Theory article

The distribution of ideals whose norm divides n in the Gaussian ring

  • Received: 09 November 2023 Revised: 17 January 2024 Accepted: 22 January 2024 Published: 31 January 2024
  • MSC : 11M06, 11N99, 11R04

  • Let OK=Z[i]. For each positive integer n, denote ξK(n) as the number of integral ideals whose norm divides n in OK. In this paper, we studied the distribution of ideals whose norm divides n in OK by using the Selberg-Delange method. This is a natural variant of a result studied by Deshouillers, Dress, and Tenenbaum (often called the DDT Theorem), and we found that the distribution function was subject to beta distribution with density 3/(2π3u2(1u)).

    Citation: Tong Wei. The distribution of ideals whose norm divides n in the Gaussian ring[J]. AIMS Mathematics, 2024, 9(3): 5863-5876. doi: 10.3934/math.2024285

    Related Papers:

    [1] Zhishan Yang, Zongqi Yu . DDT Theorem over ideal in quadratic field. AIMS Mathematics, 2025, 10(1): 1921-1934. doi: 10.3934/math.2025089
    [2] Vajiheh Nazemi Niya, Hojat Babaei, Akbar Rezaei . On fuzzy sub-semi-rings of nexuses. AIMS Mathematics, 2024, 9(12): 36140-36157. doi: 10.3934/math.20241715
    [3] Shakir Ali, Amal S. Alali, Sharifah K. Said Husain, Vaishali Varshney . Symmetric $ n $-derivations on prime ideals with applications. AIMS Mathematics, 2023, 8(11): 27573-27588. doi: 10.3934/math.20231410
    [4] Yuedi Zeng . Flat modules and coherent endomorphism rings relative to some matrices. AIMS Mathematics, 2023, 8(6): 14111-14131. doi: 10.3934/math.2023721
    [5] C. T. J. Dodson . Information distance estimation between mixtures of multivariate Gaussians. AIMS Mathematics, 2018, 3(4): 439-447. doi: 10.3934/Math.2018.4.439
    [6] Heng Liu, Xia Cui . Adaptive estimation for spatially varying coefficient models. AIMS Mathematics, 2023, 8(6): 13923-13942. doi: 10.3934/math.2023713
    [7] Bilal A. Rather, M. Aijaz, Fawad Ali, Nabil Mlaiki, Asad Ullah . On distance signless Laplacian eigenvalues of zero divisor graph of commutative rings. AIMS Mathematics, 2022, 7(7): 12635-12649. doi: 10.3934/math.2022699
    [8] Yousef Alkhamees, Sami Alabiad . Classification of chain rings. AIMS Mathematics, 2022, 7(4): 5106-5116. doi: 10.3934/math.2022284
    [9] Shakir Ali, Amal S. Alali, Atif Ahmad Khan, Indah Emilia Wijayanti, Kok Bin Wong . XOR count and block circulant MDS matrices over finite commutative rings. AIMS Mathematics, 2024, 9(11): 30529-30547. doi: 10.3934/math.20241474
    [10] Yang Yang, Yanyan Song, Haifeng Fan, Haiyan Qiao . A note on the generalized Gaussian Estrada index and Gaussian subgraph centrality of graphs. AIMS Mathematics, 2025, 10(2): 2279-2294. doi: 10.3934/math.2025106
  • Let OK=Z[i]. For each positive integer n, denote ξK(n) as the number of integral ideals whose norm divides n in OK. In this paper, we studied the distribution of ideals whose norm divides n in OK by using the Selberg-Delange method. This is a natural variant of a result studied by Deshouillers, Dress, and Tenenbaum (often called the DDT Theorem), and we found that the distribution function was subject to beta distribution with density 3/(2π3u2(1u)).



    For each positive integer n, denote by τ(n) the number of divisors of n and let Ωn={d1,d2,,dτ(n)} be the set of divisors of n. Let Sn be the set of all subsets of Ωn and let μn be the uniform probability measure on Ωn:

    μn(d)=1τ(n),dΩn.

    It is easily verified that (Ωn,Sn,μn) is a probability space. Consider the random variable Dn:

    Dn:ΩnRdlogdlogn.

    The distribution function Fn of Dn is given by

    Fn(t)=P(Dnt)=1τ(n)dn,dnt1(0t1).

    It is clear that the sequence {Fn}n=1 does not converge pointwise on [0,1] since

    Fp(t)={1/2,0t<1;1,t=1,Fp2(t)={1/3,0t<1/2;2/3,1/2t<1;1,t=1.

    However, Deshouillers, Dress, and Tenenbaum [3] proved that its Cesˊaro means is uniformly convergent on [0,1]. No less remarkable, this limit is the distribution function of a probability law well known to specialists: the arcsine law, with density 1/(πu(1u)). More precisely,

    1xnxFn(t)=2πarcsint+O(1logx) (1.1)

    holds uniformly for x2 and 0t1, and the error term in (1.1) is optimal.

    Subsequently, Cui and Wu[1], Feng[6], and Feng and Wu[4] studied the related issues of the Deshouillers-Dress-Tenenbaum (DDT) theorem. Recently, Leung[9] proved that factorization of integers into k parts follows the Dirichlet distribution Dir(1k,,1k) by multidimensional contour integration, thereby generalizing the DDT arcsine law on divisors where k=2. Their results were obtained in Z.

    In this paper, we consider a similar problem in the Gaussian ring, unless otherwise stated, and throughout this paper K, OK, s, and σ0(τ) will be the Gaussian field, the Gaussian ring(of the form a+bi, where a,bZ and i2=1), σ+iτ, and c0/log(q(|τ|+1)). For each positive integer n, let Ξn={aOK:N(a)dividesn}. Denoting by ξK(n) the number of ideals in Ξn, then

    ξK(n)=N(a)n1=dnaK(d), (1.2)

    where aK(n) is the number of integral ideals with norm n in OK. Since aK(n) is multiplicative, so is ξK(n).

    Let Sn be the set of all subsets of Ξn and let μn be the uniform probability:

    μn(a)=1ξK(n),aΞn.

    It is easily verified that (Ξn,Sn,μn) is a probability space. Consider the random variable Dn:

    Dn:ΞnRalogN(a)logn.

    The distribution function of Dn is given by

    FK,n(t)=P{Dn(a)t}=N(a)n,logN(a)lognt1ξK(n)=1ξK(n)N(a)n,N(a)nt1.

    It is clear that the sequence {FK,n}n=1 does not converge pointwise on [0,+), since

    (1) If p1(mod4), then Ξp={a0,a1,a2Z[i]:N(a0)=1,N(a1)=N(a2)=p}, and so we have

    FK,p(t)={1/3,0t<1;1,t1.

    (2) If p3(mod4), then Ξp={a0Z[i]:N(a0)=1}, and so we have FK,p(t)=1.

    (3)If p=2, Ξp={a0,(1+i):N(a0)=1,N(1+i)=2}, then

    FK,p(t)={1/2,p=2and0t<1;1,p=2andt1.

    However, we shall see that

    GN(t):=1NnNFK,n(t)

    is uniformly convergent on [0,1], and we get the following result.

    Theorem 1.1. Uniformly for x2 and 0t1,

    1xnxFK,n(t)=B(1/3,2/3)1t0u23(1u)13du+O(13logx)

    holds, where

    B(a,b):=10ωa1(1ω)b1dω,a,b>0 (1.3)

    is beta function. So, as x+, x1nxFK,n(t) is subject to beta distribution with density 3/(2π3u2(1u)), since B(1/3,2/3)=Γ(1/3)Γ(2/3)/Γ(1)=2π/3.

    This distribution is not arcsince law. Feng and Wu[5] also gave a special case that satisfies the beta distribution.

    In order to study x1nxFK,n(t), we need to consider nx1/ξK(nN(a)). Let's start with the properties of ξK(n). Dedekind defined the Dedekind zeta function of K as follows:

    ζK(s)=a1N(a)s=n=1aK(n)ns, (2.1)

    where a runs over all nonzero integral ideals in OK. According to [7, Theorem 2.8], we have ζK(s)=ζ(s)L(s,χ), where χ is the primitive character modulo 4. Easily, we get aK(n)=dnχ(d), so formula (1.2) can be converted to

    ξK(n)=dnqdχ(q).

    When n=pm, p is prime. We have

    ξK(pm)=dpmaK(d)=aK(1)+aK(p)++aK(pm)={(m+1)(m+2)2,p1(mod4);m+1,p=2;m+22,p3(mod4)and m is even;m+12,p3(mod4)and m is odd.

    Second, we will get the mean value of 1/ξK(nN(a)) based on the Selberg-Delange method. The method was developed by Selberg[10] and Delange[2,3]. For more details, the reader is referred to the book of Tenenbaum[11].

    It's necessary to use Hankel contour when applying the method. For each value of the positive parameter r, we designate the Hankel contour as the path consisting of the circle |s|=r excluding the point s=r and of the half-line (,r] covered twice, with respective arguments +π and π. The brief introduction of Hankel's formula follows.

    Lemma 2.1 (Hankel's formula). For each X>1, let H(X) denote the part of the Hankel contour situated in the half-plane σ>X, then we have, uniformly for zC,

    12πiH(X)szesds=1Γ(Z)+O(47|z|Γ(1+|z|)e12X).

    Proof. For a detailed description of this lemma, see [11, p.179, Theorem 0.17, Corollary 0.18].

    The proof of Theorem 1.1 depends on the following two lemmas.

    Lemma 2.2. For any integral ideal aOK,

    nx1ξK(nN(a))=hx3πlogx{g(N(a))Γ(2/3)+O(C(34)ω(N(a))logx)}

    holds uniformly for x2, where

    h=2log2p1(mod4)(11p)132p[(p1)log(11p)+1]p3(mod4)p2log(11p2)1(11p2)23,
    g(n)=pυn+j=0pjξK(pj+υ)[+j=0pjξK(pj)]1.

    Proof. In order to get the mean value of 1/ξK(nN(a)), we first consider its Dirichlet series +n=1ξK(nN(a))1ns. Let υp(n) denote the p-adic valuation of n. By using the formula

    ξK(nN(a))=pξK(pυp(n)+υp(N(a))),

    we write for s>1:

    Fa(s)=+n=11ξK(nN(a))ns=p+j=0pjsξK(pj+υp(N(a)))=pN(a)+j=0pjsξK(pj)×pN(a)+j=0pjsξK(pj+υp(N(a)))=p+j=0pjsξK(pj)×pυN(a)+j=0pjsξK(pj+υ)[+j=0pjsξK(pj)]1=L(s,χ0)23L(s,χ)13Ga(s;23,13),

    where χ0 is the principal character mod 4, χ is the primitive character mod 4, and

    Ga(s;23,13)=2slog(112s)1p1(mod4)+j=02pjs(j+1)(j+2)(11ps)13×p3(mod4)+j=0p2jsj+1(11p2s)23pυN(a)+j=0pjsξK(pj+υ)[+j=0pjsξK(pj)]1

    converges absolutely for s>1/2.

    Let Ga(s;23,13)=G1(s;23,13)G2(s;23,13)G3(s;23,13)G4(s;23,13)G5(s;23,13), where

    G1(s;23,13)=j01(j+1)2jsp1(mod4)[1+υ12(υ+1)(υ+2)pυs](11ps)13,
    G2(s;23,13)=p3(mod4)(11p2s)23[1+j11(j+1)p2js],
    G3(s;23,13)=pυN(a),p1(mod4)j02pjs(j+υ+1)(j+υ+2)[1+j12pjs(j+1)(j+2)]1,
    G4(s;23,13)=p2νN(a),p3(mod4)[j01(ν+j+1)p2js][1+j11(j+1)p2js]1,
    G5(s;23,13)=[j02jsj+t+1][j02jsj+1]1,

    where τ(N(a))=(t+1)pυN(a),p1(mod4)(υ+1)p2νN(a),p3(mod4)(2ν+1).

    When s=σ>1/2+ε,

    Ga(s;23,13)=G1(s;23,13)G2(s;23,13)G3(s;23,13)G4(s;23,13)G5(s;23,13)1t+1pυN(a),p1(mod4)1(υ+1)(υ+2)p2νN(a),p3(mod4)1ν+1C(34)ω(N(a)).

    To deal with the estimation of Fa(s) near 1, we introduce the function Z(s;z1). The function

    Z(s;z1)={(s1)L(s,χ0)}z1/s (2.2)

    is holomorphic in the |s1|<1, and admits the Taylor series expansion

    Z(s;z1)=j=0γj(z1)j!(s1)j

    where γj(z1) is an entire function, for all ε>0,

    γj(z1)j!ε(1+ε)j(j0).

    Now, let z1=2/3. The function Z(s;2/3)Ga(s;2/3,1/3)L(s,χ)1/3 is holomorphic in the disc |s1|<(1ˆβ)/2, where ˆβ=β0 when L(s,χ) has a real zero β0, ˆβ=1σ0(τ) when L(s,χ) has no real zero β0, and

    Z(s;2/3)Ga(s;2/3,1/3)L(s,χ)1/3εM

    for |s1|<(1ˆβ)/2. Thus, for |s1|<(1ˆβ)/2, we can write

    Z(s;2/3)Ga(s;2/3,1/3)L(s,χ)1/3=l=0gl(2/3)(s1)l,

    where

    gl(2/3):=1l!lj=0(lj)lj(Ga(s;2/3,1/3)L(s,χ)1/3)slj|s=1γj(2/3). (2.3)

    We can apply Perron's formula with the choice of parameters σa=1,A(n)=nε,α=0 to write

    nx1ξK(nN(a))=12πib+iTbiTFa(s)xssds+O(x1+εT),

    where b=1+2/logx and 100Tx, such that L(σ+iT,χ)0 for 0<σ<1.

    Let LT be the boundary of the modified rectangle with vertices 1/2+ε±iT and b±iT, where

    ε>0 is a small constant chosen such that L(1/2+ε+iγ,χ)0 for |γ|<T. Let l1 be the horizontal line segment with the imaginary part T and the real part 1/2+ε to b, and let l2 be the horizontal line segment with the imaginary part T and the real part b to 1/2+ε. Let l3 be the vertical line segment with the real part 1/2+ε and the imaginary part 0+ to T, and let l4 be the vertical line segment with the real part 1/2+ε and the imaginary part T to 0.

    ● The zeros of L(s,χ) of the form ρ=β+iγ with β>1/2+ε and |γ|<T are avoided by Γρ that horizontal cut drawn from the critical line inside this rectangle to ρ=β+iγ.

    L(s,χ) has a possible Siegel zero. The possible Siegel zero β0 of L(s,χ) is avoided by contour Γ0 (its upper part is made up of an arc surrounding the point s=β0 with radius r=1/logx and a line segment joining β0r to 1/2+ε).

    ● The pole of L(s,χ0) at the points s=1 is avoided by the truncated Hankel contour Γ (its upper part is made up of an arc surrounding the point s=1 with radius r=1/logx and a line segment joining 1r to ˜β), where

    ˜β={β0+1logx,L(β0,χ)=0;12+ε,L(β0,χ)0.

    Clearly the function Fa(s) is analytic inside LT. By the Cauchy residue theorem, we can write

    nx1ξK(nN(a))=I+I0+I1+I2+I3+I4+β>1/2+ε,|γ|<TIρ+O(x1+εT) (2.4)

    where

    I:=12πiΓFa(s)xssds,Iρ:=12πiΓρFa(s)xssds,

    and

    Ij:=12πiljFa(s)xssds,I0:=12πiΓ0Fa(s)xssds.

    A. Evaluation of I.

    Let 0<c<(1ˆβ)/10 be a small constant. Since Z(s;2/3)Ga(s;2/3,1/3)L(s,χ)13 is holomorphic and O(M) in the disc |s1|c, the Cauchy formula implies that

    gl(2/3)Mcl(l0),

    where gl(2/3) is defined as in (2.3). From this and (2.3), it is easy to deduce that for |s1|c/2,

    Z(s;2/3)Ga(s;2/3,1/3)L(s,χ)1/3=Z(1;2/3)Ga(1;2/3,1/3)L(1,χ)1/3+O(|s1|)=h3πg(N(a))+O(|s1|),

    where

    g(N(a))=pυN(a)+j=0pjξK(pj+υ)[+j=0pjξK(pj)]1.

    So, we have

    I=12πiΓFa(s)xssds=12πiΓZ(s;2/3)Ga(s;2/3,1/3)L(s,χ)1/3(s1)23xsds=h3πg(N(a))12πiΓ(s1)23xsds+O(|Γ(s1)13xsds|).

    Let s1=ω/logx. According to Lemma 2.1, we have

    12πiΓ(s1)23xsds=x3logx12πiH((1˜β)logx)ω23eωdω=x3logx{1Γ(23)+O(1x1˜β2)}. (2.5)

    On the other hand,

    |Γ(s1)13xsds||s1|=1logx|(s1)13xs||ds|+11logx˜β(1σ)13xσdσx3logx1logx+x3logx1logx1logx(1˜β)t13etdtx3logx1logx. (2.6)

    According to (2.5) and (2.6), we have

    I=hx3πlogx{g(N(a))Γ(2/3)+O(1logx)}. (2.7)

    B. Evaluation of I1 and I2.

    It is well known that

    |ζ(σ+iτ)|(|τ|+1)(1σ)/3log(|τ|+1)(1/2σ1+log1|τ|,|τ|3). (2.8)

    From (2.8) and [12, Lemma 2.1], we deduce that

    L(s,χ0)=ζ(s)(112s)(|τ|+1)(1σ)/3log(|τ|+1) (2.9)

    for 1/2σ1+log1|τ| and |τ|3, and

    L(s,χ)1=L(2s,χ0)1p1(mod4)(1+1ps)1p3(mod4)(11ps)1(log|τ|)2/3(log2|τ|)1/3 (2.10)

    for σ>1/2. In view of (2.9) and (2.10), we have

    |I1|+|I2|1+2/logx1/2+ε|L(σ±iT,χ0)|23|L(σ±iT,χ)|13|Ga(s,2/3,1/3)|xσ|s|dσ1+2/logx1/2+εT29(1σ)(logT)23(logT)29(log2T)19xσTdσxTlogT1+2/logx1/2+ε(T29x)1σdσxTlogT. (2.11)

    C. Evaluation of I3 and I4.

    Let σ0=1/2+ε, τ0=|τ|+3, for s=σ0+iτ with 0|τ|T, In view of (2.9) and (2.10), we have

    |I3|+|I4|T0|L(σ0+iτ,χ0)|23|L(σ0+iτ,χ)|13|Ga(σ0+iτ,2/3,1/3)|xσ0τ+1dτT0τ29(1σ0)0(logτ0)23(logτ0)29(log2τ0)19xσ0τ+1dτx12+εT19. (2.12)

    D. Evaluation of Iρ.

    For s=σ+iγ with 1/2+εσβ1σ0(γ), we have

    Fa(s)|γ|29(1σ)log|γ|,

    then we deduce that

    Iρβ1/2+ε|γ|29(1σ)log|γ|xσ|γ|dσ.

    Denote by N(σ,T) the number of L(s,χ0) in the region sσ and |s|T. We have

    β>1/2+ε,|γ|<T|Iρ|logTmaxT0Tβ>1/2+ε,T0/2<|γ|<T0|Iρ|logTmaxT0T1σ0(T0)1/2+εT29(1σ)0logT0xσT0N(σ,T0)dσ.

    According to Huxley[8],

    N(σ,T)T125(1σ)(logT)9

    for 1/2+εσ1, and T2. Thus,

    β>1/2+ε,|γ|<T|Iρ|logTmaxT0T1σ0(T0)1/2+εT29(1σ)0logT0xσT0T125(1σ)0(logT0)9dσlogTmaxT0T(logT0)101σ0(T0)1/2+εT29(1σ)0xxσ1T2(1σ)0T125(1σ)0dσxlogTmaxT0T(logT0)101σ0(T0)1/2+ε(T28/450x)1σdσxlogT(T28/45x)σ0(T). (2.13)

    E. Evaluation of I0.

    If L(s,χ) has no Siegel zero, then I0=0. If it has Siegel zero β0, then L(s,χ)=(sβ0)V(s), V(β0)0. For |sβ0|1/logx, we can write

    V(s)1/3L(s,χ0)2/3Ga(s;2/3,1/3)/s=C(β0)+O(|sβ0|),

    where C(β0) is a constant depending on β0, then

    |I0|=C(β0)2πiΓ0(sβ0)1/3xsds+O(|Γ0(sβ0)2/3xsds|)xβ0(logx)1/3. (2.14)

    Taking T=elogx and inserting (2.11)–(2.14) and (2.7) into (2.4), we have

    nx1ξK(nN(a))=hx3πlogx{g(N(a))Γ(2/3)+O(C(34)ω(N(a))logx)}.

    Lemma 2.3. For any nZ+, we have that

    nxg(n)aK(n)=3πxh(logx)2/3{1Γ(1/3)+O(1logx)}

    holds uniformly for x2, where g(n) and h are defined in Lemma 2.2.

    Proof. In order to get the mean value of g(n)aK(n), we first consider its Dirichlet series +n=1g(n)aK(n)ns. Since g(n), aK(n) is multiplicative, the Dirichlet series has Euler expansion. When s>1,

    F(s)=n=1g(n)aK(n)ns=L(s,χ0)1/3L(s,χ)1/3P(s;1/3,1/3),

    where

    P(s;1/3,1/3)=p(1χ0(p)ps)1/3(1χ(p)ps)1/3υ0g(pυ)aK(pυ)pυs=υ02υsj=02jj+υ+1[j=02jj+1]1×p1(mod4)(11ps)2/3υ0υ+1pυsj02pj(j+υ+1)(j+υ+2)[j02pj(j+1)(j+2)]1×p3(mod4)(11p2s)1/3υ0p2υsj0p2jυ+j+1[j0p2jj+1]1

    converges absolutely and is O(M) for s>1/2. Since

    υ0(11p)j0p(υj)j+υ+1=1,υ0(11p2)j0p2(j+υ)υ+j+1=1,
    (11p)υ0j0(υ+1)2p(jυ)(j+υ+1)(j+υ+2)=1,

    then

    P(1;1/3,1/3)=2[j=02jj+1]1p1(mod4)(11p)1/3[j02pj(j+1)(j+2)]1×p3(mod4)(11p2)2/3[j0p2jj+1]1=2/h.

    Applying the Selberg-Delange theorem [11, p.281, Theorem 5.2], we have the formula

    nxg(n)aK(n)=3πxh(logx)2/3{1Γ(1/3)+O(1logx)}.

    We only need to consider 0t1. Now, we have

    S(x,t)=1xnxFK,n(t)=1xnx1ξK(n)N(a)n,N(a)nt1=1xnx1ξK(n)N(a)n,N(a)xt11xnx1ξK(n)N(a)n,nt<N(a)xt1=:SR.

    When 0t1/2, we will first calculate S. According to Lemma 2.2,

    S=1xnx1ξK(n)N(a)n,N(a)xt1=1xN(a)xtdxN(a)1ξK(dN(a))=1xN(a)xt{h(xN(a))3πlog(xN(a))[g(N(a))Γ(2/3)+O(C(34)ω(N(a))logxN(a))]}.

    Since log(x/N(a))=logxlogN(a)logxlogxt=(1t)logx1/2logx, we have

    S=h3πN(a)xt1N(a)3log(xN(a)){g(N(a))Γ(2/3)+O(C(34)ω(N(a))logx)}.

    Next, we calculate R. According to Lemma 2.2,

    R=1xnx1ξK(n)N(a)n,nt<N(a)xt1=1xN(a)xtdxN(a)(dN(a))t<N(a)1ξK(dN(a))1xN(a)xtdxN(a)d<N(a)1tt1ξK(d)=1xN(a)xtd<N(a)1tt1ξK(d)=1xN(a)xt{hN(a)1tt3πlog(N(a)1tt)[g(1)Γ(2/3)+O(1log(N(a)1tt))]}.

    When 0t1/2, (1t)/t1, and since N(a)2, u=log(N(a)1tt)logN(a)log20.693. Let y=(π1)u1. Since (π1)log(N(a)1tt)1(π1)log21>0, πlog(N(a)1tt)log(N(a)1tt)+1, R has the following estimates,

    R1xN(a)xtN(a)1tt1+log(N(a)1tt)1xN(a)xt(xt)1tt31+log(xt×1tt)=1x×x1tN(a)xt131+logx1t=1x×x1t131+logx1tN(a)xt1131+logx1t13logx.

    Therefore,

    S(x,t)=h3πN(a)xt1N(a)3logxN(a)[g(N(a))Γ(2/3)+O(C(34)ω(N(a))logx)]+O(13logx)=h3πΓ(2/3)N(a)xtg(N(a))N(a)3logxN(a)+O((1logx)4/3N(a)xt1N(a))+O(13logx).

    Since

    (34)ω(N(a))=O(1),N(a)xt1N(a)=nxtaK(n)n=π4logxt+π4+O(1x),
    O((1logx)4/3N(a)xt1N(a))=O((1logx)4/3×tπ4logx)=O(13logx),

    we have

    S(x,t)=h3πΓ(2/3)nxtg(n)aK(n)n3logxn+O(13logx).

    Let G(x)=nxg(n)aK(n). According to Lemma 2.3 and using the Abelian Summation formula, we have

    h3πΓ(2/3)nxtg(n)aK(n)n3logxn=h3πΓ(2/3)×1xt3log(x/xt)×G(xt)+h3πΓ(2/3)xt1G(u)u23logxlogu(113(logxlogu))du=1Γ(2/3)xt11Γ(1/3)+O(1log(u+1))u3(logu)2(logxlogu)(113(logxlogu))du+O(13logx)=1Γ(2/3)xt11Γ(1/3)+O(1log(u+1))u3(logu)2(logxlogu)du+O(13logx)=1Γ(2/3)Γ(1/3)xt11u3(logu)2(logxlogu)du+O(13logx)=1Γ(2/3)Γ(1/3)t013υ2(1υ)dυ+O(13logx),

    so we can obtain

    S(x,t)=1Γ(2/3)Γ(1/3)t013υ2(1υ)dυ+O(13logx)=32πlog31t+3t(1t)2/3+t2/3((1t)t)1/332πarctan(2331t33t33)+34+O(13logx). (3.1)

    Let

    Δ(t)=32π{2log31t+3t(1t)2/3+t2/3((1t)t)1/33arctan(233t331t33)3arctan(2331t33t33)}+32.

    Clearly, Δ(t) is symmetric with respect to t=1/2, and

    S(x,t)+S(x,1t)=Δ(t)+O(13logx),

    then when 1/2t1, S(x,t) is the same as (3.1). This completes the proof.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors declare no competing interest.



    [1] Z. Cui, J. Wu, The Selberg-Delange method in short intervals with an application, Acta Arith., 163 (2014), 247–260. http://dx.doi.org/10.4064/aa163-3-4 doi: 10.4064/aa163-3-4
    [2] H. Delange, Sur les formules dues Atle Selberg, Bull. Sci. Math., 83 (1959), 101–111.
    [3] H. Delange, Sur les formules de Atle Selberg, Acta Arith., 19 (1971), 105–146. https://doi.org/10.4064/AA-19-2-105-146 doi: 10.4064/AA-19-2-105-146
    [4] B. Feng, J. Wu, The arcsine law on divisors in arithmetic progressions modulo prime powers, Acta Math. Hungar., 163 (2021), 392–406. https://doi.org/10.1007/s10474-020-01105-7 doi: 10.1007/s10474-020-01105-7
    [5] B. Feng, J. Wu, β-law on divisors of integers representable as sum of two squares, in Chinese, Sci. China Math., 49 (2019), 1563–1572.
    [6] B. Feng, On the arcsine law on divisors in arithmetic progressions, Indagat. Math., 27 (2016), 749–763. https://doi.org/10.1016/j.indag.2016.01.008 doi: 10.1016/j.indag.2016.01.008
    [7] Keqin Feng, Algebraic Number Theory, in Chinese, Beijing: Science Press, 2000.
    [8] M. N. Huxley, The difference between consecutive primes, Invent. Math., 15 (1972), 164–170. https://doi.org/10.1007/BF01418933 doi: 10.1007/BF01418933
    [9] S. K. Leung, Dirichlet law for factorization of integers, polynomials and permutations, preprint paper, 2022.
    [10] A. Selberg, Note on the paper by L. G. Sathe, J. Indian Math. Soc., 18 (1954), 83–87. https://doi.org/10.18311/JIMS2F19542F17018 doi: 10.18311/JIMS2F19542F17018
    [11] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, 3 Eds, Cambridge: Cambridge University Press, 1995.
    [12] J. Wu, Q. Wu, Mean values for a class of arithmetic functions in short intervals, Math. Nachr., 293 (2020), 178–202. https://doi.org/10.1002/mana.201800276 doi: 10.1002/mana.201800276
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1175) PDF downloads(59) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog