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Abstract: Let OK = Z[i]. For each positive integer n, denote ξK(n) as the number of integral ideals
whose norm divides n in OK . In this paper, we studied the distribution of ideals whose norm divides n in
OK by using the Selberg-Delange method. This is a natural variant of a result studied by Deshouillers,
Dress, and Tenenbaum (often called the DDT Theorem), and we found that the distribution function
was subject to beta distribution with density

√
3/(2π 3

√
u2(1 − u)).
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1. Introduction

For each positive integer n, denote by τ(n) the number of divisors of n and letΩn = {d1, d2, · · · , dτ(n)}

be the set of divisors of n. Let Sn be the set of all subsets of Ωn and let µn be the uniform probability
measure on Ωn:

µn(d) =
1
τ(n)
, d ∈ Ωn.

It is easily verified that (Ωn,Sn, µn) is a probability space. Consider the random variable Dn:

Dn : Ωn → R

d 7→
log d
log n

.

The distribution function Fn of Dn is given by

Fn(t) = P(Dn ≤ t) =
1
τ(n)

∑
d|n, d≤nt

1 (0 ≤ t ≤ 1).
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It is clear that the sequence {Fn}
∞
n=1 does not converge pointwise on [0, 1] since

Fp(t) =

1/2, 0 ≤ t < 1;
1, t = 1,

Fp2(t) =


1/3, 0 ≤ t < 1/2;
2/3, 1/2 ≤ t < 1;
1, t = 1.

However, Deshouillers, Dress, and Tenenbaum [3] proved that its Cesàro means is uniformly
convergent on [0, 1]. No less remarkable, this limit is the distribution function of a probability law
well known to specialists: the arcsine law, with density 1/

(
π
√

u(1 − u)
)
. More precisely,

1
x

∑
n≤x

Fn(t) =
2
π

arcsin
√

t + O

 1√
log x

 (1.1)

holds uniformly for x ≥ 2 and 0 ≤ t ≤ 1, and the error term in (1.1) is optimal.
Subsequently, Cui and Wu [1], Feng [6], and Feng and Wu [4] studied the related issues of the

Deshouillers-Dress-Tenenbaum (DDT) theorem. Recently, Leung [9] proved that factorization of
integers into k parts follows the Dirichlet distribution Dir( 1

k , · · · ,
1
k ) by multidimensional contour

integration, thereby generalizing the DDT arcsine law on divisors where k = 2. Their results were
obtained in Z.

In this paper, we consider a similar problem in the Gaussian ring, unless otherwise stated, and
throughout this paper K, OK , s, and σ0(τ) will be the Gaussian field, the Gaussian ring(of the form
a + bi, where a, b ∈ Z and i2 = −1), σ + iτ, and c0/ log(q(|τ| + 1)). For each positive integer n, let
Ξn = {a ∈ OK : N(a) divides n}. Denoting by ξK(n) the number of ideals in Ξn, then

ξK(n) =
∑

N(a)|n

1 =
∑
d|n

aK(d), (1.2)

where aK(n) is the number of integral ideals with norm n in OK . Since aK(n) is multiplicative, so is
ξK(n).

Let Sn be the set of all subsets of Ξn and let µn be the uniform probability:

µn(a) =
1
ξK(n)

, a ∈ Ξn.

It is easily verified that (Ξn,Sn, µn) is a probability space. Consider the random variable Dn:

Dn : Ξn → R

a 7→
log N(a)

log n
.

The distribution function of Dn is given by

FK,n(t) = P {Dn(a) ≤ t} =
∑

N(a)|n, log N(a)
log n ≤t

1
ξK(n)

=
1
ξK(n)

∑
N(a)|n,N(a)≤nt

1.

It is clear that the sequence
{
FK,n

}∞
n=1 does not converge pointwise on [0,+∞), since
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(1) If p ≡ 1(mod4), then Ξp = {a0, a1, a2 ∈ Z[i] : N(a0) = 1,N(a1) = N(a2) = p}, and so we have

FK,p(t) =

1/3, 0 ≤ t < 1;
1, t ≥ 1.

(2) If p ≡ 3(mod4), then Ξp = {a0 ∈ Z[i] : N(a0) = 1}, and so we have FK,p(t) = 1.
(3) If p = 2, Ξp = {a0, (1 + i) : N(a0) = 1,N(1 + i) = 2}, then

FK,p(t) =

1/2, p = 2 and 0 ≤ t < 1;
1, p = 2 and t ≥ 1.

However, we shall see that

GN(t) :=
1
N

∑
n≤N

FK,n(t)

is uniformly convergent on [0, 1], and we get the following result.

Theorem 1.1. Uniformly for x ≥ 2 and 0 ≤ t ≤ 1,

1
x

∑
n≤x

FK,n(t) = B(1/3, 2/3)−1
∫ t

0
u−

2
3 (1 − u)−

1
3 du + O

 1
3
√

log x


holds, where

B(a, b) :=
∫ 1

0
ωa−1(1 − ω)b−1dω, a, b > 0 (1.3)

is beta function. So, as x → +∞, x−1 ∑
n≤x FK,n(t) is subject to beta distribution with density√

3/
(
2π 3

√
u2(1 − u)

)
, since B(1/3, 2/3) = Γ(1/3)Γ(2/3)/Γ(1) = 2π/

√
3.

This distribution is not arcsince law. Feng and Wu [5] also gave a special case that satisfies the beta
distribution.

2. Preliminaries

In order to study x−1 ∑
n≤x FK,n(t), we need to consider

∑
n≤x 1/ξK(nN(a)). Let’s start with the

properties of ξK(n). Dedekind defined the Dedekind zeta function of K as follows:

ζK(s) =
∑
a

1
N(a)s =

∞∑
n=1

aK(n)
ns , (2.1)

where a runs over all nonzero integral ideals in OK . According to [7, Theorem 2.8], we have
ζK(s) = ζ(s)L(s, χ), where χ is the primitive character modulo 4. Easily, we get aK(n) =

∑
d|n χ(d), so

formula (1.2) can be converted to
ξK(n) =

∑
d|n

∑
q|d

χ(q).
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When n = pm, p is prime. We have

ξK(pm) =
∑
d|pm

aK(d) = aK(1) + aK(p) + · · · + aK(pm) =


(m+1)(m+2)

2 , p ≡ 1(mod4);
m + 1, p = 2;
m+2

2 , p ≡ 3(mod4) and m is even;
m+1

2 , p ≡ 3(mod4) and m is odd.

Second, we will get the mean value of 1/ξK(nN(a)) based on the Selberg-Delange method. The
method was developed by Selberg [10] and Delange [2, 3]. For more details, the reader is referred to
the book of Tenenbaum [11].

It’s necessary to use Hankel contour when applying the method. For each value of the positive
parameter r, we designate the Hankel contour as the path consisting of the circle |s| = r excluding the
point s = −r and of the half-line (−∞,−r] covered twice, with respective arguments +π and −π. The
brief introduction of Hankel’s formula follows.

Lemma 2.1 (Hankel’s formula). For each X > 1, let H(X) denote the part of the Hankel contour
situated in the half-plane σ > −X, then we have, uniformly for z ∈ C,

1
2πi

∫
H(X)

s−zesds =
1
Γ(Z)

+ O
(
47|z|Γ(1 + |z|)e−

1
2 X

)
.

Proof. For a detailed description of this lemma, see [11, p.179, Theorem 0.17, Corollary 0.18]. □

The proof of Theorem 1.1 depends on the following two lemmas.

Lemma 2.2. For any integral ideal a ∈ OK ,

∑
n≤x

1
ξK(nN(a))

=
hx

3
√
π log x

g(N(a))
Γ(2/3)

+ O

C
(

3
4

)ω(N(a))

log x




holds uniformly for x ≥ 2, where

h = 2 log 2
∏

p≡1( mod 4)

(
1 −

1
p

) 1
3

2p
[
(p − 1) log

(
1 −

1
p

)
+ 1

] ∏
p≡3( mod 4)

p2 log
(
1 −

1
p2

)−1 (
1 −

1
p2

) 2
3

,

g(n) =
∏
pυ∥n

+∞∑
j=0

p− j

ξK(p j+υ)

 +∞∑
j=0

p− j

ξK(p j)


−1

.

Proof. In order to get the mean value of 1/ξK(nN(a)), we first consider its Dirichlet series∑+∞
n=1 ξK(nN(a))−1n−s. Let υp(n) denote the p-adic valuation of n. By using the formula

ξK(nN(a)) =
∏

p

ξK(pυp(n)+υp(N(a))),

we write forℜs > 1:

Fa(s) =
+∞∑
n=1

1
ξK(nN(a))ns =

∏
p

+∞∑
j=0

p− js

ξK(p j+υp(N(a)))
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=
∏

p∤N(a)

+∞∑
j=0

p− js

ξK(p j)
×

∏
p|N(a)

+∞∑
j=0

p− js

ξK(p j+υp(N(a)))

=
∏

p

+∞∑
j=0

p− js

ξK(p j)
×

∏
pυ∥N(a)

+∞∑
j=0

p− js

ξK(p j+υ)

 +∞∑
j=0

p− js

ξK(p j)


−1

= L(s, χ0)
2
3 L(s, χ)−

1
3Ga

(
s;

2
3
,−

1
3

)
,

where χ0 is the principal character mod 4, χ is the primitive character mod 4, and

Ga

(
s;

2
3
,−

1
3

)
= 2s log

(
1 −

1
2s

)−1 ∏
p≡1( mod 4)

+∞∑
j=0

2p− js

( j + 1)( j + 2)

(
1 −

1
ps

) 1
3

×
∏

p≡3( mod 4)

+∞∑
j=0

p−2 js

j + 1

(
1 −

1
p2s

) 2
3 ∏

pυ∥N(a)

+∞∑
j=0

p− js

ξK(p j+υ)

 +∞∑
j=0

p− js

ξK(p j)


−1

converges absolutely forℜs > 1/2.
Let Ga

(
s; 2

3 ,−
1
3

)
= G1

(
s; 2

3 ,−
1
3

)
G2

(
s; 2

3 ,−
1
3

)
G3

(
s; 2

3 ,−
1
3

)
G4

(
s; 2

3 ,−
1
3

)
G5

(
s; 2

3 ,−
1
3

)
, where

G1

(
s;

2
3
,−

1
3

)
=

∑
j≥0

1
( j + 1)2 js

∏
p≡1( mod 4)

1 +∑
υ≥1

2
(υ + 1)(υ + 2)pυs

 (1 − 1
ps

) 1
3

,

G2

(
s;

2
3
,−

1
3

)
=

∏
p≡3( mod 4)

(
1 −

1
p2s

) 2
3
1 +∑

j≥1

1
( j + 1)p2 js

 ,
G3

(
s;

2
3
,−

1
3

)
=

∏
pυ∥N(a),p≡1( mod 4)

∑
j≥0

2p− js

( j + υ + 1)( j + υ + 2)

1 +∑
j≥1

2p− js

( j + 1)( j + 2)


−1

,

G4

(
s;

2
3
,−

1
3

)
=

∏
p2ν∥N(a),p≡3( mod 4)

∑
j≥0

1
(ν + j + 1)p2 js


1 +∑

j≥1

1
( j + 1)p2 js


−1

,

G5

(
s;

2
3
,−

1
3

)
=

∑
j≥0

2− js

j + t + 1


∑

j≥0

2− js

j + 1


−1

,

where τ(N(a)) = (t + 1)
∏

pυ∥N(a),p≡1( mod 4)(υ + 1)
∏

p2ν∥N(a),p≡3( mod 4)(2ν + 1).
Whenℜs = σ > 1/2 + ε,

Ga

(
s;

2
3
,−

1
3

)
= G1

(
s;

2
3
,−

1
3

)
G2

(
s;

2
3
,−

1
3

)
G3

(
s;

2
3
,−

1
3

)
G4

(
s;

2
3
,−

1
3

)
G5

(
s;

2
3
,−

1
3

)
≪

1
t + 1

∏
pυ∥N(a),p≡1( mod 4)

1
(υ + 1)(υ + 2)

∏
p2ν∥N(a),p≡3( mod 4)

1
ν + 1

≤ C
(
3
4

)ω(N(a))

.
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To deal with the estimation of Fa(s) near 1, we introduce the function Z(s; z1). The function

Z(s; z1) = {(s − 1)L(s, χ0)}z1/s (2.2)

is holomorphic in the |s − 1| < 1, and admits the Taylor series expansion

Z(s; z1) =
∞∑
j=0

γ j(z1)
j!

(s − 1) j

where γ j(z1) is an entire function, for all ε > 0,

γ j(z1)
j!
≪ε (1 + ε) j ( j ≥ 0).

Now, let z1 = 2/3. The function Z(s; 2/3)Ga(s; 2/3,−1/3)L(s, χ)−1/3 is holomorphic in the disc |s−1| <
(1− β̂)/2, where β̂ = β0 when L(s, χ) has a real zero β0, β̂ = 1−σ0(τ) when L(s, χ) has no real zero β0,
and

Z(s; 2/3)Ga(s; 2/3,−1/3)L(s, χ)−1/3 ≪ε M

for |s − 1| < (1 − β̂)/2. Thus, for |s − 1| < (1 − β̂)/2, we can write

Z(s; 2/3)Ga(s; 2/3,−1/3)L(s, χ)−1/3 =

∞∑
l=0

gl(2/3)(s − 1)l,

where

gl(2/3) :=
1
l!

l∑
j=0

(
l
j

)
∂l− j(Ga(s; 2/3,−1/3)L(s, χ)−1/3)

∂sl− j

∣∣∣∣
s=1
γ j(2/3). (2.3)

We can apply Perron’s formula with the choice of parameters σa = 1, A(n) = nε, α = 0 to write∑
n≤x

1
ξK(nN(a))

=
1

2πi

∫ b+iT

b−iT
Fa(s)

xs

s
ds + O

(
x1+ε

T

)
,

where b = 1 + 2/ log x and 100 ≤ T ≤ x, such that L(σ + iT, χ) , 0 for 0 < σ < 1.
Let LT be the boundary of the modified rectangle with vertices 1/2 + ε ± iT and b ± iT , where

• ε > 0 is a small constant chosen such that L(1/2 + ε + iγ, χ) , 0 for |γ| < T . Let l1 be the horizontal
line segment with the imaginary part T and the real part 1/2 + ε to b, and let l2 be the horizontal line
segment with the imaginary part −T and the real part b to 1/2 + ε. Let l3 be the vertical line segment
with the real part 1/2 + ε and the imaginary part 0+ to T , and let l4 be the vertical line segment with
the real part 1/2 + ε and the imaginary part −T to 0−.
• The zeros of L(s, χ) of the form ρ = β + iγ with β > 1/2 + ε and |γ| < T are avoided by Γρ that
horizontal cut drawn from the critical line inside this rectangle to ρ = β + iγ.
• L(s, χ) has a possible Siegel zero. The possible Siegel zero β0 of L(s, χ) is avoided by contour Γ0

(its upper part is made up of an arc surrounding the point s = β0 with radius r = 1/ log x and a line
segment joining β0 − r to 1/2 + ε).
• The pole of L(s, χ0) at the points s = 1 is avoided by the truncated Hankel contour Γ (its upper part is

AIMS Mathematics Volume 9, Issue 3, 5863–5876.



5869

made up of an arc surrounding the point s = 1 with radius r = 1/ log x and a line segment joining 1− r
to β̃), where

β̃ =

β0 +
1

log x , L(β0, χ) = 0;
1
2 + ε, L(β0, χ) , 0.

Clearly the function Fa(s) is analytic inside LT . By the Cauchy residue theorem, we can write∑
n≤x

1
ξK(nN(a))

= I + I0 + I1 + I2 + I3 + I4 +
∑

β>1/2+ε,|γ|<T

Iρ + O
(

x1+ε

T

)
(2.4)

where
I :=

1
2πi

∫
Γ

Fa(s)
xs

s
ds, Iρ :=

1
2πi

∫
Γρ

Fa(s)
xs

s
ds,

and
I j :=

1
2πi

∫
l j

Fa(s)
xs

s
ds, I0 :=

1
2πi

∫
Γ0

Fa(s)
xs

s
ds.

A. Evaluation of I.
Let 0 < c < (1− β̂)/10 be a small constant. Since Z(s; 2/3)Ga(s; 2/3,−1/3)L(s, χ)−

1
3 is holomorphic

and O(M) in the disc |s − 1| ≤ c, the Cauchy formula implies that

gl(2/3) ≪ Mc−l (l ≥ 0),

where gl(2/3) is defined as in (2.3). From this and (2.3), it is easy to deduce that for |s − 1| ≤ c/2,

Z(s; 2/3)Ga(s; 2/3,−1/3)L(s, χ)−1/3 = Z(1; 2/3)Ga(1; 2/3,−1/3)L(1, χ)−1/3 + O(|s − 1|)

=
h
3
√
π

g (N(a)) + O(|s − 1|),

where

g(N(a)) =
∏

pυ∥N(a)

+∞∑
j=0

p− j

ξK(p j+υ)

 +∞∑
j=0

p− j

ξK(p j)


−1

.

So, we have

I =
1

2πi

∫
Γ

Fa(s)
xs

s
ds

=
1

2πi

∫
Γ

Z(s; 2/3)Ga(s; 2/3,−1/3)L(s, χ)−1/3(s − 1)−
2
3 xsds

=
h
3
√
π

g (N(a))
1

2πi

∫
Γ

(s − 1)−
2
3 xsds + O

(∣∣∣∣∣∫
Γ

(s − 1)
1
3 xsds

∣∣∣∣∣) .
Let s − 1 = ω/ log x. According to Lemma 2.1, we have

1
2πi

∫
Γ

(s − 1)−
2
3 xsds =

x
3
√

log x

1
2πi

∫
H((1−β̃) log x)

ω−
2
3 eωdω =

x
3
√

log x

 1

Γ
(

2
3

) + O
(

1

x
1−β̃

2

) . (2.5)
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On the other hand,∣∣∣∣∣∫
Γ

(s − 1)
1
3 xsds

∣∣∣∣∣ ≪ ∫
|s−1|= 1

log x

|(s − 1)
1
3 xs||ds| +

∫ 1− 1
log x

β̃

(1 − σ)
1
3 xσdσ

≪
x

3
√

log x
·

1
log x

+
x

3
√

log x
·

1
log x

∫ 1

log x(1−β̃)
t

1
3 e−tdt

≪
x

3
√

log x
·

1
log x

.

(2.6)

According to (2.5) and (2.6), we have

I =
hx

3
√
π log x

{
g (N(a))
Γ (2/3)

+ O
(

1
log x

)}
. (2.7)

B. Evaluation of I1 and I2.
It is well known that

|ζ(σ + iτ)| ≪ (|τ| + 1)(1−σ)/3 log(|τ| + 1) (1/2 ≤ σ ≤ 1 + log−1
|τ|, |τ| ≥ 3). (2.8)

From (2.8) and [12, Lemma 2.1], we deduce that

L(s, χ0) = ζ(s)
(
1 −

1
2s

)
≪ (|τ| + 1)(1−σ)/3 log(|τ| + 1) (2.9)

for 1/2 ≤ σ ≤ 1 + log−1
|τ| and |τ| ≥ 3, and

L(s, χ)−1 = L(2s, χ0)−1
∏

p≡1( mod 4)

(
1 +

1
ps

)−1 ∏
p≡3( mod 4)

(
1 −

1
ps

)−1

≪ (log|τ|)2/3(log2|τ|)
1/3

(2.10)

for σ > 1/2. In view of (2.9) and (2.10), we have

|I1| + |I2| ≪

∫ 1+2/ log x

1/2+ε
|L(σ ± iT, χ0)|

2
3 |L(σ ± iT, χ)|−

1
3 |Ga (s, 2/3,−1/3)|

xσ

|s|
dσ

≪

∫ 1+2/ log x

1/2+ε
T

2
9 (1−σ)(log T )

2
3 (log T )

2
9 (log2 T )

1
9

xσ

T
dσ

≪
x
T

log T
∫ 1+2/ log x

1/2+ε

T
2
9

x

1−σ

dσ ≪
x
T

log T.

(2.11)

C. Evaluation of I3 and I4.
Let σ0 = 1/2+ ε, τ0 = |τ|+ 3, for s = σ0 + iτ with 0 ≤ |τ| ≤ T , In view of (2.9) and (2.10), we have

|I3| + |I4| ≪

∫ T

0
|L(σ0 + iτ, χ0)|

2
3 |L(σ0 + iτ, χ)|−

1
3 |Ga (σ0 + iτ, 2/3,−1/3)|

xσ0

τ + 1
dτ

≪

∫ T

0
τ

2
9 (1−σ0)
0 (log τ0)

2
3 (log τ0)

2
9 (log2 τ0)

1
9

xσ0

τ + 1
dτ

≪ x
1
2+εT

1
9 .

(2.12)
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D. Evaluation of Iρ.
For s = σ + iγ with 1/2 + ε ≤ σ ≤ β ≤ 1 − σ0(γ), we have

Fa(s) ≪ |γ|
2
9 (1−σ) log|γ|,

then we deduce that

Iρ ≪
∫ β

1/2+ε
|γ|

2
9 (1−σ) log|γ|

xσ

|γ|
dσ.

Denote by N(σ,T ) the number of L(s, χ0) in the regionℜs ≥ σ and |ℑs| ≤ T . We have

∑
β>1/2+ε,|γ|<T

|Iρ| ≪ log T max
T0≤T

∑
β>1/2+ε,T0/2<|γ|<T0

|Iρ| ≪ log T max
T0≤T

∫ 1−σ0(T0)

1/2+ε
T

2
9 (1−σ)

0 log T0
xσ

T0
N(σ,T0)dσ.

According to Huxley [8],
N(σ,T ) ≪ T

12
5 (1−σ)(log T )9

for 1/2 + ε ≤ σ ≤ 1, and T ≥ 2. Thus,

∑
β>1/2+ε,|γ|<T

|Iρ| ≪ log T max
T0≤T

∫ 1−σ0(T0)

1/2+ε
T

2
9 (1−σ)

0 log T0
xσ

T0
T

12
5 (1−σ)

0 (log T0)9dσ

≪ log T max
T0≤T

(log T0)10
∫ 1−σ0(T0)

1/2+ε
T

2
9 (1−σ)

0
x · xσ−1

T 2(1−σ)
0

T
12
5 (1−σ)

0 dσ

≪ x log T max
T0≤T

(log T0)10
∫ 1−σ0(T0)

1/2+ε

T 28/45
0

x

1−σ

dσ

≪ x log T
(
T 28/45

x

)σ0(T )

.

(2.13)

E. Evaluation of I0.
If L(s, χ) has no Siegel zero, then I0 = 0. If it has Siegel zero β0, then L(s, χ) = (s − β0)V(s),

V(β0) , 0. For |s − β0| ≤ 1/ log x, we can write

V(s)−1/3L(s, χ0)2/3Ga(s; 2/3,−1/3)/s = C(β0) + O(|s − β0|),

where C(β0) is a constant depending on β0, then

|I0| =
C(β0)
2πi

∫
Γ0

(s − β0)−1/3xsds + O
(∣∣∣∣∣∣
∫
Γ0

(s − β0)2/3xsds

∣∣∣∣∣∣
)
≪ xβ0(log x)1/3. (2.14)

Taking T = e
√

log x and inserting (2.11)–(2.14) and (2.7) into (2.4), we have

∑
n≤x

1
ξK(nN(a))

=
hx

3
√
π log x

g(N(a))
Γ(2/3)

+ O

C
(

3
4

)ω(N(a))

log x


 .
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Lemma 2.3. For any n ∈ Z+, we have that∑
n≤x

g(n)aK(n) =
3
√
πx

h(log x)2/3

{
1

Γ(1/3)
+ O

(
1

log x

)}
holds uniformly for x ≥ 2, where g(n) and h are defined in Lemma 2.2.

□

Proof. In order to get the mean value of g(n)aK(n), we first consider its Dirichlet series∑+∞
n=1 g(n)aK(n)n−s. Since g(n), aK(n) is multiplicative, the Dirichlet series has Euler expansion. When
ℜs > 1,

F (s) =
∞∑

n=1

g(n)aK(n)
ns = L(s, χ0)1/3L(s, χ)1/3P(s; 1/3, 1/3),

where

P (s; 1/3, 1/3) =
∏

p

(
1 −
χ0(p)

ps

)1/3 (
1 −
χ(p)

ps

)1/3 ∑
υ≥0

g(pυ)aK(pυ)p−υs

=
∑
υ≥0

2−υs
∞∑
j=0

2− j

j + υ + 1

 ∞∑
j=0

2− j

j + 1


−1

×
∏

p≡1( mod 4)

(
1 −

1
ps

)2/3 ∑
υ≥0

υ + 1
pυs

∑
j≥0

2p− j

( j + υ + 1)( j + υ + 2)

∑
j≥0

2p− j

( j + 1)( j + 2)


−1

×
∏

p≡3( mod 4)

(
1 −

1
p2s

)1/3 ∑
υ≥0

p−2υs
∑
j≥0

p−2 j

υ + j + 1

∑
j≥0

p−2 j

j + 1


−1

converges absolutely and is O(M) forℜs > 1/2. Since∑
υ≥0

(
1 −

1
p

)∑
j≥0

p(−υ− j)

j + υ + 1
= 1,

∑
υ≥0

(
1 −

1
p2

)∑
j≥0

p−2( j+υ)

υ + j + 1
= 1,

(
1 −

1
p

)∑
υ≥0

∑
j≥0

(υ + 1)
2p(− j−υ)

( j + υ + 1)( j + υ + 2)
= 1,

then

P(1; 1/3, 1/3) = 2

 ∞∑
j=0

2− j

j + 1


−1 ∏

p≡1( mod 4)

(
1 −

1
p

)−1/3
∑

j≥0

2p− j

( j + 1)( j + 2)


−1

×
∏

p≡3( mod 4)

(
1 −

1
p2

)−2/3
∑

j≥0

p−2 j

j + 1


−1

= 2/h.

Applying the Selberg-Delange theorem [11, p.281, Theorem 5.2], we have the formula∑
n≤x

g(n)aK(n) =
3
√
πx

h(log x)2/3

{
1

Γ(1/3)
+ O

(
1

log x

)}
.

□
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3. Proof of Theorem 1.1

We only need to consider 0 ≤ t ≤ 1. Now, we have

S (x, t) =
1
x

∑
n≤x

FK,n(t) =
1
x

∑
n≤x

1
ξK(n)

∑
N(a)|n,N(a)≤nt

1

=
1
x

∑
n≤x

1
ξK(n)

∑
N(a)|n,N(a)≤xt

1 −
1
x

∑
n≤x

1
ξK(n)

∑
N(a)|n, nt<N(a)≤xt

1

=: S − R.

When 0 ≤ t ≤ 1/2, we will first calculate S . According to Lemma 2.2,

S =
1
x

∑
n≤x

1
ξK(n)

∑
N(a)|n,N(a)≤xt

1 =
1
x

∑
N(a)≤xt

∑
d≤ x

N(a)

1
ξK(dN(a))

=
1
x

∑
N(a)≤xt


h
(

x
N(a)

)
3
√
π log

(
x

N(a)

)
g(N(a))
Γ(2/3)

+ O

C
(

3
4

)ω(N(a))

log x
N(a)



 .

Since log(x/N(a)) = log x − log N(a) ≥ log x − log xt = (1 − t) log x ≥ 1/2 log x, we have

S =
h
3
√
π

∑
N(a)≤xt

1

N(a) 3
√

log
(

x
N(a)

)
g(N(a))
Γ(2/3)

+ O

C
(

3
4

)ω(N(a))

log x


 .

Next, we calculate R. According to Lemma 2.2,

R =
1
x

∑
n≤x

1
ξK(n)

∑
N(a)|n, nt<N(a)≤xt

1 =
1
x

∑
N(a)≤xt

∑
d≤ x

N(a)
(dN(a))t<N(a)

1
ξK(dN(a))

≪
1
x

∑
N(a)≤xt

∑
d≤ x

N(a)

d<N(a)
1−t

t

1
ξK(d)

=
1
x

∑
N(a)≤xt

∑
d<N(a)

1−t
t

1
ξK(d)

=
1
x

∑
N(a)≤xt

 hN(a)
1−t

t

3
√
π log(N(a)

1−t
t )

 g(1)
Γ(2/3)

+ O
 1

log(N(a)
1−t

t )


 .

When 0 ≤ t ≤ 1/2, (1− t)/t ≥ 1, and since N(a) ≥ 2, u = log
(
N(a)

1−t
t

)
≥ log N(a) ≥ log 2 ≈ 0.693. Let

y = (π−1)u−1. Since (π−1) log
(
N(a)

1−t
t

)
−1 ≥ (π−1) log 2−1 > 0, π log

(
N(a)

1−t
t

)
≥ log

(
N(a)

1−t
t

)
+1,

R has the following estimates,

R ≪
1
x

∑
N(a)≤xt

N(a)
1−t

t√
1 + log(N(a)

1−t
t )
≪

1
x

∑
N(a)≤xt

(xt)
1−t

t

3
√

1 + log(xt× 1−t
t )
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=
1
x
× x1−t

∑
N(a)≤xt

1
3
√

1 + log x1−t
=

1
x
× x1−t 1

3
√

1 + log x1−t

∑
N(a)≤xt

1

≤
1

3
√

1 + log x1−t
≪

1
3
√

log x
.

Therefore,

S (x, t) =
h
3
√
π

∑
N(a)≤xt

1

N(a) 3
√

log x
N(a)

g(N(a))
Γ(2/3)

+ O

C
(

3
4

)ω(N(a))

log x


 + O

 1
3
√

log x


=

h
3
√
πΓ(2/3)

∑
N(a)≤xt

g(N(a))

N(a) 3
√

log x
N(a)

+ O

( 1
log x

)4/3 ∑
N(a)≤xt

1
N(a)

 + O

 1
3
√

log x

 .
Since (

3
4

)ω(N(a))

= O(1),
∑

N(a)≤xt

1
N(a)

=
∑
n≤xt

aK(n)
n
=
π

4
log xt +

π

4
+ O

(
1
√

x

)
,

O

( 1
log x

)4/3 ∑
N(a)≤xt

1
N(a)

 = O
( 1

log x

)4/3

×
tπ
4

log x
 = O

 1
3
√

log x

 ,
we have

S (x, t) =
h

3
√
πΓ(2/3)

∑
n≤xt

g(n)aK(n)
n 3
√

log x
n

+ O

 1
3
√

log x

 .
Let G(x) =

∑
n≤x g(n)aK(n). According to Lemma 2.3 and using the Abelian Summation formula, we

have

h
3
√
πΓ(2/3)

∑
n≤xt

g(n)aK(n)
n 3
√

log x
n

=
h

3
√
πΓ(2/3)

×
1

xt 3
√

log(x/xt)
×G(xt)

+
h

3
√
πΓ(2/3)

∫ xt

1

G(u)

u2 3
√

log x − log u

(
1 −

1
3(log x − log u)

)
du

=
1

Γ(2/3)

∫ xt

1

1
Γ(1/3) + O

(
1

log(u+1)

)
u 3
√

(log u)2(log x − log u)

(
1 −

1
3(log x − log u)

)
du

+ O

 1
3
√

log x


=

1
Γ(2/3)

∫ xt

1

1
Γ(1/3) + O( 1

log(u+1) )

u 3
√

(log u)2(log x − log u)
du + O

 1
3
√

log x


=

1
Γ(2/3)Γ(1/3)

∫ xt

1

1

u 3
√

(log u)2(log x − log u)
du + O

 1
3
√

log x


=

1
Γ(2/3)Γ(1/3)

∫ t

0

1
3
√
υ2(1 − υ)

dυ + O

 1
3
√

log x

 ,
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so we can obtain

S (x, t) =
1

Γ(2/3)Γ(1/3)

∫ t

0

1
3
√
υ2(1 − υ)

dυ + O

 1
3
√

log x


=

√
3

2π
log

3√1 − t + 3√t√
(1 − t)2/3 + t2/3 − ((1 − t)t)1/3

−
3

2π
arctan

2
√

3 3√1 − t

3 3√t
−

√
3

3

 + 3
4
+ O

 1
3
√

log x

 .
(3.1)

Let

∆(t) =

√
3

2π

2 log
3√1 − t + 3√t√

(1 − t)2/3 + t2/3 − ((1 − t)t)1/3
−
√

3 arctan
 2
√

3 3√t

3 3√1 − t
−

√
3

3


−
√

3 arctan
2
√

3 3√1 − t

3 3√t
−

√
3

3

 + 3
2
.

Clearly, ∆(t) is symmetric with respect to t = 1/2, and

S (x, t) + S (x, 1 − t) = ∆(t) + O

 1
3
√

log x

 ,
then when 1/2 ≤ t ≤ 1, S (x, t) is the same as (3.1). This completes the proof.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Conflict of interest

The authors declare no competing interest.

References

1. Z. Cui, J. Wu, The Selberg-Delange method in short intervals with an application, Acta Arith., 163
(2014), 247–260. http://dx.doi.org/10.4064/aa163-3-4

2. H. Delange, Sur les formules dues Atle Selberg, Bull. Sci. Math., 83 (1959), 101–111.

3. H. Delange, Sur les formules de Atle Selberg, Acta Arith., 19 (1971), 105–146.
https://doi.org/10.4064/AA-19-2-105-146

4. B. Feng, J. Wu, The arcsine law on divisors in arithmetic progressions modulo prime powers, Acta
Math. Hungar., 163 (2021), 392–406. https://doi.org/10.1007/s10474-020-01105-7

5. B. Feng, J. Wu, β-law on divisors of integers representable as sum of two squares, in Chinese, Sci.
China Math., 49 (2019), 1563–1572.

6. B. Feng, On the arcsine law on divisors in arithmetic progressions, Indagat. Math., 27 (2016),
749–763. https://doi.org/10.1016/j.indag.2016.01.008

AIMS Mathematics Volume 9, Issue 3, 5863–5876.

http://dx.doi.org/http://dx.doi.org/10.4064/aa163-3-4
http://dx.doi.org/https://doi.org/10.4064/AA-19-2-105-146
http://dx.doi.org/https://doi.org/10.1007/s10474-020-01105-7
http://dx.doi.org/https://doi.org/10.1016/j.indag.2016.01.008


5876

7. Keqin Feng, Algebraic Number Theory, in Chinese, Beijing: Science Press, 2000.

8. M. N. Huxley, The difference between consecutive primes, Invent. Math., 15 (1972), 164–170.
https://doi.org/10.1007/BF01418933

9. S. K. Leung, Dirichlet law for factorization of integers, polynomials and permutations, preprint
paper, 2022.

10. A. Selberg, Note on the paper by L. G. Sathe, J. Indian Math. Soc., 18 (1954), 83–87.
https://doi.org/10.18311/JIMS2F19542F17018

11. G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, 3 Eds, Cambridge:
Cambridge University Press, 1995.

12. J. Wu, Q. Wu, Mean values for a class of arithmetic functions in short intervals, Math. Nachr., 293
(2020), 178–202. https://doi.org/10.1002/mana.201800276

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 3, 5863–5876.

http://dx.doi.org/https://doi.org/10.1007/BF01418933
http://dx.doi.org/https://doi.org/10.18311/JIMS2F19542F17018
http://dx.doi.org/https://doi.org/10.1002/mana.201800276
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Proof of Theorem 1.1

