (2022), 103627. |
[25] | A. Bahrouni, V. D. Radulescu, P. Winkert, Double phase problems with variable growth and convection for the Baouendi-Grushin operator, Z. Angew. Math. Phys., 71 (2020), 183. https://doi.org/10.1007/s00033-020-01412-7 doi: 10.1007/s00033-020-01412-7 |
[26] | V. Benci, D. Fortunato, Discreteness conditions of the spectrum of Schröinger operators, J. Math. Anal. Appl., 64 (1978), 695–700. https://doi.org/10.1016/0022-247x(78)90013-6 doi: 10.1016/0022-247x(78)90013-6 |
[27] | C. O. Alves, S. Liu, On superlinear p(x)-Laplacian equations in $\mathbb R^{N}$, Nonlinear Anal., 73 (2010), 2566–2579. https://doi.org/10.1016/j.na.2010.06.033 doi: 10.1016/j.na.2010.06.033 |
[28] | A. Salvatore, Multiple solutions for perturbed elliptic equations in unbounded domains, Adv. Nonlinear Stud., 3 (2003), 1–23. https://doi.org/10.1515/ans-2003-0101 doi: 10.1515/ans-2003-0101 |
[29] | L. Diening, P. Harjulehto, P. Hästö, M. Ru$\breve{{\rm{z}}}$i$\breve{{\rm{c}}}$ka, Lebesgue and Sobolev spaces with variable exponents, Springer, 2011. |
[30] | J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics, 1983. |
[31] | I. S. Kim, S. J. Hong, A topological degree for operators of generalized $(S_{+})$ type, Fixed Point Theory Appl., 2015 (2015), 194. https://doi.org/10.1186/s13663-015-0445-8 doi: 10.1186/s13663-015-0445-8 |
[32] | J. Berkovits, Extension of the Leray-Schauder degree for abstract Hammerstein type mappings, J. Differ. Equ., 234 (2007), 289–310. https://doi.org/10.1016/j.jde.2006.11.012 doi: 10.1016/j.jde.2006.11.012 |