Loading [MathJax]/extensions/TeX/boldsymbol.js
Research article

A quintic B-spline technique for a system of Lane-Emden equations arising in theoretical physical applications

  • Received: 19 November 2023 Revised: 28 December 2023 Accepted: 29 December 2023 Published: 19 January 2024
  • MSC : 34K34, 34K32

  • In the present study, we introduce a collocation approach utilizing quintic B-spline functions as bases for solving systems of Lane Emden equations which have various applications in theoretical physics and astrophysics. The method derives a solution for the provided system by converting it into a set of algebraic equations with unknown coefficients, which can be easily solved to determine these coefficients. Examining the convergence theory of the proposed method reveals that it yields a fourth-order convergent approximation. It is confirmed that the outcomes are consistent with the theoretical investigation. Tables and graphs illustrate the proficiency and consistency of the proposed method. Findings validate that the newly employed method is more accurate and effective than other approaches found in the literature. All calculations have been performed using Mathematica software.

    Citation: Osama Ala'yed, Ahmad Qazza, Rania Saadeh, Osama Alkhazaleh. A quintic B-spline technique for a system of Lane-Emden equations arising in theoretical physical applications[J]. AIMS Mathematics, 2024, 9(2): 4665-4683. doi: 10.3934/math.2024225

    Related Papers:

    [1] Osama Ala'yed, Rania Saadeh, Ahmad Qazza . Numerical solution for the system of Lane-Emden type equations using cubic B-spline method arising in engineering. AIMS Mathematics, 2023, 8(6): 14747-14766. doi: 10.3934/math.2023754
    [2] Emre Kırlı . A novel B-spline collocation method for Hyperbolic Telegraph equation. AIMS Mathematics, 2023, 8(5): 11015-11036. doi: 10.3934/math.2023558
    [3] Shafeeq Rahman Thottoli, Mohammad Tamsir, Mutum Zico Meetei, Ahmed H. Msmali . Numerical investigation of nonlinear extended Fisher-Kolmogorov equation via quintic trigonometric B-spline collocation technique. AIMS Mathematics, 2024, 9(7): 17339-17358. doi: 10.3934/math.2024843
    [4] M. S. Hashmi, Rabia Shikrani, Farwa Nawaz, Ghulam Mustafa, Kottakkaran Sooppy Nisar, Velusamy Vijayakumar . An effective approach based on Hybrid B-spline to solve Riesz space fractional partial differential equations. AIMS Mathematics, 2022, 7(6): 10344-10363. doi: 10.3934/math.2022576
    [5] Yan Wu, Chun-Gang Zhu . Generating bicubic B-spline surfaces by a sixth order PDE. AIMS Mathematics, 2021, 6(2): 1677-1694. doi: 10.3934/math.2021099
    [6] Shanshan Wang . Split-step quintic B-spline collocation methods for nonlinear Schrödinger equations. AIMS Mathematics, 2023, 8(8): 19794-19815. doi: 10.3934/math.20231009
    [7] Osama Ala'yed, Belal Batiha, Diala Alghazo, Firas Ghanim . Cubic B-Spline method for the solution of the quadratic Riccati differential equation. AIMS Mathematics, 2023, 8(4): 9576-9584. doi: 10.3934/math.2023483
    [8] Abdul Majeed, Muhammad Abbas, Amna Abdul Sittar, Md Yushalify Misro, Mohsin Kamran . Airplane designing using Quadratic Trigonometric B-spline with shape parameters. AIMS Mathematics, 2021, 6(7): 7669-7683. doi: 10.3934/math.2021445
    [9] Mei Li, Wanqiang Shen . Integral method from even to odd order for trigonometric B-spline basis. AIMS Mathematics, 2024, 9(12): 36470-36492. doi: 10.3934/math.20241729
    [10] Ram Kishun Lodhi, Saud Fahad Aldosary, Kottakkaran Sooppy Nisar, Ateq Alsaadi . Numerical solution of non-linear Bratu-type boundary value problems via quintic B-spline collocation method. AIMS Mathematics, 2022, 7(4): 7257-7273. doi: 10.3934/math.2022405
  • In the present study, we introduce a collocation approach utilizing quintic B-spline functions as bases for solving systems of Lane Emden equations which have various applications in theoretical physics and astrophysics. The method derives a solution for the provided system by converting it into a set of algebraic equations with unknown coefficients, which can be easily solved to determine these coefficients. Examining the convergence theory of the proposed method reveals that it yields a fourth-order convergent approximation. It is confirmed that the outcomes are consistent with the theoretical investigation. Tables and graphs illustrate the proficiency and consistency of the proposed method. Findings validate that the newly employed method is more accurate and effective than other approaches found in the literature. All calculations have been performed using Mathematica software.



    The Lane-Emden equation represents a dimensionless form of Poisson's equation that arises in astrophysics for the spherically symmetric, polytrophic fluids, and the gravitational potential of Newtonian self-gravitating [1,2,3]. Modeling diverse phenomena in astrophysics, physical, and mathematical physics, such as the stellar structure theory, isothermal gas spheres, the thermal dynamic of a spherical gas cloud, the thermionic current theory, chemical reactions, population evolution, and pattern formation, results in scalar and systems of Lane-Emden equations, see [4,5] and the references therein. While there has been little research on Lane-Emden equation systems, recent attention to studying this type of systems has increased considerably [5].

    In this study, we consider the following Lane-Emden system of the form

    d2ωi(τ)dτ2+δiτdωi(τ)dτ+i(τ,ω1(τ),ω2(τ))=i(τ),i=1,2, (1)

    subject to

    ωi(0)=εi,ω'i(0)=0, (2)

    where δ1,δ2,ε1,andε2 are real constants, and i and i(τ),i=1,2 are given continuous functions.

    Numerous approaches have been established for solving scalar and systems of Lane-Emden equations, including the Haar wavelet collocation method [6], Laplace transform and residual error function [7], Bernoulli wavelets functional matrix technique [5], B-spline methods [8,9,10], Adomian decomposition method [9], Chebyshev operational matrix method [4], variational iteration method [11,12], discontinuous finite element method [13], Bernstein collocation method [14], Bessel-collocation procedure [15], and Legendre Polynomials [16,17,18].

    The literature survey reveals that collocation methods are an important tool in obtaining approximate solutions for different types of differential equations, including different classes of initial and boundary value problems, Singular differential equations, partial and fractional partial differential equations, system of partial differential equations, fractional Volterra integro-differential equations, and Abel's integral equations, [19,20,21,22,23,24,25,26,27,28,29,30,31,32], among others. One well-known established method among collocation methods is the so-called B-spline method, where the letter "B" represents "basis". This method was originally introduced by Schoenberg in 1946. The primary motivation for introducing the B-splines is the creation of a stable interpolating function across finite number of points, which maintain the smoothness and the shape of the data [33,34]. Recently, B-spline methods have been demonstrated to be useful in approximation theory, image processing, and numerical computation due to their valuable properties such as numerical computation stability, local effects of coefficient changes, and built-in smoothness between adjacent polynomial pieces.

    The spline methods, as is known, provide inaccurate solutions with the presence of singularity. To defeat the drawback of these methods, we, in this work, develop an effective method based on quintic B-spline functions, known as the quintic B-spline method (QBSM), to approximate the solution of (1). To construct the QBSM, the approximate solution is forced to fulfill the considered system at the grid points, converting it into a set of algebraic equations with unknown coefficients. Solving the set of algebraic equations determines the values of these coefficients. Note that the considered problem has a singularity at τ=0. When addressing the singularity of (1) numerically, it is important to efficiently deal with the singularity via certain means. In our case, we employ the L'Hôpital rule to its second term. To the best of our knowledge, the results presented in this work are new and have not been previously presented in the literature. The method is illustrated with several test problems. It is demonstrated that the accuracy of the method is of fourth-order convergence, superior to the convergence of the cubic B-spline method, which is proven to be of second-order convergence, derived in our prior work [8]. Outcomes are compared with some other numerical solutions to demonstrate the advantage of the method.

    The structure of this paper is as follows: Section 2 provides the preliminaries of the quintic B-spine functions and their properties. Section 3 is dedicated to the construction of QBSM for obtaining the solution of the considered system. Section 4 discusses the convergence of the method. Section 5 provides the numerical illustration, and, finally, Section 6 summarizes and concludes our work.

    In this section, we define quintic B-spline functions and their main properties to be utilized in constructing QBSM. We construct this method upon a uniform mesh. To do this, we partition the solution domain Γ=[α,β] into k subintervals Γi=[τi,τi+1] by the grid points τi=α+iΛ (i=0,1,...,k), where Λ=(βα)/k. Let Ω be the set of these grid points of the solution domain Γ, referred to as the partition of Γ, and is defined as Ω={τ0,τ1,,τk}. To provide proper support for the quintic B-spline functions, it is essential to introduce an additional five grid points on each side of the solution domain Γ. Consequently, the solution domain Γ is extended to Γ=[α5Λ,β+5Λ] with τi=α+iΛ (i=5,...,k+5). The linear space of quintic splines over this defined partition is expressed as

    M5(Γ)={μ(τ)C4(Γ):μ(τ)|ΓiP5,i=0,...,k1},

    where μ(τ)|Γi indicates the restriction of μ(τ) over Γi and P5 designates the set of one-variable quintic polynomials. The dimension of the linear space M5(Γ) is (k+5). According to [30], the quintic B-spline Kr(τ)(r=2,...,k+2) is defined as

    Kr(τ)=1120Λ5{(ττr3)5,(ττr3)56(ττr2)5,(ττr3)56(ττr2)5+15(ττr1)5,(τ+τr+3)56(τ+τr2)5+15(τ+τr+1)5,(τ+τr+3)56(τ+τr+2)5,(ττr3)5,0,τ[τr3,τr2]τ[τr2,τr1]τ[τr1,τr]τ[τr,τr+1]τ[τr+1,τr+2]τ[τr+2,τr+3]else.

    The basis functions Kr, r=2,...,k+2, are nonnegative and linearly independent on the domain [α,β]. The values of Kr(τ) and their derivatives up to the third order at the grid points are recorded in Table 1.

    Table 1.  The values of K(ν)r(τ)(ν=0,1,2,3) at the grid points.
    τr2 τr1 τr τr+1 τr+2 else
    Kr(τ) 1120 26120 66120 26120 1120 0
    K'r(τ) 124Λ 1024Λ 0 1024Λ 124Λ 0
    K''r(τ) 16Λ2 26Λ2 66Λ2 26Λ2 16Λ2 0
    K'''r(τ) 12Λ3 22Λ3 0 22Λ3 12Λ3 0

     | Show Table
    DownLoad: CSV

    For an appropriately smooth function ω(τ), one can uniquely define a quintic spline

    μ(τ)=k+2r=2λrKr(τ)M5(I)

    that fulfill the interpolation conditions μ(τi)=ω(τi),i=0,...,k, and μ'(α)=ω'(α). From Table 1, for the discretization knots τj(j=0,...,k), we get

    μ(τj)=k+2r=2λrKr(τj)=λj2+26λj1+66λj+26λj+1+λj+2120, (3)
    μ'(τj)=k+2r=2λrK'r(τj)=λj210λj1+10λj+1+λj+224Λ, (4)
    μ''(τj)=k+2r=2λrK''r(τj)=λj2+2λj16λj+2λj+1+λj+26Λ2, (5)
    μ'''(τj)=k+2r=2λrK'''r(τj)=λj2+2λj12λj+1+λj+22Λ3. (6)

    Equations (3)–(6) serve as the fundamental relations in the construction of the QBSM.

    This part of the study discusses the method and the convergence analysis.

    In this section, we present the development of a collocation method based on quintic B-spline functions for (1) and (2). Let μi(τ)=k+2r=2λi,rKr(τ),i=1,2, represents the quintic B-spline approximate solution of the exact solution ωi(τ) to (1). To overcome the singularity behavior of (1), we employ the L'Hôpital rule on the second term at τ=0, to obtain

    (1+δi)d2ωi(τ)dτ2+i(τ,ω1(τ),ω2(τ))=i(τ),forτ=0,
    d2ωi(τ)dτ2+δiτdωi(τ)dτ+i(τ,ω1(τ),ω2(τ))=i(τ),forτ0,i=1,2. (7)

    Discretizing (7), we get

    (1+δi)d2ωi(τ0)dτ2+i(τ0,ω1(τ0),ω2(τ0))=i(τ0),
    d2ωi(τj)dτ2+δiτjdωi(τj)dτ+i(τj,ω1(τj),ω2(τj))=i(τj), (8)

    where j=1,,k. Using (3)–(5), we have

    (1+δi)(λi,2+2λi,16λi,0+2λi,1+λi,26Λ2)+i(τ0,ε1,ϑ1)=i(τ0),(λi,j2+2λi,j16λi,j+2λi,j+1+λi,j+26Λ2)+δiτj(λi,j210λi,j1+10λi,j+1+λi,j+224Λ)+ϱi(λ1,j2,λ1,j1,λ1,j,λ1,j+1,λ1,j+2,λ2,j2,λ2,j1,λ2,j,λ2,j+1,λ2,j+2)=i(τj), (9)

    where i=1,2 and j=1,,k. Additionally, from (2), we derive the following four equations

    ωi(0)=εi=λi,2+26λi,1+66λi,0+26λi,1+λi,2120, (10)
    ω'i(0)=0=λi,210λi,1+10λi,1+λi,224Λ, (11)

    where i=1,2. Four equations are still needed. Therefore, by differentiating (1), we obtain:

    d3ωi(τ)dτ2+δiτω''i(τ)ω'i(τ)τ2+ddτi(τ,ω1(τ),ω2(τ))+di(τ,ω1(τ),ω2(τ))dω1(τ)ω'1(τ)+di(τ,ω1(τ),ω2(τ))dω2(τ)ω'2(τ)='i(τ). (12)

    Applying the L'Hôpital rule and using (2)–(4), (6) and (12) becomes

    (1+δi2)(λi,2+2λi,12λi,1+λi,22Λ3)+ddτi(τ0,ε1,ε2)='i(0). (13)

    Similarly, at τ=1, we obtain

    λi,k2+2λi,k12λi,k+1+λi,k+22Λ3+ϖi(λ1,k2,λ1,k1,λ1,k,λ1,k+1,λ1,k+2,λ2,k2,λ2,k1,λ2,k,λ2,k+1,λ2,k+2)='i(1), (14)

    where i=1,2.

    Expressing (9)–(11), (13), and (14) in matrix form as

    AΦ=Ψ, (15)

    where A represents a coefficient matrix of dimension 2(k+5)×2(k+5), Φ is a column vector defined as

    Φ=[λ1,2,,λ1,k+2,λ2,2,,λ2,k+2]T,

    and Ψ is a column vector with 2(k+5) entries. Solving this system yields the coefficients of the approximate solution μi(τ) for (1).

    In this section, we demonstrate the convergence analysis of QBSM. To facilitate this analysis, we assume that ωi(τ)C5[0,1],i=1,2. From (3)–(6), we have [35,36]

    μ'i(τj2)+26μ'i(τj1)+66μ'i(τj)+26μ'i(τj+1)+μ'i(τj+2)=5ωi(τj2)50ωi(τj1)+50ωi(τj+1)+5ωi(τj+2)Λ,μ''i(τj2)+26μ''i(τj1)+66μ''i(τj)+26μ''i(τj+1)+μ''i(τj+2)=20ωi(τj2)+40ωi(τj1)120ωi(τj)+40ωi(τj+1)+20ωi(τj+2)Λ2,μ'''i(τj2)+26μ'''i(τj1)+66μ'''i(τj)+26μ'''i(τj+1)+μ'''i(τj+2)=60ωi(τj2)+120ωi(τj1)120ωi(τj+1)+60ωi(τj+2)Λ3. (16)

    With the operator notations, Ξωi(τj)=ωi(τj+1),Dωi(τj)=ω'i(τj), and Iωi(τj)=ωi(τj), Eq (16) can be expressed as

    μ'i(τj)=1Λ(5Ξ250Ξ1+50Ξ+5Ξ2Ξ2+26Ξ1+66I+26Ξ+Ξ2)ωi(τj),
    μ''i(τj)=1Λ2(20Ξ2+40Ξ1120I+40Ξ+20Ξ2Ξ2+26Ξ1+66I+26Ξ+Ξ2)ωi(τj),
    μ'''i(τj)=1Λ3(60Ξ2+120Ξ1120Ξ+60Ξ2Ξ2+26Ξ1+66I+26Ξ+Ξ2)ωi(τj), (17)

    i=1,2. Setting Ξ=eΛD in (17) gives

    μ'i(τj)=1Λ(5e2ΛD50eΛD+50eΛD+5e2ΛDe2ΛD+26eΛD+66+26eΛD+e2ΛD)ωi(τj),
    μ''i(τj)=1Λ2(20e2ΛD+40eΛD120+40eΛD+20e2ΛDe2ΛD+26eΛD+66+26eΛD+e2ΛD)ωi(τj),
    μ'''i(τj)=1Λ3(60e2ΛD+120eΛD120eΛD+60e2ΛDe2ΛD+26eΛD+66+26eΛD+e2ΛD)ωi(τj), (18)

    Expanding the exponential functions in (18) in powers of ΛD, we obtain

    μ'i(τj)=ω'i(τj)+15040Λ6ω(7)i(τj)+O(Λ8),
    μ''i(τj)=ω''i(τj)+1720Λ4ω(6)i(τj)+O(Λ6),
    μ'''i(τj)=ω'''i(τj)1240Λ4ω(7)i(τj)+O(Λ6), (19)

    i=1,2. Next, let's define truncation error as follows

    ei(τj)=i(τj)d2ωi(τj)dτ2δiτjdω1(τj)dτi(ω1(τj),ω2(τj))=[d2μi(τj)dτ2+δiτjdμ1(τj)dτ+i(μ1(τj),μ2(τj))]d2ωi(τj)dτ2δiτjdω1(τj)dτi(ω1(τj),ω2(τj)). (20)

    As μi(τj)=ωi(τj),i=1,2 and j=1,...,k, Eq (20) can be simplified as

    ei(τj)=[d2μi(τj)dτ2d2ωi(τj)dτ2]+δiτj[dμi(τj)dτdωi(τj)dτ], (21)

    Hence, by using (19) in (21), we can conclude that

    ei(τj)=O(Λ4), (22)

    and for j = 0, we have

    ei(τ0)=i(τ0)(1+δi)d2ωi(τ0)dτ2i(ω1(τ0),ω2(τ0))=(1+δi)d2μi(τ0)dτ2+i(μ1(τ0),μ2(τ0))(1+δi)d2ωi(τ0)dτ2i(ω1(τ0),ω2(τ0). (23)

    As μi(τ0)=ωi(τ0),i=1,2, Eq (23) can be simplified as

    ei(τj)=(1+δi)[d2μi(τ0)dτ2d2ωi(τ0)dτ2]. (24)

    Hence, by using (19) in (24), we find

    ei(τ0)=O(Λ4). (25)

    In light of (22) and (25), it can be deduced that the truncation error for the Lane-Emden system is of the order O(Λ4).

    In this section, five test problems are considered to demonstrate the accuracy and applicability of QBSM. Additionally, the obtained numerical results corresponding to the considered system have been compared with those achieved previously [4,8,37]. Note that, in our calculations, "En" means 10n.

    The absolute error (Absi) and L error are defined by

    Absi=|ωi(τj)μi(τj)|,i=1,2,
    Li(k)=max0jk|ωi(τj)μi(τj)|,i=1,2,

    where ωi(τ) and μi(τ) represent the exact and QBSM solutions at the grid point τj, respectively. Moreover, the order of convergence (OC) of the method is computed by applying the following formula:

    OCi=log2(Li(k)Li(2k)),i=1,2.

    Problem 1. Consider the following system

    d2ω1(τ)dτ2+3τdω1(τ)dτ4(ω1(τ)+ω2(τ))=0, (26)

    subject to

    ω1(0)=1,ω'1(0)=0,
    ω2(0)=1,ω'2(0)=0. (27)

    The exact solution for this system is ω1(τ)=1+τ2,ω2(τ)=1τ2.

    We apply the proposed QBSM to solve this problem for Λ=0.1. Table 2 presents the exact and approximate solutions at the grid points. It is worth mentioning that, for this problem, the outcomes are exact and the errors are only incurred caused by round-off errors in computational processes.

    Table 2.  Absolute errors of Problem 1.
    \boldsymbol{\tau } {\boldsymbol{\omega }}_\bf{1}\left(\boldsymbol{\tau }\right) {\boldsymbol{\mu }}_\bf{1}\left(\boldsymbol{\tau }\right) ( \mathbf{\Lambda=0.1 } ) {\boldsymbol{A}\boldsymbol{b}\boldsymbol{s}}_\bf{1} {\boldsymbol{\omega }}_\bf{2}\left(\boldsymbol{\tau }\right) {\boldsymbol{\mu }}_\bf{2}\left(\boldsymbol{\tau }\right) ( \mathbf{\Lambda=0.1 } ) {\boldsymbol{A}\boldsymbol{b}\boldsymbol{s}}_\bf{2}
    0.0 1 1 1.11\mathrm{E}-16 1 1 0
    0.1 1.01 1.01 2.22\mathrm{E}-16 0.99 0.99 0
    0.2 1.04 1.04 2.22\mathrm{E}-16 0.96 0.96 1.11\mathrm{E}-16
    0.3 1.09 1.09 2.22\mathrm{E}-16 0.91 0.91 1.11\mathrm{E}-16
    0.4 1.16 1.16 2.22\mathrm{E}-16 0.84 0.84 1.11\mathrm{E}-16
    0.5 1.25 1.25 0 0.75 0.75 0
    0.6 1.36 1.36 2.22\mathrm{E}-16 0.64 0.64 1.11\mathrm{E}-16
    0.7 1.49 1.49 0 0.51 0.51 2.22\mathrm{E}-16
    0.8 1.61 1.61 2.22\mathrm{E}-16 0.36 0.36 2.77\mathrm{E}-16
    0.9 1.81 1.81 2.22\mathrm{E}-16 0.19 0.19 3.33\mathrm{E}-16
    1.0 2 2 0 0 5.64 \mathrm{E}-16 3.84\mathrm{E}-16

     | Show Table
    DownLoad: CSV

    Problem 2. Consider the following system

    {\omega }_{1}^{\text{'}\text{'}}\left(\tau \right)+\frac{2}{\tau }{\omega }_{1}^{\text{'}}\left(\tau \right)-\left(4{\tau }^{2}+6\right){\omega }_{1}\left(\tau \right)+{\omega }_{2}\left(\tau \right) = {\tau }^{4}-{\tau }^{3},
    {\omega }_{2}^{\text{'}\text{'}}\left(\tau \right)+\frac{8}{\tau }{\omega }_{2}^{\text{'}}\left(\tau \right)+{\omega }_{1}\left(\tau \right)+\tau {\omega }_{2}\left(\tau \right) = {e}^{{\tau }^{2}}+{\tau }^{5}-{\tau }^{4}+44{\tau }^{2}-30\tau , (28)

    subject to

    {\omega }_{1}\left(0\right) = 1, {{\omega }^{\text{'}}}_{1}\left(0\right) = 0,
    {\omega }_{2}\left(0\right) = 0, {{\omega }^{\text{'}}}_{2}\left(0\right) = 0. (29)

    The exact solution of this system is

    {\omega }_{1}\left(\tau \right) = {e}^{{\tau }^{2}}, {\omega }_{2}\left(\tau \right) = {\tau }^{4}-{\tau }^{3}.

    We apply the proposed QBSM to solve this problem for \mathrm{\Lambda } = 0.1, 0.01 . The logarithmic plots of absolute errors for various values of k are depicted in Figure 1, which exhibits that if the value of k is increased, the error decreases. The absolute errors obtained by QBSM are given in Tables 3 and 4 along with those obtained by CBSM [8] and Chebyshev operational matrix method (COMM) [4]. Comparison reveals that QBSM yields more accurate solutions than the methods in [4,8]. The outcomes of {L}_{\infty }^{i}\left(k\right) errors are listed using k = 16, 32, 64, and 128 . In addition, the {OC}^{i}, i = \mathrm{1, 2}, are computed and the results are tabulated in Table 5. It can be observed that the achieved {OC}^{i}, i = \mathrm{1, 2}, is four. The method's computational time (CPU time) is reported in the same Table, which confirms that the QBSM is computationally effective.

    Figure 1.  Logarithmic plots of absolute errors for Problem 2.
    Table 3.  Absolute errors for approximate solution of {\omega }_{1}\left(\tau \right) in Problem 2.
    \boldsymbol{\tau } CBSM [8] COMM [4] QBSM
    \mathbf{\Lambda=0.1 } \mathbf{\Lambda =0.01} \boldsymbol{n}\mathbf{=5} \boldsymbol{n}\mathbf{=6} \boldsymbol{n}\mathbf{=8} \mathbf{\Lambda =0.1} \mathbf{\Lambda=0.01 }
    0.0 0 0 8.00\mathrm{E}-9 5.00E-10 0 0 0
    0.1 3.39\mathrm{E}-5 1.72\mathrm{E}-7 ---- ---- ---- 5.98\mathrm{E}-8 2.88\mathrm{E}-12
    0.2 9.52\mathrm{E}-5 7.17\mathrm{E}-7 2.38\mathrm{E}-5 1.35\mathrm{E}-7 1.02\mathrm{E}-7 1.58\mathrm{E}-7 1.23\mathrm{E}-11
    0.3 2.02\mathrm{E}-4 1.76\mathrm{E}-6 ---- ---- ---- 3.45\mathrm{E}-7 3.09\mathrm{E}-11
    0.4 3.81\mathrm{E}-4 3.51\mathrm{E}-6 1.26\mathrm{E}-4 6.90\mathrm{E}-6 2.61\mathrm{E}-7 6.78\mathrm{E}-7 6.39\mathrm{E}-11
    0.5 6.72\mathrm{E}-4 6.35\mathrm{E}-6 ---- ---- ---- 1.24\mathrm{E}-6 1.21\mathrm{E}-10
    0.6 1.14\mathrm{E}-3 1.09\mathrm{E}-5 2.09\mathrm{E}-4 3.05\mathrm{E}-5 4.71\mathrm{E}-7 2.20\mathrm{E}-6 2.17\mathrm{E}-10
    0.7 1.87\mathrm{E}-3 1.81\mathrm{E}-5 ---- ---- ---- 3.78\mathrm{E}-6 3.77\mathrm{E}-10
    0.8 3.04\mathrm{E}-3 2.96\mathrm{E}-5 6.88\mathrm{E}-3 1.02\mathrm{E}-4 9.09\mathrm{E}-7 6.44\mathrm{E}-6 6.47\mathrm{E}-10
    0.9 4.90\mathrm{E}-3 4.78\mathrm{E}-5 ---- ---- ---- 1.08\mathrm{E}-5 1.10\mathrm{E}-9
    1.0 7.89\mathrm{E}-3 7.71\mathrm{E}-5 3.14\mathrm{E}-2 6.11\mathrm{E}-4 1.97\mathrm{E}-4 1.84\mathrm{E}-5 1.86\mathrm{E}-9

     | Show Table
    DownLoad: CSV
    Table 4.  Absolute errors for approximate solution of {\omega }_{2}\left(\tau \right) in Problem 2.
    \boldsymbol{\tau } CBSM [8] COMM [4] QBSM
    \mathbf{\Lambda =0.1 } \mathbf{\Lambda =0.01} \mathbf{n=5} \mathbf{n=6} \mathbf{n=8} \mathbf{\Lambda =0.1 } \mathbf{\Lambda =0.01}
    0.0 6.00\mathrm{E}-31 0 0 0 0 7.23\mathrm{E}-21 2.82\mathrm{E}-23
    0.1 4.67\mathrm{E}-5 1.13\mathrm{E}-7 ---- ---- ---- 1.53\mathrm{E}-11 6.59\mathrm{E}-16
    0.2 6.21\mathrm{E}-5 4.46\mathrm{E}-7 4.36\mathrm{E}-8 1.89\mathrm{E}-10 1.22\mathrm{E}-10 1.76\mathrm{E}-10 1.07\mathrm{E}-14
    0.3 1.20\mathrm{E}-4 9.98\mathrm{E}-7 ---- ---- ---- 7.45\mathrm{E}-10 5.78\mathrm{E}-14
    0.4 1.99\mathrm{E}-4 1.77\mathrm{E}-6 3.43\mathrm{E}-7 3.58\mathrm{E}-8 3.99\mathrm{E}-10 2.31\mathrm{E}-9 2.00\mathrm{E}-13
    0.5 2.95\mathrm{E}-4 2.74\mathrm{E}-6 ---- ---- ---- 5.97\mathrm{E}-9 5.47\mathrm{E}-13
    0.6 4.12\mathrm{E}-4 3.92\mathrm{E}-6 7.70\mathrm{E}-6 1.02\mathrm{E}-7 1.38\mathrm{E}-9 1.37\mathrm{E}-8 1.30\mathrm{E}-12
    0.7 5.47\mathrm{E}-4 5.27\mathrm{E}-6 ---- ---- ---- 2.91\mathrm{E}-8 2.82\mathrm{E}-12
    0.8 6.96\mathrm{E}-4 6.77\mathrm{E}-6 6.20\mathrm{E}-6 2.59\mathrm{E}-7 4.55\mathrm{E}-9 5.85\mathrm{E}-8 5.75\mathrm{E}-12
    0.9 8.53\mathrm{E}-4 8.36\mathrm{E}-6 ---- ---- ---- 1.13\mathrm{E}-7 1.12\mathrm{E}-11
    1.0 1.01\mathrm{E}-3 9.96\mathrm{E}-6 4.19\mathrm{E}-5 7.22\mathrm{E}-6 1.68\mathrm{E}-7 2.12\mathrm{E}-7 2.12\mathrm{E}-11

     | Show Table
    DownLoad: CSV
    Table 5.  The outcomes of {L}_{\infty }^{i}\left(k\right) errors, the {OC}^{i} , and CPU times, in Problem 2 using various k .
    k {L}_{\infty }^{1}\left(k\right) {\mathrm{O}\mathrm{C}}^{1} {L}_{\infty }^{2}\left(k\right) {\mathrm{O}\mathrm{C}}^{2} CPU (s)
    8 4.493\times {10}^{-5} - 5.149\times {10}^{-7} - 0.0156
    16 2.825\times {10}^{-6} 3.991 3.234\times {10}^{-8} 3.993 0.0312
    32 1.771\times {10}^{-7} 3.996 2.022\times {10}^{-9} 3.999 0.0312
    64 1.108\times {10}^{-8} 3.999 1.263\times {10}^{-10} 3.999 0.0625
    128 6.927\times {10}^{-10} 3.999 7.899\times {10}^{-12} 3.999 0.1406

     | Show Table
    DownLoad: CSV

    Problem 3. Consider the following system

    \begin{array}{c} {\omega }_{1}^{\text{'}\text{'}}\left(\tau \right)+\frac{5}{\tau }{\omega }_{1}^{\text{'}}\left(\tau \right)+8\left({e}^{{\omega }_{1}\left(\tau \right)}+2{e}^{-\frac{{\omega }_{2}\left(\tau \right)}{2}}\right) = 0, \\{\omega }_{2}^{\text{'}\text{'}}\left(\tau \right)+\frac{3}{\tau }{\omega }_{2}^{\text{'}}\left(\tau \right)-8({e}^{\frac{{\omega }_{1}\left(\tau \right)}{2}}+{e}^{-{\omega }_{2}\left(\tau \right)}) = 0, \end{array} (30)

    subject to

    {\omega }_{1}\left(0\right) = 1-2\mathrm{ln}\left(2\right), {{\omega }^{\text{'}}}_{1}\left(0\right) = 0, \\ {\omega }_{2}\left(0\right) = 1+2\mathrm{ln}\left(2\right), {{\omega }^{\text{'}}}_{2}\left(0\right) = 0, (31)

    where the exact solution is

    {\omega }_{1}\left(\tau \right) = 1-2\mathrm{ln}\left({\tau }^{2}+2\right), {\omega }_{2}\left(\tau \right) = 1+2\mathrm{ln}({\tau }^{2}+2).

    We apply the proposed QBSM to obtain the approximate solutions to this problem for \mathrm{\Lambda } = 0.1, 0.01 . Absolute errors of QBSM for \mathrm{\Lambda } = 0.1, 0.01 are listed in Tables 5 and 6, respectively, along with those obtained by the CBSM [8]. From these tables, it can be observed that QBSM provides lesser error than CBSM. The logarithmic plots of absolute errors for various values of k are depicted in Figure 2. The outcomes of {L}_{\infty }^{i}\left(k\right) errors are listed using k = 16, 32, 64, and 128 . In addition, the {OC}^{i}, i = \mathrm{1, 2}, are computed and the results are tabulated in Tables 7 and 8. The table show that the achieved {OC}^{i}, i = \mathrm{1, 2}, is four. The method's CPU time is reported in the same table, which confirms that the QBSM is computationally effective.

    Table 6.  Absolute errors for approximate solution of {\omega }_{1}\left(\tau \right) in Problem 3.
    \boldsymbol{\tau } CBSM [8] QBSM
    \mathbf{\Lambda=0.1 } \mathbf{\Lambda=0.01} \mathbf{\Lambda=0.1 } \mathbf{\Lambda=0.01}
    0.0 2.22E-16 2.22E-16 2.22E-16 2.22E-16
    0.1 1.29\mathrm{E}-5 4.14\mathrm{E}-8 2.47\mathrm{E}-8 6.75\mathrm{E}-13
    0.2 2.12\mathrm{E}-5 1.53\mathrm{E}-7 2.99\mathrm{E}-8 2.34\mathrm{E}-12
    0.3 3.50\mathrm{E}-5 3.08\mathrm{E}-7 4.56\mathrm{E}-8 4.19\mathrm{E}-12
    0.4 5.03\mathrm{E}-5 4.67\mathrm{E}-7 5.18\mathrm{E}-8 5.24\mathrm{E}-12
    0.5 6.18\mathrm{E}-5 5.92\mathrm{E}-7 4.21\mathrm{E}-8 4.80\mathrm{E}-12
    0.6 6.68\mathrm{E}-5 6.51\mathrm{E}-7 1.58\mathrm{E}-8 2.59\mathrm{E}-12
    0.7 6.36\mathrm{E}-5 6.26\mathrm{E}-7 2.47\mathrm{E}-8 1.13\mathrm{E}-12
    0.8 5.16\mathrm{E}-5 5.13\mathrm{E}-7 7.33\mathrm{E}-8 5.82\mathrm{E}-12
    0.9 3.16\mathrm{E}-5 3.18\mathrm{E}-7 1.24\mathrm{E}-7 1.08\mathrm{E}-11
    1.0 5.10\mathrm{E}-6 5.70\mathrm{E}-8 1.68\mathrm{E}-7 1.54\mathrm{E}-11

     | Show Table
    DownLoad: CSV
    Figure 2.  Logarithmic plots of absolute errors for Problem 3.
    Table 7.  Absolute errors for approximate solution of {\omega }_{2}\left(\tau \right) in Problem 3.
    \boldsymbol{\tau } CBSM [8] QBSM
    \mathbf{\Lambda=0.1 } \mathbf{\Lambda=0.01} \mathbf{\Lambda=0.1 } \mathbf{\Lambda=0.01}
    0.0 2.22\mathrm{E}-16 2.22\mathrm{E}-16 2.22\mathrm{E}-16 2.22\mathrm{E}-16
    0.1 1.48\mathrm{E}-5 6.21\mathrm{E}-8 2.79\mathrm{E}-8 1.02\mathrm{E}-12
    0.2 3.18\mathrm{E}-5 2.33\mathrm{E}-7 4.86\mathrm{E}-8 3.60\mathrm{E}-12
    0.3 5.42\mathrm{E}-5 4.75\mathrm{E}-7 7.42\mathrm{E}-8 6.64\mathrm{E}-12
    0.4 7.94\mathrm{E}-5 7.39\mathrm{E}-7 9.19\mathrm{E}-8 8.83\mathrm{E}-12
    0.5 1.02\mathrm{E}-4 9.71\mathrm{E}-7 8.89\mathrm{E}-8 9.10\mathrm{E}-12
    0.6 1.16\mathrm{E}-4 1.12\mathrm{E}-6 6.21\mathrm{E}-8 6.95\mathrm{E}-12
    0.7 1.20\mathrm{E}-4 1.17\mathrm{E}-6 1.28\mathrm{E}-8 2.51\mathrm{E}-12
    0.8 1.12\mathrm{E}-4 1.10\mathrm{E}-6 5.23\mathrm{E}-8 3.64\mathrm{E}-12
    0.9 9.26\mathrm{E}-5 9.13\mathrm{E}-7 1.26\mathrm{E}-7 1.07\mathrm{E}-11
    1.0 6.27\mathrm{E}-5 6.21\mathrm{E}-7 1.97\mathrm{E}-7 1.79\mathrm{E}-11

     | Show Table
    DownLoad: CSV
    Table 8.  The outcomes of {L}_{\infty }^{i} errors, the {OC}^{i} , and CPU times, in Problem 3 using various k .
    k {L}_{\infty }^{1}\left(k\right) {\mathrm{O}\mathrm{C}}^{1} {L}_{\infty }^{2}\left(k\right) {\mathrm{O}\mathrm{C}}^{2} CPU (s)
    8 4.299\times {10}^{-7} - 5.072\times {10}^{-7} - 0.0156
    16 2.439\times {10}^{-8} 4.139 2.842\times {10}^{-8} 4.157 0.0312
    32 1.484\times {10}^{-9} 4.038 1.724\times {10}^{-9} 4.042 0.0312
    64 9.215\times {10}^{-11} 4.009 1.069\times {10}^{-10} 4.011 0.0625
    128 5.746\times {10}^{-12} 4.003 6.643\times {10}^{-12} 4.009 0.1406

     | Show Table
    DownLoad: CSV

    Problem 4. Consider the following system of LEE

    {\omega }_{1}^{\text{'}\text{'}}\left(\tau \right)+\frac{1}{\tau }{\omega }_{1}^{\text{'}}\left(\tau \right)-{\omega }_{2}^{3}\left(\tau \right)\left({\omega }_{1}^{2}+1\right) = 0, \\ {\omega }_{2}^{\text{'}\text{'}}\left(\tau \right)+\frac{3}{\tau }{\omega }_{2}^{\text{'}}\left(\tau \right)+{\omega }_{2}^{5}\left(\tau \right)({\omega }_{1}^{2}+3) = 0, (32)

    subject to

    {\omega }_{1}\left(0\right) = 1, {{\omega }^{\text{'}}}_{1}\left(0\right) = 0,
    {\omega }_{2}\left(0\right) = 1, {{\omega }^{\text{'}}}_{2}\left(0\right) = 0, (33)

    where the exact solution is given by {\omega }_{1}\left(\tau \right) = \sqrt{{1+\tau }^{2}}, {\omega }_{2}\left(\tau \right) = \frac{1}{\sqrt{{1+\tau }^{2}}}. We solve this system using the proposed QBSM for \mathrm{\Lambda } = 0.1, 0.01 . Absolute errors obtained by QBSM for \mathrm{\Lambda } = 0.1, 0.01 are given in Tables 9 and 10, along with the errors obtained by the CBSM [8] and COMM [4]. From these tables, it seems that the errors of QBSM are less than the errors of CBSM and COMM. The logarithmic graphs of absolute errors for different values of n are presented in Figure 3. The outcomes of {L}_{\infty }^{i}\left(k\right) errors are listed using k = 16, 32, 64, and 128 . In addition, the {OC}^{i}, i = \mathrm{1, 2}, are computed and the results are tabulated in Table 11. The table show that the achieved {OC}^{i}, i = \mathrm{1, 2}, is four. The method's CPU time is reported in the same table, which confirms that the QBSM is computationally effective.

    Table 9.  Absolute errors for approximate solution of {\omega }_{1}\left(\tau \right) in Problem 4.
    \boldsymbol{\tau } CBSM [8] COMM [4] QBSM
    \mathbf{\Lambda =0.1 =0.01} \mathbf{\Lambda =0.1 =0.01} \mathbf{n=4} \mathbf{n=5} \mathbf{n=6} \mathbf{\Lambda =0.1 } \mathbf{\Lambda =0.01}
    0.0 0 0 0 0 0 0 0
    0.1 3.39\mathrm{E}-5 1.72\mathrm{E}-7 ---- ---- ---- 2.61\mathrm{E}-8 1.51\mathrm{E}-12
    0.2 9.52\mathrm{E}-5 7.17\mathrm{E}-7 5.09\mathrm{E}-4 5.65\mathrm{E}-5 7.56\mathrm{E}-6 6.61\mathrm{E}-8 5.11\mathrm{E}-12
    0.3 2.02\mathrm{E}-4 1.76\mathrm{E}-6 ---- ---- ---- 1.02\mathrm{E}-7 8.86\mathrm{E}-12
    0.4 3.81\mathrm{E}-4 3.51\mathrm{E}-6 6.28\mathrm{E}-4 2.16\mathrm{E}-5 8.65\mathrm{E}-6 1.20\mathrm{E}-7 1.09\mathrm{E}-11
    0.5 6.72\mathrm{E}-4 6.35\mathrm{E}-6 ---- ---- ---- 1.13\mathrm{E}-7 1.06\mathrm{E}-11
    0.6 1.14\mathrm{E}-3 1.09\mathrm{E}-5 2.77\mathrm{E}-4 5.57\mathrm{E}-6 4.56\mathrm{E}-6 8.93\mathrm{E}-8 8.35\mathrm{E}-12
    0.7 1.87\mathrm{E}-3 1.81\mathrm{E}-5 ---- ---- ---- 6.00\mathrm{E}-8 5.27\mathrm{E}-12
    0.8 3.04\mathrm{E}-3 2.96\mathrm{E}-5 2.72\mathrm{E}-4 7.38\mathrm{E}-5 7.71\mathrm{E}-6 3.81\mathrm{E}-8 2.61\mathrm{E}-12
    0.9 4.90\mathrm{E}-3 4.78\mathrm{E}-5 ---- ---- ---- 3.24\mathrm{E}-8 1.32\mathrm{E}-12
    1.0 7.89\mathrm{E}-3 7.71\mathrm{E}-5 6.44\mathrm{E}-4 7.46\mathrm{E}-5 6.56\mathrm{E}-6 4.80\mathrm{E}-8 1.96\mathrm{E}-12

     | Show Table
    DownLoad: CSV
    Table 10.  Absolute errors for approximate solution of {\omega }_{2}\left(\tau \right) in Problem 4.
    \boldsymbol{\tau } CBSM [8] COMM [4] QBSM
    \mathbf{\Lambda=0.1 } \mathbf{\Lambda=0.01} \mathbf{n=4} \mathbf{n=5} \mathbf{n=6} \mathbf{\Lambda =0.1 } \mathbf{\Lambda =0.01}
    0.0 6.00\mathrm{E}-31 0 0 0 0 0 2.22\mathrm{E}-16
    0.1 4.67\mathrm{E}-5 1.13\mathrm{E}-7 ---- ---- ---- 1.06\mathrm{E}-7 3.61\mathrm{E}-12
    0.2 6.21\mathrm{E}-5 4.46\mathrm{E}-7 1.03\mathrm{E}-4 1.65\mathrm{E}-5 6.59\mathrm{E}-6 1.42\mathrm{E}-7 1.08\mathrm{E}-11
    0.3 1.20\mathrm{E}-4 9.98\mathrm{E}-7 ---- ---- ---- 1.39\mathrm{E}-7 1.42\mathrm{E}-11
    0.4 1.99\mathrm{E}-4 1.77\mathrm{E}-6 2.27\mathrm{E}-4 1.51\mathrm{E}-5 7.65\mathrm{E}-6 5.25\mathrm{E}-8 8.72\mathrm{E}-12
    0.5 2.95\mathrm{E}-4 2.74\mathrm{E}-6 ---- ---- ---- 1.13\mathrm{E}-7 5.17\mathrm{E}-12
    0.6 4.12\mathrm{E}-4 3.92\mathrm{E}-6 1.00\mathrm{E}-4 1.66\mathrm{E}-5 9.63\mathrm{E}-6 3.03\mathrm{E}-7 2.31\mathrm{E}-11
    0.7 5.47\mathrm{E}-4 5.27\mathrm{E}-6 ---- ---- ---- 4.70\mathrm{E}-7 4.00\mathrm{E}-11
    0.8 6.96\mathrm{E}-4 6.77\mathrm{E}-6 6.92\mathrm{E}-4 1.67\mathrm{E}-5 8.65\mathrm{E}-6 5.81\mathrm{E}-7 5.22\mathrm{E}-11
    0.9 8.53\mathrm{E}-4 8.36\mathrm{E}-6 ---- ---- ---- 6.27\mathrm{E}-7 5.85\mathrm{E}-11
    1.0 1.01\mathrm{E}-3 9.96\mathrm{E}-6 2.62\mathrm{E}-4 6.08\mathrm{E}-5 6.53\mathrm{E}-7 6.16\mathrm{E}-7 5.91\mathrm{E}-11

     | Show Table
    DownLoad: CSV
    Figure 3.  Logarithmic plots of absolute errors for Problem 4.
    Table 11.  The outcomes of {L}_{\infty }^{i} errors, the {OC}^{i} , and CPU times, in Problem 4 using various k .
    k {L}_{\infty }^{1}\left(k\right) {\mathrm{O}\mathrm{C}}^{1} {L}_{\infty }^{2}\left(k\right) {\mathrm{O}\mathrm{C}}^{2} CPU (s)
    8 2.961\times {10}^{-7} - 1.583\times {10}^{-6} - 0.0156
    16 1.766\times {10}^{-8} 4.067 9.263\times {10}^{-8} 4.095 0.0312
    32 1.073\times {10}^{-9} 4.040 5.697\times {10}^{-9} 4.023 0.0312
    64 6.638\times {10}^{-11} 4.015 3.547\times {10}^{-10} 4.005 0.0468
    128 4.132\times {10}^{-12} 4.005 2.216\times {10}^{-11} 4.000 0.1250

     | Show Table
    DownLoad: CSV

    Problem 5. Consider the following system of LEE

    {\omega }_{1}^{\text{'}\text{'}}\left(\tau \right)+\frac{8}{\tau }{\omega }_{1}^{\text{'}}\left(\tau \right)+\left(18{\omega }_{1}\left(\tau \right)-4{\omega }_{1}\left(\tau \right)\mathrm{ln}{\omega }_{2}\left(\tau \right)\right) = 0, \\{\omega }_{2}^{\text{'}\text{'}}\left(\tau \right)+\frac{4}{\tau }{\omega }_{2}^{\text{'}}\left(\tau \right)+(4{\omega }_{2}\left(\tau \right)\mathrm{ln}{\omega }_{1}\left(\tau \right)-10{\omega }_{2}\left(\tau \right)) = 0 (34)

    subject to

    {\omega }_{1}\left(0\right) = 1, {{\omega }^{\text{'}}}_{1}\left(0\right) = 0, \\{\omega }_{2}\left(0\right) = 1, {{\omega }^{\text{'}}}_{2}\left(0\right) = 0. (35)

    The exact solution for this system is

    {\omega }_{1}\left(\tau \right) = {e}^{-{\tau }^{2}}, {\omega }_{2}\left(\tau \right) = {e}^{{\tau }^{2}}.

    We solve this system using the proposed QBSM for \mathrm{\Lambda } = 0.1, 0.01 . Absolute errors obtained by QBSM for \mathrm{\Lambda } = 0.1, 0.01 are tabulated in Tables 12 and 13, along with the errors reported in CBSM [8] and Dickson operational matrix (DOM) [37]. We note that QBSM yields results more accurate than those obtained in [8,37]. The logarithmic graphs of absolute errors for different values of k are displayed in Figure 4. The outcomes of {L}_{\infty }^{i}\left(k\right) errors are listed using k = 16, 32, 64, and 128 . In addition, the {OC}^{i}, i = \mathrm{1, 2}, are computed and the results are tabulated in Table 14. The table show that the achieved {OC}^{i}, i = \mathrm{1, 2}, is four. The method's CPU time is reported in the same Table, which confirms that the QBSM is computationally effective.

    Table 12.  Absolute errors for approximate solution of {\omega }_{1}\left(\tau \right) in Problem 5.
    \boldsymbol{\tau } CBSM [8] DOM [37] QBSM
    \mathbf{\Lambda =0.1 } \mathbf{\Lambda =0.01} \mathbf{n=8 } \mathbf{n=10} \mathbf{\Lambda =0.1 } \mathbf{\Lambda =0.01}
    0.0 0 0 ---- ---- 1.11\mathrm{E}-16 0
    0.1 3.39\mathrm{E}-5 1.72\mathrm{E}-7 5.84E-8 1.17\mathrm{E}-9 4.43\mathrm{E}-8 9.12\mathrm{E}-13
    0.2 9.52\mathrm{E}-5 7.17\mathrm{E}-7 1.04 \mathrm{E}-7 1.67\mathrm{E}-9 3.81\mathrm{E}-8 3.23\mathrm{E}-12
    0.3 2.02\mathrm{E}-4 1.76\mathrm{E}-6 2.21\mathrm{E}-7 2.17\mathrm{E}-10 7.01\mathrm{E}-8 5.97\mathrm{E}-12
    0.4 3.81\mathrm{E}-4 3.51\mathrm{E}-6 1.37 \mathrm{E}-7 2.91\mathrm{E}-9 7.71\mathrm{E}-8 7.78\mathrm{E}-12
    0.5 6.72\mathrm{E}-4 6.35\mathrm{E}-6 3.18\mathrm{E}-7 2.17\mathrm{E}-9 6.38\mathrm{E}-8 7.30\mathrm{E}-12
    0.6 1.14\mathrm{E}-3 1.09\mathrm{E}-5 2.59\mathrm{E}-7 1.59\mathrm{E}-9 1.82\mathrm{E}-8 3.54\mathrm{E}-12
    0.7 1.87\mathrm{E}-3 1.81\mathrm{E}-5 3.00\mathrm{E}-7 3.33\mathrm{E}-9 6.32\mathrm{E}-8 3.91\mathrm{E}-12
    0.8 3.04\mathrm{E}-3 2.96\mathrm{E}-5 2.41\mathrm{E}-7 1.16\mathrm{E}-9 1.75\mathrm{E}-7 1.47\mathrm{E}-11
    0.9 4.90\mathrm{E}-3 4.78\mathrm{E}-5 2.77\mathrm{E}-7 3.21\mathrm{E}-11 3.10\mathrm{E}-7 2.79\mathrm{E}-11
    1.0 7.89\mathrm{E}-3 7.71\mathrm{E}-5 5.95\mathrm{E}-7 2.19\mathrm{E}-10 4.47\mathrm{E}-7 4.22\mathrm{E}-11

     | Show Table
    DownLoad: CSV
    Table 13.  Absolute errors for approximate solution of {\omega }_{2}\left(\tau \right) in Problem 5.
    \boldsymbol{\tau } CBSM [8] DOM [37] QBSM
    \mathbf{\Lambda=0.1 } \mathbf{\Lambda=0.01} \mathbf{n=8 } \mathbf{n=10} \mathbf{\Lambda =0.1 } \mathbf{\Lambda =0.01}
    0.0 6.00\mathrm{E}-31 0 ---- ---- 0 0
    0.1 4.67\mathrm{E}-5 1.13\mathrm{E}-7 3.30\mathrm{E}-7 1.27\mathrm{E}-8 5.14\mathrm{E}-8 1.74\mathrm{E}-12
    0.2 6.21\mathrm{E}-5 4.46\mathrm{E}-7 1.18\mathrm{E}-6 1.28\mathrm{E}-8 1.01\mathrm{E}-7 7.50\mathrm{E}-12
    0.3 1.20\mathrm{E}-4 9.98\mathrm{E}-7 1.14\mathrm{E}-6 6.24\mathrm{E}-9 2.24\mathrm{E}-7 1.93\mathrm{E}-11
    0.4 1.99\mathrm{E}-4 1.77\mathrm{E}-6 1.69 \mathrm{E}-6 3.15\mathrm{E}-8 4.50\mathrm{E}-7 4.11\mathrm{E}-11
    0.5 2.95\mathrm{E}-4 2.74\mathrm{E}-6 1.44\mathrm{E}-6 1.35\mathrm{E}-8 8.44\mathrm{E}-7 7.97\mathrm{E}-11
    0.6 4.12\mathrm{E}-4 3.92\mathrm{E}-6 2.46\mathrm{E}-6 2.31\mathrm{E}-8 1.53\mathrm{E}-6 1.47\mathrm{E}-10
    0.7 5.47\mathrm{E}-4 5.27\mathrm{E}-6 1.17\mathrm{E}-6 3.51\mathrm{E}-8 2.69\mathrm{E}-6 2.63\mathrm{E}-10
    0.8 6.96\mathrm{E}-4 6.77\mathrm{E}-6 1.87\mathrm{E}-6 9.14\mathrm{E}-9 4.68\mathrm{E}-6 4.61\mathrm{E}-10
    0.9 8.53\mathrm{E}-4 8.36\mathrm{E}-6 2.20\mathrm{E}-6 7.33\mathrm{E}-10 7.99\mathrm{E}-6 7.99\mathrm{E}-10
    1.0 1.01\mathrm{E}-3 9.96\mathrm{E}-6 3.36\mathrm{E}-7 2.57\mathrm{E}-9 1.39\mathrm{E}-5 1.38\mathrm{E}-9

     | Show Table
    DownLoad: CSV
    Figure 4.  Logarithmic plots of absolute errors for Problem 5.
    Table 14.  The outcomes of {L}_{\infty }^{i} errors, the {OC}^{i} , and CPU times, in Problem 5 using various k .
    k {L}_{\infty }^{1}\left(k\right) {\mathrm{O}\mathrm{C}}^{1} {L}_{\infty }^{2}\left(k\right) {\mathrm{O}\mathrm{C}}^{2} CPU (s)
    8 1.120\times {10}^{-6} - 3.416\times {10}^{-5} - 0.0156
    16 6.588\times {10}^{-8} 4.088 2.106\times {10}^{-6} 4.019 0.0312
    32 4.044\times {10}^{-9} 4.025 1.314\times {10}^{-7} 4.002 0.0312
    64 2.515\times {10}^{-10} 4.006 8.213\times {10}^{-9} 4.000 0.0468
    128 1.570\times {10}^{-11} 4.001 5.133\times {10}^{-10} 4.000 0.1250

     | Show Table
    DownLoad: CSV

    As can be observed from the above tables, the proposed QBSM is fourth-order accurate and the practical convergence order aligns consistently with the theoretical convergence order obtained in the previous section.

    In this study, we have established a numerical method for solving systems of Lane-Emden equations. The QBSM has been constructed using quintic B-spline functions on the uniform mesh. We investigate the convergence analysis of the QBSM and found it exhibited fourth-order convergence. To strengthen the significance of the QBSM method and validate theoretical results, we examined five test problems. We have presented tabular and graphical exhibitions to confirm the effectiveness of QBSM. Notably, the numerical solutions of QBSM are in good agreement with the exact ones, and their accuracy improves as the step sizes decrease. Moreover, we compared the QBSM with other numerical methods such as CBSM, DOM, and COMM, and the comparison exposed that the QBSM produces more accurate numerical results than the other methods. In conclusion, the method is computationally efficient, accurate, robust, easy to address the singularity, and, therefore, it can be employed to solve different classes of nonlinear singular differential equations.

    The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors declare no conflicts of interest.



    [1] B. Căruntu, C. Bota, Approximate polynomial solutions of the nonlinear Lane-Emden type equations arising in astrophysics using the squared remainder minimization method, Comput. Phys. Commun., 184 (2013), 1643–1648. https://doi.org/10.1016/j.cpc.2013.01.023 doi: 10.1016/j.cpc.2013.01.023
    [2] Y. Öztürk, M. Gülsu, An operational matrix method for solving Lane-Emden equations arising in astrophysics, Math. Methods Appl. Sci., 37 (2013), 2227–2235. https://doi.org/10.1002/mma.2969 doi: 10.1002/mma.2969
    [3] A. M. Wazwaz, R. Rach, J. S. Duan, A study on the systems of the Volterra integral forms of the Lane-Emden equations by the Adomian decomposition method, Math. Methods Appl. Sci., 37 (2013), 10–19. https://doi.org/10.1002/mma.2969 doi: 10.1002/mma.2969
    [4] Y. Öztürk, An efficient numerical algorithm for solving system of Lane-Emden type equations arising in engineering, Nonlinear Eng., 8 (2019), 429–437. https://doi.org/10.1515/nleng-2018-0062 doi: 10.1515/nleng-2018-0062
    [5] S. Kumbinarasaiah, G. Manohara, G. Hariharan, Bernoulli wavelets functional matrix technique for a system of nonlinear singular Lane Emden equations, Math Comput Simul., 204 (2023), 133–165. https://doi.org/10.1016/j.matcom.2022.07.024 doi: 10.1016/j.matcom.2022.07.024
    [6] AK Verma, N. Kumar, D. Tiwari, Haar wavelets collocation method for a system of nonlinear singular differential equations, Eng. Comput., 38 (2021), 659–698. https://doi.org/10.1108/EC-04-2020-0181 doi: 10.1108/EC-04-2020-0181
    [7] R. Saadeh, A. Burqan, A. El-Ajou, Reliable solutions to fractional Lane-Emden equations via Laplace transform and residual error function, Alex. Eng. J., 61 (2022), 10551–10562. https://doi.org/10.1016/j.aej.2022.04.004 doi: 10.1016/j.aej.2022.04.004
    [8] O. Ala'yed, R. Saadeh, A. Qazza, Numerical solution for the system of Lane-Emden type equations using cubic B-spline method arising in engineering, AIMS Math., 8 (2023), 14747–14766. https://doi.org/10.3934/math.2023754 doi: 10.3934/math.2023754
    [9] P. Roul, K. Thula, A fourth-order B-spline collocation method and its error analysis for Bratu-type and Lane-Emden problems, Int. J. Comput. Math., 96 (2019), 85–104. https://doi.org/10.1080/00207160.2017.1417592 doi: 10.1080/00207160.2017.1417592
    [10] P. Roul, K. Thula, R. Agarwal, Non-optimal fourth-order and optimal sixth-order B-spline collocation methods for Lane-Emden boundary value problems, Appl. Numer. Math., 145 (2019), 342–360.
    [11] E. Salah, R. Saadeh, A. Qazza, R. Hatamleh, Direct power series approach for solving nonlinear initial value problems, Axioms, 12 (2023), 111. https://doi.org/10.3390/axioms12020111 doi: 10.3390/axioms12020111
    [12] Y. Öztürk, Solution for the system of Lane-Emden type equations using Chebyshev polynomials, Mathematics, 6 (2018), 181. https://doi.org/10.3390/math6100181 doi: 10.3390/math6100181
    [13] M. Izadi, A discontinuous finite element approximation to singular Lane-Emden type equations, Appl. Math. Comput., 401 (2021), 126115. https://doi.org/10.1016/j.amc.2021.126115 doi: 10.1016/j.amc.2021.126115
    [14] J. Shahni, R. Singh, Numerical solution of system of Emden-Fowler type equations by Bernstein collocation method, J Math Chem., 59 (2021), 1117–1138. https://doi.org/10.1007/s10910-021-01235-5 doi: 10.1007/s10910-021-01235-5
    [15] M. Izadi, H. M. Srivastava, An efficient approximation technique applied to a non-linear Lane-Emden pantograph delay differential model, Appl. Math. Comput., 401 (2021), 126123. https://doi.org/10.1016/j.amc.2021.126123 doi: 10.1016/j.amc.2021.126123
    [16] M. Abdelhakem, M. Fawzy, M. El-Kady, H. Moussa, Legendre polynomials' second derivative tau method for solving Lane-Emden and Ricatti equations, Appl. Math. Inf. Sci., 17 (2023), 437–445. https://doi.org//10.18576/amis/170305
    [17] M. Abdelhakem, M. Fawzy, M. El-Kady, H. Moussa, An efficient technique for approximated BVPs via the second derivative Legendre polynomials pseudo-Galerkin method: certain types of applications, Results Phys., 43 (2022), 106067. https://doi.org/10.1016/j.rinp.2022.106067 doi: 10.1016/j.rinp.2022.106067
    [18] M. Abdelhakem, H. Moussa, Pseudo-spectral matrices as a numerical tool for dealing BVPs, based on Legendre polynomials' derivatives, Alex. Eng. J., 66 (2023), 301–313. https://doi.org/10.1016/j.aej.2022.11.006 doi: 10.1016/j.aej.2022.11.006
    [19] M. Abdelhakem, Shifted Legendre fractional pseudo-spectral integration matrices for solving fractional Volterra integro-differential equations and Abel's integral equations, Fractals, 2023 (2023), 2340190. https://doi.org/10.1142/S0218348X23401904 doi: 10.1142/S0218348X23401904
    [20] D. Abdelhamid, W. Albalawi, K. S. Nisar, A. Abdel-Aty, S. Alsaeed, M. Abdelhakem, Mixed Chebyshev and Legendre polynomials differentiation matrices for solving initial-boundary value problems, AIMS Math., 8 (2023), 24609–24631. https://doi.org/10.3934/math.20231255 doi: 10.3934/math.20231255
    [21] D. Abdelhamied, M. Abdelhakem, M. El-Kady, Y. H. Youssri, Adapted shifted Chebyshev operational matrix of derivatives: two algorithms for solving even-order BVPs, Appl. Math. Inf. Sci., 17 (2023), 505–511. https://doi.org/10.18576/amis/170318 doi: 10.18576/amis/170318
    [22] O. Ala'yed, B. Batiha, D. Alghazo, F. Ghanim, Cubic B-spline method for the solution of the quadratic Riccati differential equation, AIMS Math., 8 (2023), 9576–9584. https://doi.org 10.3934/math.2023483
    [23] R. Abdelrahim, Z. Omar, O. Ala'yed, B. Batiha, Hybrid third derivative block method for the solution of general second order initial value problems with generalized one step point, Eur. J. Pure Appl. Math., 12 (2019), 1199–1214. https://doi.org/10.29020/nybg.ejpam.v12i3.3425 doi: 10.29020/nybg.ejpam.v12i3.3425
    [24] O. H. Ala'yed, T. Y. Ying, A. Saaban, New fourth order quartic spline method for solving second order boundary value problems, Matematika, 31 (2015), 149–157. https://doi.org/10.11113/matematika.v31.n2.789 doi: 10.11113/matematika.v31.n2.789
    [25] A. S. Heilat, N. N. Hamid, A. I. M. Ismail, Extended cubic B-spline method for solving a linear system of second-order boundary value problems, SpringerPlus, 5 (2016), 1314. https://doi.org/10.1186/s40064-016-2936-4 doi: 10.1186/s40064-016-2936-4
    [26] O. Ala'yed, T. Y. Ying, A. Saaban, Quintic spline method for solving linear and nonlinear boundary value problems, Sains Malays., 45 (2016), 1007–1012.
    [27] B. Batiha, F. Ghanim, O. Ala'yed, R. E. Hatamleh, A. S. Heilat, H. Zureigat, et al., Solving multispecies Lotka-Volterra equations by the Daftardar-Gejji and Jafari method, Int. J. Math. Math. Sci., 2022 (2022), 1839796. https://doi.org/10.1155/2022/1839796 doi: 10.1155/2022/1839796
    [28] O. Ala'yed, T. Y. Ying, A. Saaban, Numerical solution of first order initial value problem using quartic spline method, AIP Conf. Proc., 1691 (2015), 040003. https://doi.org/10.1063/1.4937053 doi: 10.1063/1.4937053
    [29] M. Al-Towaiq, O. Ala'yed, An efficient algorithm based on the cubic spline for the solution of Bratu-type equation, J. Interdiscip. Math., 17 (2014), 471–484. https://doi.org/10.1080/09720502.2013.842050 doi: 10.1080/09720502.2013.842050
    [30] O. Ala'yed, B. Batiha, R. Abdelrahim, A. A. Jawarneh, On the numerical solution of the nonlinear Bratu type equation via quintic B-spline method, J. Interdiscip. Math., 22 (2019), 405–413. https://doi.org/10.1080/09720502.2019.1624305 doi: 10.1080/09720502.2019.1624305
    [31] A. S. Heilat, B. Batiha, T. Qawasmeh, R. Hatamleh, Hybrid cubic B-spline method for solving a class of singular boundary value problems, Eur. J. Pure Appl. Math., 16 (2023), 751–762. https://doi.org/10.29020/nybg.ejpam.v16i2.4725 doi: 10.29020/nybg.ejpam.v16i2.4725
    [32] S. E. Kutluay, Y. U. Ucar, Numerical solutions of the coupled Burgers' equation by the Galerkin quadratic B‐spline finite element method, Math. Methods Appl. Sci., 36 (2013), 2403–2415. https://doi.org/10.1002/mma.2767 doi: 10.1002/mma.2767
    [33] N. Ezhov, F. Neitzel, S. Petrovic, Spline approximation, part 1: basic methodology, J. Appl. Geod., 12 (2018), 139–55. https://doi.org/10.1515/jag-2017-0029 doi: 10.1515/jag-2017-0029
    [34] N. Ezhov, F. Neitzel, S. Petrovic, Spline approximation, part 2: from polynomials in the monomial basis to B-splines: A derivation, Mathematics, 9 (2021), 2198. https://doi.org/10.3390/math9182198 doi: 10.3390/math9182198
    [35] R. K. Lodhi, H. K. Mishra, Quintic B-spline method for numerical solution of fourth order singular perturbation boundary value problems, Stud. Univ. Babeş-Bolyai Math., 63 (2018), 141–151. https://doi.org/10.24193/subbmath.2018.1.09 doi: 10.24193/subbmath.2018.1.09
    [36] S. Özer, Numerical solution of the Rosenau-KdV-RLW equation by operator splitting techniques based on B‐spline collocation method, Numer. Methods Partial Differ. Equ., 35 (2019), 1928–1943. https://doi.org/10.1002/num.22387 doi: 10.1002/num.22387
    [37] A. M. Nagy, A. A. El-Sayed, A novel operational matrix for the numerical solution of nonlinear Lane-Emden system of fractional order, Comput. Appl. Math., 40 (2021), 85. https://doi.org/10.1007/s40314-021-01477-8 doi: 10.1007/s40314-021-01477-8
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1079) PDF downloads(69) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog