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Abstract: Let Ox = Z[i]. For each positive integer n, denote £x(n) as the number of integral ideals
whose norm divides n in Ok. In this paper, we studied the distribution of ideals whose norm divides n in
Ok by using the Selberg-Delange method. This is a natural variant of a result studied by Deshouillers,
Dress, and Tenenbaum (often called the DDT Theorem), and we found that the distribution function
was subject to beta distribution with density V3 JQra~ut(l — u)).
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1. Introduction

For each positive integer n, denote by 7(n) the number of divisors of n and let Q, = {d;, d>, - - - , dy(n)}
be the set of divisors of n. Let S, be the set of all subsets of Q, and let i, be the uniform probability
measure on Q,:

pin(d) = deQ,.

()’

It is easily verified that (Q2,,, S, u,,) is a probability space. Consider the random variable D,,:

D,:Q,—>R
logd

de .
logn

The distribution function F, of D, is given by

F,,(t):P(D,,SI):% Z 1 0<t<).
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It is clear that the sequence {F,} >, does not converge pointwise on [0, 1] since

1/3, 0<t<1/2;
1/2, 0<t<l;

F,(0) = R Fpo(t)=42/3, 1/2<t<1;
o 1, t=1.

However, Deshouillers, Dress, and Tenenbaum [3] proved that its Cesaro means is uniformly
convergent on [0, 1]. No less remarkable, this limit is the distribution function of a probability law
well known to specialists: the arcsine law, with density 1/ (77 Vu(l - u)). More precisely,

1 2
- Y F,(H="= in Vit + O
xZ () ﬂarcs1n\/_+ [

n<x

1
1.1
vlog x] (b

holds uniformly for x > 2 and 0 < ¢ < 1, and the error term in (1.1) is optimal.

Subsequently, Cui and Wu [1], Feng [6], and Feng and Wu [4] studied the related issues of the
Deshouillers-Dress-Tenenbaum (DDT) theorem. Recently, Leung [9] proved that factorization of
integers into k parts follows the Dirichlet distribution Dir(%, s %) by multidimensional contour
integration, thereby generalizing the DDT arcsine law on divisors where k = 2. Their results were
obtained in Z.

In this paper, we consider a similar problem in the Gaussian ring, unless otherwise stated, and
throughout this paper K, O, s, and o(r) will be the Gaussian field, the Gaussian ring(of the form
a + bi, where a,b € Z and i* = —1), o + i, and cy/ log(g(|r| + 1)). For each positive integer n, let
=, = {a € Ok : N(a) divides n}. Denoting by £x(n) the number of ideals in Z,, then

Elmy= ) 1= a(d), (1.2)

N(a)n dln

where ak(n) is the number of integral ideals with norm n in Og. Since ag(n) is multiplicative, so is

Ex(n).
Let S, be the set of all subsets of &, and let w,, be the uniform probability:

—

Ha(a) = aexm,.

1
ék(n)’
It is easily verified that (5,, S, i) is a probability space. Consider the random variable D,;:

D,:8, 2R

log N(a)
(g .
logn

The distribution function of D, is given by

1 1
FK,n(t) = P{:D”(a) < t} - Z zé:K(n) - é:K(n) N(a)|n, N(a)<n' :

log N(a)
N(@)ln, “EN0

It is clear that the sequence {F,} ., does not converge pointwise on [0, +0), since
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(1) If p = 1(mod4), then E,, = {ag, aj, a» € Z[i] : N(ap) = 1, N(a;) = N(ay) = p}, and so we have

1/3, 0<r<1;
1, t>1.

FK,p(t) = {

(2) If p = 3(mod4), then £, = {ay € Z[i] : N(ap) = 1}, and so we have F ,(t) = 1.
3) If p=2,2, ={ap,(1 +i) : N(ap) = 1, N(1 + i) = 2}, then

1/2, p=2and 0<t<1;

Fy, (t) =
k(1) {l,p:2andt21.

However, we shall see that

1
Gr(1) = ) FralD)

n<N

is uniformly convergent on [0, 1], and we get the following result.

Theorem 1.1. Uniformly for x > 2 and 0 <t <1,

)lc D Fra(t) = B(1/3,2/3)"! f w3 (1 —u) Sdu + 0[
0

1
n<x V3 log X
holds, where
1
B(a,b) ::f (1 - dw, a,b>0 (1.3)
0
is beta function. So, as x — +o0o, x 'Y, _ Fx,(t) is subject to beta distribution with density

V3/ (27T\3/u2(1 — u)), since B(1/3,2/3) = T(1/3)['(2/3)/T(1) = 27/ V3.

This distribution is not arcsince law. Feng and Wu [5] also gave a special case that satisfies the beta
distribution.

2. Preliminaries

In order to study x! Yon<x Fxa(t), we need to consider .. 1/éx(nN(a)). Let’s start with the
properties of £x(n). Dedekind defined the Dedekind zeta function of K as follows:

(9]

I
k(s)=y N = > a’;(sn), @.1)

a n=1

where a runs over all nonzero integral ideals in Og. According to [7, Theorem 2.8], we have
Lk (s) = {(s)L(s, x), where y is the primitive character modulo 4. Easily, we get ag(n) = ., x(d), so

formula (1.2) can be converted to
xm = > > x(q).

din qld
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When n = p™, p is prime. We have

w, p = 1(mod4);

exp™ = 3 ax(d) = ax() + ax(p) 4+ +agpry = | d P2
= a =a a [ a —
p ap . K wp KP mTJrz, p = 3(mod4) and m is even;

wtl | p =3(mod4) and m is odd.

Second, we will get the mean value of 1/£x(nN(a)) based on the Selberg-Delange method. The
method was developed by Selberg [10] and Delange [2,3]. For more details, the reader is referred to
the book of Tenenbaum [11].

It’s necessary to use Hankel contour when applying the method. For each value of the positive
parameter r, we designate the Hankel contour as the path consisting of the circle |s| = r excluding the
point s = —r and of the half-line (—co, —r] covered twice, with respective arguments +m and —z. The
brief introduction of Hankel’s formula follows.

Lemma 2.1 (Hankel’s formula). For each X > 1, let H(X) denote the part of the Hankel contour
situated in the half-plane o > —X, then we have, uniformly for z € C,

1 1 |
— s7etds = —— + O (4790(1 + |z)e2%).
27l H(X) F(Z) ( )

Proof. For a detailed description of this lemma, see [11, p.179, Theorem 0.17, Corollary 0.18]. O

The proof of Theorem 1.1 depends on the following two lemmas.

Lemma 2.2. For any integral ideal a € Ok,

3\ @(N@)
1 sv@ ()
EGN@)  Jrlogx | T2/3) log x

2
1\ 1)\
p=3(mod 4) p p

-1

holds uniformly for x > 2, where

1
1\ 1
h=2log2 || (1——) Zp[(p—l)log(l—— +1
p p

p=1(mod 4)

.
ﬂmlTZf@W)M&W)

pYln j=0

Proof. In order to get the mean value of 1/&gx(nN(a)), we first consider its Dirichlet series
Y Ex(nN(a))"'n75. Let v,(n) denote the p-adic valuation of n. By using the formula

EcnN@) = | [ &x(prrmmren,
p

we write for Rs > 1:
p”
7:0(5) Z é: (l’LN((l))l’l‘ l:[ Z é‘: (pj+vp(N(ﬂ)))
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- H Z l_[ Z Ex (pj+vp<N<a)))

j
PIN(a) =0 €x(p) pIN(0) j=0
-1

s N

2 1
= L(s.x0)3 L(s, ) Ga (s; > —g) :

where y is the principal character mod 4, y is the primitive character mod 4, and

2 1 l -1 +00 2p—js 1 %
HERE
P 2 PEIHM)JZ:(; G+DG+2) p

S DL ST Iy ye s
=3 mod 4) =0 J+1 iNG) =0 Ex(p7*Y) = Ex(pl)

converges absolutely for Rs > 1/2.

LetGu(s:2,-3) =G (:2.-1) G2 (s 2.-1) Gs (5:2.-3) G (5:3.-3) Gs (5: 3. -1 ), where

2 1 1 2
g(r%)zzm L] [”;@“XU”M’”

p=1(mod 4)

2 1
o2 11 ()] s

3 3 p531;!:)d 4) Z (-] + 1)p2J

. -1
2 1 2p~Js —Jjs
g3(s;§’_§): il me;(]u)
pYlIN(a),p=1( mod 4) j=0

-1

2 1
§4(S§—,——): rl Z—z
Jjs
33 p?¥|IN(a),p=3( mod 4) L (v+j+1Dp
2 1 [ 2—jS 2—jS
QS(S,§’_§)_ ;j+t+ 1} ;J‘.”

where 7(N(a)) = (¢ + 1) [T pyviap=1( moa /(W + 1) T2 @), p=3( moa 4/(2v + 1).
When Rs =0 > 1/2 + &,

2 1 2 1 2 1 2 1 2 1
G (S3 5, —g) =G (S; g, —g)gz (S§ g, —§)Q3 (S; 5, —§)§4 (S; g, —g

1 1
STl [ W+ Dw+2) [ v+

pYIIN(a),p=1( mod 4) P IIN(a),p=3( mod 4)

3 w(N(0))
< - .
<c(3]

Z G+ l)pz”

-1

b

2 1
i (+5:-3)
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To deal with the estimation of ¥,(s) near 1, we introduce the function Z(s; z;). The function

Z(s;21) = {(s = DL(s, xo)}" /s 2.2)

is holomorphic in the |s — 1| < 1, and admits the Taylor series expansion

(9]

Zs;z) = ) 2y

|
P
where vy;(z;) is an entire function, for all £ > 0,

7’]‘(21)

<. (1+gy (j=0.

Now, let z; = 2/3. The function Z(s; 2/3)G.(s; 2/3, —1/3)L(s, x)~'/? is holomorphic in the disc |s— 1| <
(1- [3)/ 2, where ,[3 = By when L(s, y) has a real zero By, [A3 = 1—-o0y(r) when L(s, y) has no real zero 5y,
and

Z(5:2/3)Gu(5;2/3,-1/3)L(s. )" <. M

for |s — 1| < (1 = 8)/2. Thus, for |s — 1] < (1 — 8)/2, we can write

Z(5;2/3)Ga(5:2/3, =1/3)L(s, )" = Z i2/3)(s = 1)),
=0

where 1
1 (10 (Ga(s:2/3,1/3)L(s.0)™')
8i1(2/3) := 7 Z (]) ‘5:1

Osl=i

vi(2/3). (2.3)

=
We can apply Perron’s formula with the choice of parameters o, = 1, A(n) = n®, @ = 0 to write
1 1 b+iT

2, Ex(N(Q) 27 Jyir

n<x

s l+¢
Fo(s)—ds + o(x )
) T

where b = 1+ 2/logx and 100 < T < x, such that L(o + iT,y) # 0 for0 < o < 1.

Let L7 be the boundary of the modified rectangle with vertices 1/2 + € +iT and b + iT, where
e &> (is a small constant chosen such that L(1/2 + € + iy, x) # O for |y| < T. Let [, be the horizontal
line segment with the imaginary part 7 and the real part 1/2 + & to b, and let [, be the horizontal line
segment with the imaginary part —7 and the real part b to 1/2 + €. Let [; be the vertical line segment
with the real part 1/2 + ¢ and the imaginary part 0* to 7', and let /; be the vertical line segment with
the real part 1/2 + £ and the imaginary part —=7 to 0.
e The zeros of L(s,y) of the form p = g+ iy with f > 1/2 + € and |y| < T are avoided by I',, that
horizontal cut drawn from the critical line inside this rectangle to p = 8 + iy.
e [(s,x) has a possible Siegel zero. The possible Siegel zero By of L(s, y) is avoided by contour I',
(its upper part is made up of an arc surrounding the point s = S, with radius » = 1/log x and a line
segment joining By — r to 1/2 + ¢).
e The pole of L(s, xo) at the points s = 1 is avoided by the truncated Hankel contour I" (its upper part is
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made up of an arc surrounding the point s = 1 with radius » = 1/log x and a line segment joining 1 — r
to 3), where

B: ﬁ0+¢c’ L(ﬂ(),)()zo
1+& LBox) #0.

Clearly the function F,(s) is analytic inside L7. By the Cauchy residue theorem, we can write

1 x1+s
—— =]+ lhy+ [+ L+ L+ 1+ Ip+0( ) 2.4)
; &x(nN(a)) ﬂ>1/;m<r T
where ! E | s
[ = — fﬂ(s)x—ds, 1, = —f Fols)—ds,
2ni Jr s 2ni Jr, s
and

I = f T(s) s, Iy = Fuls)=ds.
2ri Ty s

A. Evaluation of /.
LetO<c< (1 —,[?)/ 10 be a small constant. Since Z(s;2/3)G.(s;2/3, —1/3)L(s,)()‘% is holomorphic
and O(M) in the disc |s — 1| < ¢, the Cauchy formula implies that

21(2/3) < Mc™ (1> 0),
where g;(2/3) is defined as in (2.3). From this and (2.3), it is easy to deduce that for |s — 1| < ¢/2,
Z(5:2/3)Ga(5:2/3,-1/3)L(s, x)""7 = Z(1;2/3)Ga(152/3,-1/3)L(1, x) "' + O(ls — 1))

h
—=8 (N() + O(|s — 1)),

IRG
where »
& [ &
WW%ALMMWHMMM
So, we have

Iziifﬂwﬁw
2ri Jr s

:ii[ﬂa%S%OQBrUSM&w”%&4Y@WS
2ni Jr

f(s - 1)%x5ds).
T
1

2 X 1 1
(s=1)" Sx'ds = f wi3edw = + 0( ) . (2.5)
2ni f \3/logx27Tl H((1-p) log %) Vlog x F(g) X7

3

h 1 2
:%g(N(a))z—m,‘fr(s—l) xds+0(

Let s — 1 = w/log x. According to Lemma 2.1, we have
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On the other hand,

T
f(s - 1)%xsds < f |(s — 1)%x5||ds| +f ) (1- a)%x(’dcr
r ls—1|= L B

log x

1 1
« L, x f fetdi (2.6)
Jiogx logx  Jflogx 108X Jiogxi-p)

X 1

Vlog x logx’

According to (2.5) and (2.6), we have

hx g (N(a)) 1
I = 0 . 2.7
Jrlog x { I'(2/3) ’ (logx)} @7

<

B. Evaluation of I; and I,.
It is well known that

1C(o + it)] < (7] + DTPlog(lrl + 1) (1/2 <o <1 +1log '[7],|7] = 3). (2.8)

From (2.8) and [12, Lemma 2.1], we deduce that

1
L(s, xo) = {(s) (1 - 5) < (It + D7  log(Ir] + 1) (2.9)
forl/2<oc <1+ log_1|T| and |7| > 3, and
1 -1 1 -1
L™ =150 [ ] (1 + —s) [ (1 - —s)
p=1(mod 4) p p=3( mod 4) p (2.10)
< (loglt])**(log,|t))'?

for o > 1/2. In view of (2.9) and (2.10), we have

1+2/log x ) . v
L]+ 5] < f L £ T YOI T )01 1Ga (5.2/3, ~1/3)l <dor
1/2+e

1+2/log x 5 ) ) e
< f 730 10g T)} (log )} log, T)} —dor @.11)
1/2+e

X 1+2/logx ('3 1-o X
< = long (—) do < =logT.
T 1/2+¢ X T

C. Evaluation of I3 and I,.
Letog=1/2+¢,79g=|1|+3,fors =0y +itwith0 < || < T, In view of (2.9) and (2.10), we have

T .
: 3 . _1 . X
5] + 1] < f (00 + i ) Lo + in )l 1Ga (00 + i7,2/3,~1/3)] ——dr
0
’ z —O g0
<<f Tg(l 0)(10g7'0)%(10g‘l'0)%(10g2 To)% X+ ldT (212)
0 T

< X2HETS,
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D. Evaluation of 1,.
Fors=0c+iywithl1/2+e<0 <B<1-0¢(y), we have

Fal(s) < IyIF17 loghyl,
then we deduce that

Iyl
Denote by N(o, T') the number of L(s, o) in the region Rs > o and |Js| < T. We have

g 3(1-0) x7
I, < lyl° logly|—do.
1/2+&

l—O’o(T()) 2(]—0’) x(f
Z |I,| < log T max Z |1,| < log T max f T, log T()T—N(O', Ty)do.
B>1/2+8lyI<T T0ST ot javerTo 2<lyI<To To<T J1/2+e 0

According to Huxley [8],
N, T) < T3 (log T)

for1/2+e<o <1,and T > 2. Thus,

1-00(To) 21— X 2o
|1,| < log T max f T, log TOFTOS (log Ty do
B>1/2+8,y<T To<T Jyj2+6 0

I-oo(To) Lyl
10 §(l_o—)x 'x ?(1_0—)
<logT ITr;ESl])g(IOg To) f T, T20-0) 0

1/2+¢ 0

do
(2.13)

1-oo(To) (2814577
10 0
< xlog T max(log T)) do
To<T 1/2+¢ X

T28/45\70(D)
x )

< xlogT(

E. Evaluation of /.
If L(s, x) has no Siegel zero, then I, = 0. If it has Siegel zero S, then L(s,x) = (s — Bo)V(s),
V(By) # 0. For |s — By| < 1/log x, we can write

V(s)™PL(s, x0)* G55 2/3,=1/3)/5 = C(Bo) + O(s = Bol);

where C(f)) is a constant depending on 3, then
C
(ﬁ‘?) f (s — Bo) \Px’ds + 0( f (s — Bo)x'ds
27l Ty Ty
Taking T = e V°¢* and inserting (2.11)—(2.14) and (2.7) into (2.4), we have
w(N(a))
y_ L favay €0
ZignN@)  Jrtogx | T2/3) logx |

AIMS Mathematics Volume 9, Issue 3, 5863-5876.
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Lemma 2.3. For any n € Z*, we have that

V(1 ;
Zg(n)aK(’l) = h(log x)?/3 {r(1/3) * 0(log x)}

n<x

holds uniformly for x > 2, where g(n) and h are defined in Lemma 2.2.
O

Proof. In order to get the mean value of g(n)ax(n), we first consider its Dirichlet series
Yo g(myag(n)n~s. Since g(n), ag(n) is multiplicative, the Dirichlet series has Euler expansion. When

Rs > 1,
F(s) = Z g(n)ax(n) = L(s. o) PL(s. ) PP(s: 1/3.1/3),

n=1

where

1/3
P(s;1/3,1/3>:]—[(1—)“;(f’)) (1 X(”)) S (" a(p ™

14 v>0

us o 27
_22 Z]+U+I[Zj+1

v>0

v+ 1 2p~/ 2p~/
< 1 ( ) 2 Z(J+U+1)(J'+U+2)[;(j+1)(j+2)

p=1(mod 4) v>0

(k) Srey 2

X 1= _) p—2us N
2s ;

p=3(mod 4) p =0 vt J +1

v>0

-1
2j

o
;j+1

converges absolutely and is O(M) for Rs > 1/2. Since
~2(j+v)

1 (=v=)) 1
Z(l——) —.p =1, Z(l__Z) L - =1,
p j20]+v+1 p j20U+]+1

v>0 v>0

Y e
LTI Ly N

v=>0 j>0

then
-1

P(1:1/3,1/3) = 2[2 27
J

-1 -1/3 .
1 2pJ
| ] (1——) y —L
p=1( mod 4) P = G+ DG +2)

= j+1
N o p¥|
x (1 - —2) i - 2/h.
pES(l:I(:)d 4) p ]ZZ(; J +1

Applying the Selberg-Delange theorem [11, p.281, Theorem 5.2], we have the formula

Vax [ 1 !
Z g(mag(n) = h(log x)2/3 {r(1 3 0(log X)}

n<x

O

AIMS Mathematics Volume 9, Issue 3, 5863-5876.
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3. Proof of Theorem 1.1

We only need to consider 0 < ¢t < 1. Now, we have

S(x,1) = ! Fyu(t) = ! 1
x x

n<x n<x x(n) N, N(a)<n!

1 1 1 1
E;mm 2, 1_};&(:@ 2, !

N(a)|n, N(a)<x! N(a)|n, n'<N(a)<x!

=S —-R

When 0 < ¢ < 1/2, we will first calculate S. According to Lemma 2.2,

1 1 1 1
S = 25w MZ =y Z) Ex(AN(@)

n<x n, N(a)<x' N(a)<x! dsﬁ
N 3\ (V@)
1 W) [svay [C () ]
¥ Nz | 2 mlog (ﬁ) re/3) log 7ig

Since log(x/N(a)) = log x —log N(a) > logx —log x’ = (1 —f)log x > 1/21og x, we have

w(N(0)
sy ! {g(N(a» ) O[C(%) ]}
Y x I'2/3 1 :
V7 2 N fog (z5) | T3 0g X
Next, we calculate R. According to Lemma 2.2,

1 1 1 1
k=12, 2. TR A @

< é‘:K(n) N(a)|n,n'<N(a)<x! N(a)<x! dsﬁ
(dN(a))'<N(a)

1 1 1 1
IRy LY Zl, £x(d)

N@sx'  dszts N@=X @'
d<N(0)' ™
1 hN(a)'™ 1 1
1 (@) { g(1) +0(_“H
r'2/3) log(N(a) ™)

N | Jrlog(N(@)'T)

When 0 <t <1/2,(1 -1)/t > 1, and since N(a) > 2, u = log (N(a)?) > log N(a) > log2 ~ 0.693. Let
y = (x=1u~-1. Since (r—1)log (N(a) ¥) -1 2 (x=1)log 2~ 1 > 0, rlog (N(a) ') > log (N(a) *) +1,
R has the following estimates,

1 7 1 n
R« - Z N@ < — Z )
X 1-t X 3 1=t
N(=x' \/1 + log(N(a) ™) N@=x' /1 + log(x™7)
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| 1 | 1
= —Xx —_— = - XX = 1
X Néxt J1+logx!-t X V1 + log x'~ Ng;‘xt
1

< ! < .
V1 +logx!=  yflogx

Therefore,
w(N(a))
S(x,1) = 1 sNV@) c(3) [ 1 )
\/_ N=x N(a) 2 log I'(2/3) log x \/@
h N 1 4/3 |
Val(2/3) N=x N(a) }/log Iﬁ log x Nz <x, /10g X
Since o
3\ 1 ax(n) = 1
b =0(1), = - ol—).
(4) (1) N;xtN@ Z W Tloga 4 74 (\/})
LV e ] (- B !
0( ) —_— :0(—) X—lng):O ,
( log x N%;‘x, N(a) log x 4 oz x
we have

1
SOe D) = 3 gmax(m) ]
\/_F(2/3) “ niflogt Wlog X
Let G(x) = X<, 8(m)ak(n). According to Lemma 2.3 and using the Abelian Summation formula, we
have

Zg(n)aK(n) h L 6w
Vr r<2/3> Ly log:  VATQB) . xlogaln)

h v G(u) 1

+ 1-
Vrl'(2/3) u?yflog x — logu ( 3(logx -

d
Tk

f mm (log(u+1)) ( _ 1 ) I
Iﬂ(2/3) u~/(log u)?(log x — log u) 3(log x — log u)

_ f ram T (log(u+1)) - 0( 1 )
I'2/3) Ji u~/(logu)*(log x — log u) Jlog x

1
= du+ O
F@/3A/3) Ji urf(log u)*(log x — log u) “r {

1
Jlog x]

1 1 1
= dv+ 0 :
F(2/3)F(1/3)fo Vot = v) v [{/log x]
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SO we can obtain

S(x,1) =

1 ! 1 1
dv+ 0| ——
F(2/3)F(1/3)fo V21 = v) vt (Wlogx)
\/§1 VI-t+ Vi

BN (e e

(3.1)

3arctan(2\/§3l_t \5)+3+0 !
2m 3V 3) 4 "\ logx)

Let
A(t) = — 210g Vi 4 \/; — V3arctan (ﬂ — ﬁ)
2n VA =023+ 28 (1 -nn)'/3 3Vi—1 3

— V3arctan| ——— .
arcan( 3 7

34t

Clearly, A(?) is symmetric with respect to ¢ = 1/2, and

2\/§\/31—t_£)}+3

S(x,t)+S(x,1—t):A(t)+0[\3/l(1)?c],

then when 1/2 <t <1, S(x,1) is the same as (3.1). This completes the proof.
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