Let $ O_{K} = \mathbb{Z}[i] $. For each positive integer $ n $, denote $ \xi_{K}(n) $ as the number of integral ideals whose norm divides $ n $ in $ O_{K} $. In this paper, we studied the distribution of ideals whose norm divides $ n $ in $ O_{K} $ by using the Selberg-Delange method. This is a natural variant of a result studied by Deshouillers, Dress, and Tenenbaum (often called the DDT Theorem), and we found that the distribution function was subject to beta distribution with density $ \sqrt{3}/(2\pi\sqrt[3]{u^{2}(1-u)}) $.
Citation: Tong Wei. The distribution of ideals whose norm divides $ n $ in the Gaussian ring[J]. AIMS Mathematics, 2024, 9(3): 5863-5876. doi: 10.3934/math.2024285
Let $ O_{K} = \mathbb{Z}[i] $. For each positive integer $ n $, denote $ \xi_{K}(n) $ as the number of integral ideals whose norm divides $ n $ in $ O_{K} $. In this paper, we studied the distribution of ideals whose norm divides $ n $ in $ O_{K} $ by using the Selberg-Delange method. This is a natural variant of a result studied by Deshouillers, Dress, and Tenenbaum (often called the DDT Theorem), and we found that the distribution function was subject to beta distribution with density $ \sqrt{3}/(2\pi\sqrt[3]{u^{2}(1-u)}) $.
[1] | Z. Cui, J. Wu, The Selberg-Delange method in short intervals with an application, Acta Arith., 163 (2014), 247–260. http://dx.doi.org/10.4064/aa163-3-4 doi: 10.4064/aa163-3-4 |
[2] | H. Delange, Sur les formules dues Atle Selberg, Bull. Sci. Math., 83 (1959), 101–111. |
[3] | H. Delange, Sur les formules de Atle Selberg, Acta Arith., 19 (1971), 105–146. https://doi.org/10.4064/AA-19-2-105-146 doi: 10.4064/AA-19-2-105-146 |
[4] | B. Feng, J. Wu, The arcsine law on divisors in arithmetic progressions modulo prime powers, Acta Math. Hungar., 163 (2021), 392–406. https://doi.org/10.1007/s10474-020-01105-7 doi: 10.1007/s10474-020-01105-7 |
[5] | B. Feng, J. Wu, $\beta$-law on divisors of integers representable as sum of two squares, in Chinese, Sci. China Math., 49 (2019), 1563–1572. |
[6] | B. Feng, On the arcsine law on divisors in arithmetic progressions, Indagat. Math., 27 (2016), 749–763. https://doi.org/10.1016/j.indag.2016.01.008 doi: 10.1016/j.indag.2016.01.008 |
[7] | Keqin Feng, Algebraic Number Theory, in Chinese, Beijing: Science Press, 2000. |
[8] | M. N. Huxley, The difference between consecutive primes, Invent. Math., 15 (1972), 164–170. https://doi.org/10.1007/BF01418933 doi: 10.1007/BF01418933 |
[9] | S. K. Leung, Dirichlet law for factorization of integers, polynomials and permutations, preprint paper, 2022. |
[10] | A. Selberg, Note on the paper by L. G. Sathe, J. Indian Math. Soc., 18 (1954), 83–87. https://doi.org/10.18311/JIMS2F19542F17018 doi: 10.18311/JIMS2F19542F17018 |
[11] | G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, 3 Eds, Cambridge: Cambridge University Press, 1995. |
[12] | J. Wu, Q. Wu, Mean values for a class of arithmetic functions in short intervals, Math. Nachr., 293 (2020), 178–202. https://doi.org/10.1002/mana.201800276 doi: 10.1002/mana.201800276 |