
This study evaluated the number of limit cycles for a class of piecewise Hamiltonian systems with two zones separated by two semi-straight lines. First, we obtained explicit expressions of higher Melnikov functions. Then we applied these expressions to find the upper bounds of the number of limit cycles bifurcated from a period annulus of a piecewise polynomial Hamiltonian system.
Citation: Wenwen Hou, Maoan Han. Melnikov functions and limit cycle bifurcations for a class of piecewise Hamiltonian systems[J]. AIMS Mathematics, 2024, 9(2): 3957-4013. doi: 10.3934/math.2024194
[1] | Hany A. Hosham, Alaa A. Alzulaibani, Tarek Sellami, Khaled Sioud, Thoraya N. Alharthi . A class of discontinuous systems exhibit perturbed period doubling bifurcation. AIMS Mathematics, 2024, 9(9): 25098-25113. doi: 10.3934/math.20241223 |
[2] | Ziguo Jiang . Limit cycles in an $ m $-piecewise discontinuous polynomial differential system. AIMS Mathematics, 2024, 9(2): 3613-3629. doi: 10.3934/math.2024177 |
[3] | Chaoxiong Du, Wentao Huang . Hopf bifurcation problems near double positive equilibrium points for a class of quartic Kolmogorov model. AIMS Mathematics, 2023, 8(11): 26715-26730. doi: 10.3934/math.20231367 |
[4] | Jin Liao, André Zegeling, Wentao Huang . The uniqueness of limit cycles in a predator-prey system with Ivlev-type group defense. AIMS Mathematics, 2024, 9(12): 33610-33631. doi: 10.3934/math.20241604 |
[5] | Yudan Ma, Ming Zhao, Yunfei Du . Impact of the strong Allee effect in a predator-prey model. AIMS Mathematics, 2022, 7(9): 16296-16314. doi: 10.3934/math.2022890 |
[6] | Aeshah A. Raezah, Jahangir Chowdhury, Fahad Al Basir . Global stability of the interior equilibrium and the stability of Hopf bifurcating limit cycle in a model for crop pest control. AIMS Mathematics, 2024, 9(9): 24229-24246. doi: 10.3934/math.20241179 |
[7] | Danni Wang, Hongli Yang, Liangui Yang . Research on nonlinear infectious disease models influenced by media factors and optimal control. AIMS Mathematics, 2024, 9(2): 3505-3520. doi: 10.3934/math.2024172 |
[8] | Binfeng Xie, Na Zhang . Influence of fear effect on a Holling type III prey-predator system with the prey refuge. AIMS Mathematics, 2022, 7(2): 1811-1830. doi: 10.3934/math.2022104 |
[9] | Mohamed Lamine Sahari, Abdel-Kaddous Taha, Louis Randriamihamison . Exploring three periodic point dynamics in $ 2 $D spatiotemporal discrete systems. AIMS Mathematics, 2025, 10(3): 5021-5051. doi: 10.3934/math.2025230 |
[10] | Mauro Costantini, Pierpaolo Soravia . On the optimal second order decrease rate for nonlinear and symmetric control systems. AIMS Mathematics, 2024, 9(10): 28232-28255. doi: 10.3934/math.20241369 |
This study evaluated the number of limit cycles for a class of piecewise Hamiltonian systems with two zones separated by two semi-straight lines. First, we obtained explicit expressions of higher Melnikov functions. Then we applied these expressions to find the upper bounds of the number of limit cycles bifurcated from a period annulus of a piecewise polynomial Hamiltonian system.
In recent years, there has been a growing focus on the study of non-smooth systems, particularly piecewise near-Hamiltonian systems, see [4,18,19] and the references therein. Within the realm of bifurcation problems associated with piecewise smooth systems, a significant area of investigation involves determining the number of limit cycles or periodic solutions. This exploration can be considered an extension of the Hilbert's 16th problem. Researchers commonly employ two principal methods to analyze limit cycle bifurcations: the Melnikov function method [1,2,6,7,12,15,19,23] and the averaging method [3,4,9,13,14,16,17]. It was proved in [5,14] that the above two methods are equivalent in studying the number of limit cycles of planar C∞ near-Hamiltonian systems or piecewise C∞ near-integrable systems in two or higher dimensional spaces.
In 2010, Liu and Han [12] considered a piecewise near-Hamiltonian system of the form
{˙x=H+y(x,y)+ϵf+(x,y),˙y=−H+x(x,y)+ϵg+(x,y),x>0, |
{˙x=H−y(x,y)+ϵf−(x,y),˙y=−H−x(x,y)+ϵg−(x,y),x≤0, |
where H±x,H±y,f±,g±∈C∞, and ϵ≥0 is a small real parameter, and established a formula of the first order Melnikov function which was widely used in studying the number of limit cycles bifurcated from periodic orbits, see [8,10,21] for example. Recently, more general results have appeared for piecewise smooth systems with multiple zones [11,18,20,24]. For instance, Tian and Han [18] studied the number of limit cycles bifurcated from a period annulus of a class of planar piecewise near-Hamiltonian systems with three different switching curves. The authors [11] investigated limit cycle bifurcations in piecewise near-Hamiltonian systems with multiple switching curves and obtained a formula of the first order Melnikov function. Yang, Yang and Yu [23] studied a planar piecewise Hamiltonian system with two zones separated by the two semi-straight lines and presented expressions of the first and second order Melnikov functions. In [22], Yang, Han and Huang considered a piecewise Hamiltonian system of the form
˙x=Hy,˙y=−Hx,x≠0, |
where
H(x,y)={H+(x,y),x>0,H−(x,y),x<0, |
and H±(x,y)∈Cω with H±(0,0)=0. They studied the number of limit cycles appearing in Hopf bifurcations of piecewise planar Hamiltonian system.
Motivated by the works mentioned above, in this paper, we consider a piecewise Hamiltonian system of the form
{˙x=Hy(x,y,ϵ),˙y=−Hx(x,y,ϵ), | (1.1) |
where
H(x,y,ϵ)={H+(x,y,ϵ),(x,y)∈Σ1,H−(x,y,ϵ),(x,y)∈Σ2,− |
H±(x,y,ϵ)=H±0(x,y)+ϵH±1(x,y)+ϵ2H±2(x,y)+⋯, | (1.2) |
with H±i(x,y)∈C∞,i=0,1,2,⋯, ϵ≥0 is a small real parameter, Σ1 and Σ2 are the regions with a common boundary consisting of two semi-straight lines. Let Σ1∪Σ2⊂R2 with lj⊂Σj, ¯l1∪¯l2=¯Σ1∩¯Σ2, and Σ1∩Σ2=∅. Suppose that the two lines satisfy
lj⊂{(x,kjx)|μjx>0},j=1,2, |
where μ1,μ2=±1 with (k1,μ1)≠(k2,μ2), see Figure 1. It is easy to see that the condition (k1,μ1)≠(k2,μ2) means l1≠l2. When k1=k2 and μ1=−μ2, the two semi-straight lines degenerate into a regular single line. The authors in [23] pointed that when the separation line is nonregular, there will be more limit cycles in general.
The rest of this paper is organized as follows. In Section 2, we establish a bifurcation function of system (1.1) and present expressions of any order Melnikov functions. In Section 3, we give an application to illustrate our results and estimate the number of limit cycles bifurcated from a piecewise polynomial Hamiltonian system.
Consider system (1.1). We make the following basic assumptions for the unperturbed system (1.1)|ϵ=0 as in [11]:
(A1A1) There exists an interval J=(α,β) and two points A0(h)=(a0(h),k1a0(h))∈l1 and A10(h)=(a10(h),k2a10(h))∈l2 such that for h∈J
H+0(A0(h))=H+0(A10(h))=h,H−0(A0(h))=H−0(A10(h)). | (2.1) |
(A2A2) There is a family of closed orbits denoted by Lh=L1h∪L2h,h∈J with clockwise orientation, where L1h is defined by H+0(x,y)=h, (x,y)∈Σ1, starting from A0(h) and ending at A10(h), and L2h is defined by H−0(x,y)=H−(A0(h)), (x,y)∈Σ2, starting from A10(h) and ending at A0(h).
(A3A3) The arcs L1h and L2h are not tangent to the switching lines l1 and l2 at points A0(h) and A10(h) for h∈J. In other words, for each h∈J,
∂H±0∂x(A10(h))a′10(h)+k2∂H±0∂y(A10(h))a′10(h)≠0,∂H±0∂x(A0(h))a′0(h)+k1∂H±0∂y(A0(h))a′0(h)≠0. | (2.2) |
Our main goal is to study the number of limit cycles bifurcated from the period annulus {Lh}h∈J. First of all, we introduce a bifurcation function of system (1.1). Consider the orbit of system (1.1) starting from A0(h)∈l1. For sufficiently small |ϵ|>0, it has a first intersection point with the line l2, denoted by
A1(ϵ,h)=(a(ϵ,h),k2a(ϵ,h)), | (2.3) |
such that ^A0A1⊂¯Σ1.
The orbit of system (1.1) starting from A1(ϵ,h)∈l2 has its first intersection point with the line l1, denoted by
B(ϵ,h)=(b(ϵ,h),k1b(ϵ,h)). | (2.4) |
Then, ^A1B⊂¯Σ2. See Figure 1 for illustration. From [11] we know that if assumptions (A1A1)–(A3A3) hold, then the functions A0(h),A10(h), A1(ϵ,h), and B(ϵ,h) are all C∞ smooth with respect to (h,ϵ) on their domain.
Following [11,12], for any integer k≥1, we can write for h∈J and |ϵ|>0 sufficiently small
H+0(B(ϵ,h))−H+0(A0(h))=ϵF(h,ϵ)=k∑j=1ϵjMj(h)+O(ϵk+1). | (2.5) |
Here, the functions F(h,ϵ) and Mj(h) are called a bifurcation function and the jth order Melnikov function of system (1.1), respectively. The orbit from A0(h) to B(ϵ,h) defines a Poincaré map or return map of system (1.1). From [7], we have the following bifurcation theorem.
Lemma 1. [7] Let the assumptions (A1A1)–(A3A3) be satisfied. Suppose that for all 1≤j≤k−1, Mj(h)≡0 in (2.5) and that Mk(h) has at most l zeros in h∈J, multiplicity taken into account. Then, for small |ϵ|>0, system (1.1) has at most l limit cycles bifurcating from the period annulus {Lh}h∈J, multiplicity taken into account.
The aim of this paper is to develop formulas of the Melnikov functions up to higher order. From (2.5), it is obvious that
Mj(h)=1j!∂jV+0∂ϵj(0,h),1≤j≤k, | (2.6) |
where V+0(ϵ,h)=H+0(B(ϵ,h)).
Before presenting our main results, we first give four preliminary lemmas which will be used in deducing expressions of Mj(h) in (2.6). For convenience, we introduce the following notations and functions.
Define the following functions of (ϵ,h)
S±i(ϵ,h)=H±i(A1(ϵ,h)),V±i(ϵ,h)=H±i(B(ϵ,h)),f±ir(ϵ,h)=∂rS±i∂ϵr(ϵ,h),g±ir(ϵ,h)=∂rV±i∂ϵr(ϵ,h),K±ij(ϵ,h)=j∑p=0Cpjkp2∂jH±i∂xj−p∂yp(A1(ϵ,h)),W±ij(ϵ,h)=j∑q=0Cqjkq1∂jH±i∂xj−q∂yq(B(ϵ,h)),i=0,1,2,⋯,j=1,2,3,⋯. | (2.7) |
Define the following functions of h
v±i(h)=H±i(A0(h))−H±i(A10(h)),f±ir(h)=f±ir(0,h)=∂rS±i∂ϵr(0,h),g±ir(h)=g±ir(0,h)=∂rV±i∂ϵr(0,h),K±ij(h)=K±ij(0,h)=j∑p=0Cpjkp2∂jH±i∂xj−p∂yp(A10(h)),W±ij(h)=W±ij(0,h)=j∑q=0Cqjkq1∂jH±i∂xj−q∂yq(A0(h)),i=0,1,2,⋯,j=1,2,3,⋯. | (2.8) |
For integers r and l satisfying 1≤l≤r, we define
Trl={(b1,b2,⋯,br)|b1+2b2+⋯+rbr=r,l=b1+b2+⋯+br,b1,⋯,br∈N},N(b1,b2,⋯,br)=r!b1!b2!2!b2⋯br!r!br, | (2.9) |
where N represents the set of non-negative integers. Taking r=4 as an example, we have
T41={(0,0,0,1)},T42={(0,2,0,0),(1,0,1,0)},T43={(2,1,0,0)},T44={(4,0,0,0)}. |
Lemma 2. Under the notations in (2.8), we have
∂K±ij∂ϵ(ϵ,h)=K±i,j+1(ϵ,h)∂a∂ϵ(ϵ,h),∂W±ij∂ϵ(ϵ,h)=W±i,j+1(ϵ,h)∂b∂ϵ(ϵ,h). | (2.10) |
Proof. Taking the partial derivative with respect to ϵ on both sides of K±ij(ϵ,h) in (2.7) gives
∂K±ij∂ϵ(ϵ,h)=(ω1(ϵ,h)+ω2(ϵ,h))∂a∂ϵ(ϵ,h), | (2.11) |
where
ω1(ϵ,h)=j∑p=0Cpjkp2∂j+1H±i∂xj+1−p∂yp(A1(ϵ,h)),ω2(ϵ,h)=j∑p=0Cpjkp+12∂j+1H±i∂xj−p∂yp+1(A1(ϵ,h)). |
By direct calculation, we have
ω1(ϵ,h)=C0jk02∂j+1H±i∂xj+1(A1(ϵ,h))+C1jk12∂j+1H±i∂xj∂y(A1(ϵ,h))+C2jk22∂j+1H±i∂xj−1∂y2(A1(ϵ,h))+⋯+Cjjkj2∂j+1H±i∂x∂yj(A1(ϵ,h)),ω2(ϵ,h)=C0jk12∂j+1H±i∂xj∂y(A1(ϵ,h))+C1jk22∂j+1H±i∂xj−1∂y2(A1(ϵ,h))+C2jk32∂j+1H±i∂xj−2∂y3(A1(ϵ,h))+⋯+Cjjkj+12∂j+1H±i∂yj+1(A1(ϵ,h)). |
Adding the above two equalities together, we have
ω1(ϵ,h)+ω2(ϵ,h)=C0j+1k02∂j+1H±i∂xj+1(A1(ϵ,h))+j−1∑p=0(Cp+1j+Cpj)kp+12∂j+1H±i∂xj−p∂yp+1(A1(ϵ,h))+Cj+1j+1kj+12∂j+1H±i∂yj+1(A1(ϵ,h)). | (2.12) |
Note that Cp+1j+Cpj=Cp+1j+1 and
j−1∑p=0Cp+1j+1kp+12∂j+1H±i∂xj−p∂yp+1(A1(ϵ,h))=j∑p=1Cpj+1kp2∂j+1H±i∂xj−p+1∂yp(A1(ϵ,h)). |
Substituting the above equality into (2.12) yields
ω1(ϵ,h)+ω2(ϵ,h)=j+1∑p=0Cpj+1kp2∂j+1H±i∂xj−p+1∂yp(A1(ϵ,h))∂a∂ϵ(ϵ,h). |
Hence, by (2.11), we have
∂K±i,j∂ϵ(ϵ,h)=K±i,j+1(ϵ,h)∂a∂ϵ(ϵ,h). |
W±ij(ϵ,h) in (2.10) can be obtained in a manner similar to the previous steps. This ends the proof.
Lemma 3. Under the notations in (2.8), we have
f±ir(ϵ,h)=r∑l=1∑(b1,⋯,br)∈TrlN(b1,⋯,br)K±il(ϵ,h)r∏j=1(∂ja∂ϵj(ϵ,h))bj,g±ir(ϵ,h)=r∑l=1∑(b1,⋯,br)∈TrlN(b1,⋯,br)W±il(ϵ,h)r∏j=1(∂jb∂ϵj(ϵ,h))bj. | (2.13) |
Proof. We continue our proof of the formula of f±ir(ϵ,h) in (2.13) by induction on r. For r=1, from the definition of f±ir(ϵ,h) in (2.7), we can obtain
f±i1(ϵ,h)=∂H±i∂x(A1(ϵ,h))∂a∂ϵ(ϵ,h)+k2∂H±i∂y(A1(ϵ,h))∂a∂ϵ(ϵ,h)=(∂H±i∂x(A1(ϵ,h))+k2∂H±i∂y(A1(ϵ,h)))∂a∂ϵ(ϵ,h)=K±i1(ϵ,h)∂a∂ϵ(ϵ,h)=∑(b1)∈T11N(b1)K±i1(ϵ,h)∏j=1(∂ja∂ϵj(ϵ,h))bj. |
Thus, the first formula in (2.13) is true for r=1.
Suppose that it is true for r=n. That is,
f±in(ϵ,h)=n∑l=1∑(b1,⋯,bn)∈TnlN(b1,⋯,bn)K±il(ϵ,h)n∏j=1(∂ja∂ϵj(ϵ,h))bj. |
We want to prove that the conclusion on f±ir(ϵ,h) in (2.13) is true for r=n+1. By the definition of Tnl and N(b1,⋯,bn) in (2.9), the above equality can be rewritten as
f±in(ϵ,h)=κ1(ϵ,h)+κ2(ϵ,h)+κ3(ϵ,h), | (2.14) |
where
κ1(ϵ,h)=K±i1(ϵ,h)∂na∂ϵn(ϵ,h),κ2(ϵ,h)=n−1∑l=2∑(b1,⋯,bn−1,0)∈TnlN(b1,⋯,bn−1,0)K±il(ϵ,h)n−1∏j=1(∂ja∂ϵj(ϵ,h))bj,κ3(ϵ,h)=K±in(ϵ,h)(∂a∂ϵ(ϵ,h))n. |
By the definition in (2.7), we have
f±i,n+1(ϵ,h)=∂n+1S±i∂ϵn+1(ϵ,h)=∂∂ϵ(∂nS±i∂ϵn(ϵ,h))=∂f±in∂ϵ(ϵ,h). |
By (2.14),
∂f±in∂ϵ(ϵ,h)=∂κ1∂ϵ(ϵ,h)+∂κ2∂ϵ(ϵ,h)+∂κ3∂ϵ(ϵ,h), | (2.15) |
where
∂κ1∂ϵ(ϵ,h)=∂K±i1∂ϵ(ϵ,h)∂na∂ϵn(ϵ,h)+K±i1(ϵ,h)∂n+1a∂ϵn+1(ϵ,h),∂κ2∂ϵ(ϵ,h)=n−1∑l=2∑(b1,⋯,bn−1,0)∈TnlN(b1,⋯,bn−1,0)[∂K±il∂ϵ(ϵ,h)n−1∏j=1(∂ja∂ϵj(ϵ,h))bj+K±il(ϵ,h)n−1∑p=1(bp(∂pa∂ϵp(ϵ,h))bp−1∂p+1a∂ϵp+1(ϵ,h)n−1∏j=1,p≠j(∂ja∂ϵj(ϵ,h))bj)],∂κ3∂ϵ(ϵ,h)=∂K±in∂ϵ(ϵ,h)(∂a∂ϵ(ϵ,h))n+nK±i,n(ϵ,h)(∂a∂ϵ(ϵ,h))n−1∂2a∂ϵ2(ϵ,h). |
By applying Lemma 2 to above equalities, we have
∂f±i,n∂ϵ(ϵ,h)=K±i1(ϵ,h)∂n+1a∂ϵn+1(ϵ,h)+n∑l=2∑(b1,⋯,bn,0)∈Tn+1,lN(b1,⋯,bn,0)K±il(ϵ,h)n∏j=1(∂ja∂ϵj(ϵ,h))bj+K±i,n+1(ϵ,h)(∂a∂ϵ(ϵ,h))n+1, |
which means that
f±i,n+1(ϵ,h)=n+1∑l=1∑(b1,⋯,bn+1)∈Tn+1,lN(b1,⋯,bn+1)K±il(ϵ,h)n+1∏j=1(∂ja∂ϵj(ϵ,h))bj. |
Therefore, the first formula in (2.13) is true for r=n+1. The second formula on g±i,n+1(ϵ,h) in (2.13) can also be proved in a similar manner. This ends the proof.
Lemma 4. Under the notations in (2.8), for the function a(ϵ,h) in (2.3), we have
∂a∂ϵ(0,h)=v+1(h)K+01(h),∂ja∂ϵj(0,h)=1K+01(h)[j!v+j(h)−j−1∑i=1j!(j−i)!j−i∑l=1∑(b1,⋯,bj−i)∈Tj−i,lN(b1,⋯,bj−i)K+il(h)j−i∏s=1ϕs(h)−j∑l=2∑(b1,⋯,bj−1,0)∈TjlN(b1,⋯,bj−1,0)K+0l(h)j−1∏s=1ϕs(h)],j≥2, |
where ϕs(h)=(∂sa∂ϵs(0,h))bs.
Proof. From (1.2),
H±(A1(ϵ,h),ϵ)=S±0(ϵ,h)+n∑j=1ϵjS±j(ϵ,h)+O(ϵn+1). |
For |ϵ|>0 sufficiently small, S±i(ϵ,h) has the following Taylor expansion in ϵ
S±i(ϵ,h)=H±i(A10(h))+n∑j=1ϵjj!f±ij(h)+O(ϵn+1). | (2.16) |
By using Lemma 3 and letting ϵ=0 in (2.13), we get
f±ir(h)=r∑l=1∑(b1,⋯,br)∈TrlN(b1,⋯,br)K±il(h)r∏j=1ϕj(h), | (2.17) |
where 1≤l≤r, Trl, and N(b1,⋯,br) are defined in (2.9).
Substituting (2.16) into the above equation yields
H±(A1(ϵ,h),ϵ)=H±0(A10(h))+n∑j=1ϵj[j−1∑i=01(j−i)!f±i,j−i(h)+H±j(A10(h))]+O(ϵn+1). | (2.18) |
Again, from (1.2),
H±(A0(h),ϵ)=H±0(A0(h))+n∑j=1ϵjH±j(A0(h))+O(ϵn+1). | (2.19) |
Then note that system (1.1) is Hamiltonian and
H+(A1(ϵ,h),ϵ)=H+(A0(h),ϵ). |
By inserting (2.19) and the expansion of H+(A1(ϵ,h),ϵ) in (2.18) into the above equality, and comparing the like powers of ϵ, we can obtain
j−1∑i=01(j−i)!f+i,j−i(h)+H+j(A10(h))=H+j(A0(h)),j=1,2,3,⋯. | (2.20) |
For j=1, (2.20) gives us
f+01(h)=H+1(A0(h))−H+1(A10(h)). |
Substituting (2.17) into the above equation, we have ∂a∂ϵ(0,h)=v+1(h)K+01(h).
In order to get ∂ja∂ϵj(0,h) for j≥2, substituting (2.17) into (2.20) and multiplying both sides of (2.20) by j! lead to
j−1∑i=0j!(j−i)!j−i∑l=1∑(b1,⋯,bj−i)∈Tj−i,lN(b1,⋯,bj−i)K+il(h)j−i∏s=1ϕs(h)=j!v+j(h). | (2.21) |
The left side of (2.21) can be rewritten as
j−i∑l=1∑(b1,⋯,bj)∈TjlN(b1,⋯,bj)K+0l(h)j∏s=1ϕs(h)+j−1∑i=1j!(j−i)!j−i∑l=1∑(b1,⋯,bj−i)∈Tj−i,lN(b1,⋯,bj−i)K+il(h)j−i∏s=1ϕs(h)=∑(b1,⋯,bj)∈Tj1N(b1,⋯,bj)K+01(h)j∏s=1ϕs(h)+j∑l=2∑(b1,⋯,bj)∈TjlN(b1,⋯,bj)K+0l(h)j∏s=1ϕs(h)+j−1∑i=1j!(j−i)!j−i∑l=1∑(b1,⋯,bj−i)∈Tj−i,lN(b1,⋯,bj−i)K+il(h)j−i∏s=1ϕs(h). | (2.22) |
From (2.9), we know that if l=1
Tj1={(0,⋯,0,1)},N(b1,⋯,bj)=1, | (2.23) |
and if l≥2, then
Tjl={(b1,b2,⋯,bj−1,0)|(b1+2b2+⋯+(j−1)bj−1=j,l=b1+b2+⋯+bj−1,b1,b2,⋯,bj−1∈N}. | (2.24) |
By direct calculation from (2.23) and (2.24), if l=1, then
j∏s=1ϕs(h)=(∂a∂ϵ(0,h))0⋯(∂j−1a∂ϵj−1(0,h))0(∂ja∂ϵj(0,h))1=∂ja∂ϵj(0,h), | (2.25) |
and if l≥2, then
j∏s=1ϕs(h)=(∂a∂ϵ(0,h))b1⋯(∂j−1a∂ϵj−1(0,h))bj−1(∂ja∂ϵj(0,h))0=j−1∏s=1ϕs(h). | (2.26) |
Substituting (2.23)–(2.26) into (2.22) and (2.21), we have
K+01(h)∂ja∂ϵj(0,h)+j∑l=2∑(b1,⋯,bj−1,0)∈TjlN(b1,⋯,bj−1,0)K+0l(h)j−1∏s=1ϕs(h)+j−1∑i=1j!(j−i)!j−i∑l=1∑(b1,⋯,bj−i)∈Tj−i,lN(b1,⋯,bj−i)K+il(h)j−i∏s=1ϕs(h)=j!v+j(h), |
which implies that
∂ja∂ϵj(0,h)=1K+01(h)[j!v+j(h)−j−1∑i=1j!(j−i)!j−i∑l=1∑(b1,⋯,bj−i)∈Tj−i,lN(b1,⋯,bj−i)K+il(h)j−i∏s=1ϕs(h)−j∑l=2∑(b1,⋯,bj−1,0)∈TjlN(b1,⋯,bj−1,0)K+0l(h)j−1∏s=1ϕs(h)],j≥2. |
For example,
∂2a∂ϵ2(0,h)=1K+01(h)[2!v+2(h)−2!1!K+11(h)∂a∂ϵ(0,h)−K+02(h)(∂a∂ϵ(0,h))2],∂3a∂ϵ3(0,h)=1K+01(h)[3!v+3(h)−3!2!(K+11(h)∂2a∂ϵ2(0,h)+K+12(h)(∂a∂ϵ(0,h))2)−3!1!K+21(h)∂a∂ϵ(0,h)−(3K+02(h)∂a∂ϵ(0,h)∂2a∂ϵ2(0,h)+K+03(h)(∂a∂ϵ(0,h))3)]. |
This ends the proof.
Lemma 5. Under the notations in (2.8), for the function b(ϵ,h) in (2.4), we have
∂b∂ϵ(0,h)=1W−01(h)(−v−1(h)+K−01(h)∂a∂ϵ(0,h)),∂jb∂ϵj(0,h)=1W−01(h)[−j!v−j(h)+j−1∑i=0j!(j−i)!j−i∑l=1∑(b1,⋯,bj−i)∈Tj−i,lN(b1,⋯,bj−i)K−il(h)j∏s=1ϕs(h)−j∑l=2∑(b1,⋯,bj−1,0)∈TjlN(b1,⋯,bj−1,0)W−0l(h)j−1∏s=1ψs(h)−j−1∑i=1j!(j−i)!j−i∑l=1∑(b1,⋯,bj−i)∈Tj−i,lN(b1,⋯,bj−i)W−il(h)j−i∏s=1ψs(h)],j≥2, |
where
ϕs(h)=(∂sa∂ϵs(0,h))bs,ψs(h)=(∂sb∂ϵs(0,h))bs. |
Proof. We obtain from (1.2) that
H−(B(ϵ,h),ϵ)=V−0(ϵ,h)+n∑j=1ϵjV−j(ϵ,h)+O(ϵn+1). |
For |ϵ|>0 sufficiently small, V±i(ϵ,h) has the following Taylor expansion
V±i(ϵ,h)=H±i(A0(h))+n∑j=1ϵjj!g±ij(h)+O(ϵn+1),j≥1. | (2.27) |
By Lemma 3, we have
g±ir(h)=r∑l=1∑(b1,⋯,br)∈TrlN(b1,⋯,br)W±il(h)r∏j=1ψj(h), | (2.28) |
where 1≤l≤r. Trl and N(b1,⋯,br) are defined in (2.9). Substituting (2.27) into the above equation, similar to (2.18), we have
H−(B(ϵ,h),ϵ)=H−0(A0(h))+n∑j=1ϵj[j−1∑i=01(j−i)!g−i,j−i(h)+H−j(A0(h))]+O(ϵn+1). | (2.29) |
Noting that system (1.1) is Hamiltonian and
H−(A1(ϵ,h),ϵ)=H−(B(ϵ,h),ϵ), |
substituting H−(A1(ϵ,h),ϵ) in (2.18) and (2.29) into the equality above gives us
H−0(A10(h))+n∑j=1ϵj[j−1∑i=01(j−i)!f−i,j−i(h)+H−j(A10(h))]=H−0(A0(h))+n∑j=1ϵj[j−1∑i=01(j−i)!g−i,j−i(h)+H−j(A0(h))]. | (2.30) |
According to the second equation of (2.1) and comparing the like powers of ϵ on the left and right sides of (2.30), we have
j−1∑i=01(j−i)!f−i,j−i(h)+H−j(A10(h))=j−1∑i=01(j−i)!g−i,j−i(h)+H−j(A0(h)),j≥1. | (2.31) |
Taking j=1 in (2.31) gives us
f−01(h)+H−1(A10(h))=g−01(h)+H−1(A0(h)). |
Substituting (2.17) and (2.28) into the above equation yields
K−01(h)∂a∂ϵ(0,h)+H−1(A10(h))=W−01(h)∂b∂ϵ(0,h)+H−1(A0(h)), |
which gives us
∂b∂ϵ(0,h)=1W−01(h)(−v−1(h)+K−01(h)∂a∂ϵ(0,h)). |
For j≥2, in order to solve ∂jb∂ϵj(0,h) from (2.31), substituting (2.17) and (2.28) into (2.31) and multiplying both sides of (2.31) by j! yields
j−1∑i=0j!(j−i)!j−i∑l=1∑(b1,⋯,bj−i)∈Tj−i,lN(b1,⋯,bj−i)K−il(h)j−i∏s=1ϕs(h)+j!H−j(A10(h))=j−1∑i=0j!(j−i)!j−i∑l=1∑(b1,⋯,bj−i)∈Tj−i,lN(b1,⋯,bj−i)W−il(h)j−i∏s=1ψs(h)+j!H−j(A0(h)). | (2.32) |
Similar to (2.22), we have
j−1∑i=0j!(j−i)!j−i∑l=1∑(b1,⋯,bj−i)∈Tj−i,lN(b1,⋯,bj−i)W−il(h)j−i∏s=1ψs(h)=j−i∑l=1∑(b1,⋯,bj)∈TjlN(b1,⋯,bj)W−0l(h)j∏s=1ψs(h)+j−1∑i=1j!(j−i)!j−i∑l=1∑(b1,⋯,bj−i)∈Tj−i,lN(b1,⋯,bj−i)W−il(h)j−i∏s=1ψs(h)=∑(b1,⋯,bj)∈Tj1N(b1,⋯,bj)W−01(h)j∏s=1ψs(h)+j∑l=2∑(b1,⋯,bj)∈TjlN(b1,⋯,bj)W−0l(h)j∏s=1ψs(h)+j−1∑i=1j!(j−i)!j−i∑l=1∑(b1,⋯,bj−i)∈Tj−i,lN(b1,⋯,bj−i)W−il(h)j−i∏s=1ψs(h). |
Similar to (2.23) and (2.24), we can see that the above equation can be simplified to
j−1∑i=0j!(j−i)!j−i∑l=1∑(b1,⋯,bj−i)∈Tj−i,lN(b1,⋯,bj−i)W−il(h)j−i∏s=1ψs(h)=W−01(h)∂jb∂ϵj(0,h)+j∑l=2∑(b1,⋯,bj−1,0)∈TjlN(b1,⋯,bj−1,0)W−0l(h)j−1∏s=1ψs(h)+j−1∑i=1j!(j−i)!j−i∑l=1∑(b1,⋯,bj−i)∈Tj−i,lN(b1,⋯,bj−i)W−il(h)j−i∏s=1ψs(h). | (2.33) |
Substituting (2.33) into (2.32) yields
j−1∑i=0j!(j−i)!j−i∑l=1∑(b1,⋯,bj−i)∈Tj−i,lN(b1,⋯,bj−i)K−il(h)j−i∏s=1ϕs(h)+j!H−j(A10(h))=W−01(h)∂jb∂ϵj(0,h)+j∑l=2∑(b1,⋯,bj−1,0)∈TjlN(b1,⋯,bj−1,0)W−0l(h)j−1∏s=1ψs(h)+j−1∑i=1j!(j−i)!j−i∑l=1∑(b1,⋯,bj−i)∈Tj−i,lN(b1,⋯,bj−i)W−il(h)j−i∏s=1ψs(h)+j!H−j(A0(h)), |
which implies that
∂jb∂ϵj(0,h)=1W−01(h)[−j!v−j(h)+j−1∑i=0j!(j−i)!j−i∑l=1∑(b1,⋯,bj−i)∈Tj−i,lN(b1,⋯,bj−i)K−il(h)j−i∏s=1ϕs(h)−j∑l=2∑(b1,⋯,bj−1,0)∈TjlN(b1,⋯,bj−1,0)W−0l(h)j−1∏s=1ψs(h)−j−1∑i=1j!(j−i)!j−i∑l=1∑(b1,⋯,bj−i)∈Tj−i,lN(b1,⋯,bj−i)W−il(h)j−i∏s=1ψs(h)]. |
For example,
∂2b∂ϵ2(0,h)=1W−01(h)[−2!v−2(h)+2!2!(K−01(h)∂2a∂ϵ2(0,h)+K−02(h)(∂a∂ϵ(0,h))2)+2!1!K−11(h)∂a∂ϵ(0,h))−W−02(h)(∂b∂ϵ(0,h))2−2!1!W−11(h)∂b∂ϵ(0,h)]. |
This ends the proof.
Based on the previous discussion, we now present explicit formulas of any order Melnikov functions of piecewise Hamiltonian system (1.1).
Theorem 1. Consider system (1.1) with the assumptions (A1A1)-(A3A3). The Melnikov functions Mj(h) have the following formula for j≥2
Mj(h)=M+j(h)+W+01(h)W−01(h)M−j(h), |
where
M+j(h)=v+j(h)−j−1∑i=11(j−i)!j−i∑l=1∑(b1,⋯,bj−i)∈Tj−i,lN(b1,⋯,bj−i)K+il(h)j−i∏s=1ϕs(h)−1j!j∑l=2∑(b1,⋯,bj−1,0)∈TjlN(b1,⋯,bj−1,0)K+0l(h)j−1∏s=1ϕs(h)=K+01(h)j!∂ja∂ϵj(0,h), |
M−j(h)=−v−j(h)+j−1∑i=11(j−i)!j−i∑l=1∑(b1,⋯,bj−i)∈Tj−i,lN(b1,⋯,bj−i)K−il(h)j−i∏s=1ϕs(h)+1j!j∑l=2∑(b1,⋯,bj−1,0)∈TjlN(b1,⋯,bj−1,0)K−0l(h)j−1∏s=1ϕs(h). |
Proof. In order to get the explicit expressions of Mj(h) in (2.6), we need to obtain the Taylor expansion of the function H+0(B(ϵ,h)) with respect to ϵ, where B(ϵ,h)=(b(ϵ,h),k1b(ϵ,h)). To that end, we should first find ∂jb∂ϵj(0,h),j≥1, which are related to ∂ja∂ϵj(0,h),j≥1.
To simplify the proof, we have presented formulas of ∂ja∂ϵj(0,h),j≥1 in Lemma 4, and formulas of ∂jb∂ϵj(0,h),j≥1 in Lemma 5. Next, we want to find Mj(h). According to (2.28) and (2.6), if j≥2, then
Mj(h)=1j!g+0j(h)=1j![j∑l=1∑(b1,⋯,br)∈TjlN(b1,⋯,br)W+0l(h)j∏s=1ψs(h)]=1j![W+01(h)∂jb∂ϵj(0,h)+j∑l=2∑(b1,⋯,bj−1,0)∈TjlN(b1,⋯,bj−1,0)W+0l(h)j−1∏s=1ψs(h)]. | (2.34) |
Thus, when M1(h)=M2(h)=⋯=Mj−1≡0, we have
∂b∂ϵ(0,h)=∂2b∂ϵ2(0,h)=⋯=∂j−1b∂ϵj−1(0,h)≡0. | (2.35) |
Substituting (2.35) into (2.34) yields
Mj(h)=W+01(h)j!∂jb∂ϵj(0,h). |
By substituting the expression of ∂jb∂ϵj(0,h) in Lemma 5 into the above equation, we have
Mj(h)=W+01(h)j!W−01(h)[−j!v−j(h)+j−1∑i=0j!(j−i)!j−i∑l=1∑(b1,⋯,bj−i)∈Tj−i,lN(b1,⋯,bj−i)K−il(h)j−i∏s=1ϕs(h)]=W+01(h)W−01(h)[−v−j(h)+j−1∑i=01(j−i)!j−i∑l=1∑(b1,⋯,bj−i)∈Tj−i,lN(b1,⋯,bj−i)K−il(h)j−i∏s=1ϕs(h)]. |
According to the derivation of (2.22), (2.23), and (2.24), the above equation can be written as
Mj(h)=W+01(h)W−01(h)[−v−j(h)+1j!K−01(h)∂ja∂ϵj(0,h)+1j!j∑l=2∑(b1,⋯,bj−1,0)∈TjlN(b1,⋯,bj−1,0)K−0l(h)j−1∏s=1ϕs(h)+j−1∑i=11(j−i)!j−i∑l=1∑(b1,⋯,bj−i)∈Tj−i,lN(b1,⋯,bj−i)K−il(h)j−i∏s=1ϕs(h)]. | (2.36) |
From Lemma 4, it can be calculated directly that
1j!K−01(h)∂ja∂ϵj(0,h)=K−01(h)K+01(h)[v+j(h)−j−1∑i=11(j−i)!j−i∑l=1∑(b1,⋯,bj−i)∈Tj−i,lN(b1,⋯,bj−i)K+il(h)j−i∏s=1ϕs(h)−1j!j∑l=2∑(b1,⋯,bj−1,0)∈TjlN(b1,⋯,bj−1,0)K+0l(h)j−1∏s=1ϕs(h)]. |
Substituting the above equality into (2.36) gives us
Mj(h)=W+01(h)W−01(h)K−01(h)K+01(h)[v+j(h)−j−1∑i=11(j−i)!j−i∑l=1∑(b1,⋯,bj−i)∈Tj−i,lN(b1,⋯,bj−i)K+il(h)j−i∏s=1ϕs(h)−1j!j∑l=2∑(b1,⋯,bj−1,0)∈TjlN(b1,⋯,bj−1,0)K+0l(h)j−1∏s=1ϕs(h)]+W+01(h)W−01(h)[−v−j(h)+j−1∑i=11(j−i)!j−i∑l=1∑(b1,⋯,bj−i)∈Tj−i,lN(b1,⋯,bj−i)K−il(h)j−i∏s=1ϕs(h)+1j!j∑l=2∑(b1,⋯,bj−1,0)∈TjlN(b1,⋯,bj−1,0)K−0l(h)j−1∏s=1ϕs(h)]. | (2.37) |
According to Theorem 2.2 in [25], we know
W+01(h)W−01(h)K−01(h)K+01(h)=1. |
Hence, (2.37) becomes
Mj(h)=M+j(h)+W+01(h)W−01(h)M−j(h), |
where
M+j(h)=v+j(h)−j−1∑i=11(j−i)!j−i∑l=1∑(b1,⋯,bj−i)∈Tj−i,lN(b1,⋯,bj−i)K+il(h)j−i∏s=1ϕs(h)−1j!j∑l=2∑(b1,⋯,bj−1,0)∈TjlN(b1,⋯,bj−1,0)K+0l(h)j−1∏s=1ϕs(h)=K+01(h)j!∂ja∂ϵj(0,h), |
M−j(h)=−v−j(h)+j−1∑i=11(j−i)!j−i∑l=1∑(b1,⋯,bj−i)∈Tj−i,lN(b1,⋯,bj−i)K−il(h)j−i∏s=1ϕs(h)+1j!j∑l=2∑(b1,⋯,bj−1,0)∈TjlN(b1,⋯,bj−1,0)K−0l(h)j−1∏s=1ϕs(h). |
For example, when j=2,3, we have
M+2(h)=v+2(h)−K+11(h)∂a∂ϵ(0,h)−12!K+02(h)(∂a∂ϵ(0,h))2=K+01(h)2!∂2a∂ϵ2(0,h),M−2(h)=−v−2(h)+K−11(h)∂a∂ϵ(0,h)+12!K−02(h)(∂a∂ϵ(0,h))2,M+3(h)=v+3(h)−12![K+11(h)∂2a∂ϵ2(0,h)+K+12(h)(∂a∂ϵ(0,h))2]−11!K+21(h)∂a∂ϵ(0,h)−13![3K+02(h)∂a∂ϵ(0,h)∂2a∂ϵ2(0,h)+K+03(h)(∂a∂ϵ(0,h))3]=K+01(h)3!∂3a∂ϵ3(0,h),M−3(h)=−v−3(h)+12![K−11(h)∂2a∂ϵ2(0,h)+K−12(h)(∂a∂ϵ(0,h))2]+11!K−21(h)∂a∂ϵ(0,h)+13![3K−02(h)∂a∂ϵ(0,h)∂2a∂ϵ2(0,h)+K−03(h)(∂a∂ϵ(0,h))3]. |
The proof is completed.
For j=1, the expression of M1(h) is given in [25], which is expressed by
M1(h)=Q(h)(−H−1(A0(h))+H−1(A10(h)))+H+1(A0(h))−H+1(A10(h)), | (2.38) |
where Q(h)=∂H+0∂x(A0(h))+k1∂H+0∂y(A0(h))∂H−0∂x(A0(h))+k1∂H−0∂y(A0(h)).
To illustrate the impact of one straight line and two semi-lines on the number of limit cycles in a system, we consider the following piecewise polynomial Hamiltonian perturbation of the linear center
{˙x=y+ϵH+y(x,y),˙y=−x−ϵH+x(x,y),(x,y)∈Σ1,{˙x=y+ϵH−y(x,y),˙y=−x−ϵH−x(x,y),(x,y)∈Σ2, | (2.39) |
where 0<ϵ≪1,
H+(x,y)=a+01y+a+02y2+a+11xy+a+20x2,H−(x,y)=a−02y2+a−11xy+a−20x2. | (2.40) |
Case 1: l=l1∪l2={(x,x)|x∈R}. See Figure 2(a).
Case 2: l1={(x,x)|x>0} and l2={(x,−x)|x>0}. See Figure 2(b).
By direct calculation, we have
M1(h)=2a+01√h | (2.41) |
for Case 1 and
M1(h)=2a+01√h+2(a+11−a−11)(√h)2 | (2.42) |
for Case 2.
From (2.41) and (2.42), one can see that system (2.39) has no limit cycle in Case 1 and one limit cycle in Case 2 if a+01<0 and a+11>a−11.
In this section, as an application of the main results, we consider a piecewise Hamiltonian polynomial system of the form
{˙x=−y+ϵH1+y(x,y)+ϵ2H2+y(x,y)+ϵ3H3+y(x,y)+ϵ4H4+y(x,y),˙y=1−x−ϵH1+x(x,y)−ϵ2H2+x(x,y)−ϵ3H3+x(x,y)−ϵ4H4+x(x,y),(x,y)∈Σ1,{˙x=−y+ϵH1−y(x,y)+ϵ2H2−y(x,y)+ϵ3H3−y(x,y)+ϵ4H4−y(x,y),˙y=x−ϵH1−x(x,y)−ϵ2H2−x(x,y)−ϵ3H3−x(x,y)−ϵ4H4−x(x,y),(x,y)∈Σ2, | (3.1) |
where 0<ϵ≪1, Hi±x(x,y) and Hi±y(x,y) represent the partial derivatives of the function H±i(x,y) with respect to x and y, respectively,
H±1(x,y)=m+1∑i+j=1a±ijxiyj,H±2(x,y)=m+1∑i+j=1b±ijxiyj,H±3(x,y)=m+1∑i+j=1c±ijxiyj,H±4(x,y)=m+1∑i+j=1d±ijxiyj, | (3.2) |
and Σ1 and Σ2 are the regions bounded by the two semi-straight lines l1:y=x,x>0 and l2:y=−x,x>0. See Figure 3 for illustration.
Obviously, for (3.1) we have
H+0(x,y)=12[(x−1)2−y2],H−0(x,y)=−12(x2+y2). |
Let
H0(x,y)={H+0(x,y),(x,y)∈Σ1,H−0(x,y),(x,y)∈Σ2. | (3.3) |
In this case, we have A0(h)=(−2h−12,−2h−12) and A10(h)=(−2h−12,2h−12). For any integer m, we further investigate the upper bound of the number of limit cycles by calculating M1(h),M2(h),M3(h), and M4(h) for piecewise polynomial Hamiltonian system (3.1).
Theorem 2. If the first order Melnikov function M1(h) of (3.1) is not zero identically, then for sufficiently small |ϵ|>0, it has at most m+1 limit cycles bifurcated from the period annulus defined by {Lh}h∈J, multiplicity taken into account.
Proof. Below, we give an expression of M1(h) to estimate the maximum number of limit cycles of system (3.1). According to (2.38), the first order Melnikov function of system (3.1) is
M1(h)=W+01(h)W−01(h)(−v−1(h))+v+1(h). | (3.4) |
According to (2.8), we have
W+01(h)=−1,W−01(h)=2h−1. | (3.5) |
According to (2.8) and (3.2), we have
v±1(h)=m+1∑i+j=1a±ij(12)i+j(−1)i[(−1)j−1](2h−1)i+j. | (3.6) |
Substituting (3.5) and (3.6) into (3.4) yields
M1(h)=m+1∑i+j=1[a−ij(12)i+j(−1)i[(−1)j−1](2h−1)i+j−1+a+ij(12)i+j(−1)i[(−1)j−1](2h−1)i+j]=−a−01+m∑k=1[(−1)k2k−1∑i≥0,j≥0,i+2j+1=ka+i,2j+1+(−1)k+12k∑i≥0,j≥0,i+2j+1=k+1a−i,2j+1](2h−1)k+∑k=m+1[(−1)k2k−1∑i≥0,j≥0,i+2j+1=ka+i,2j+1](2h−1)k. | (3.7) |
From (3.7) it is easy to observe that M1(h) has at most m+1 zeros in h on (0,+∞), multiplicity taken into account. Hence, by Lemma 1, system (3.1) has at most n limit cycles bifurcated from the period annulus {Lh}h∈J, multiplicity taken into account.
Theorem 3. Suppose that M1(h)≡0 and M2(h)≢0. Then, for sufficiently small |ϵ|>0, system (3.1) has at most 2m limit cycles bifurcated from the period annulus defined by {Lh}h∈J, multiplicity taken into account.
Proof. When M1(h)≡0, we can obtain from (3.7) that
a−01=0,∑i≥0,j≥0,i+2j+1=ka+i,2j+1=12∑i≥0,j≥0,i+2j+1=k+1a−i,2j+1,k=1,⋯,m,∑i≥0,j≥0,i+2j+1=m+1a+i,2j+1=0. |
Below, we give an expression of M2(h) in the case of M1(h)≡0 to estimate the maximum number of limit cycles of system (3.1). According to Theorem 1, the second order Melnikov function of system (3.1) is
M2(h)=M+2(h)+W+01(h)W−01(h)M−2(h), | (3.8) |
where
M+2(h)=v+2(h)−K+11(h)v+1(h)K+01(h)−K+02(h)2(v+1(h)K+01(h))2,M−2(h)=−v−2(h)+K−11(h)v+1(h)K+01(h)+K−02(h)2(v+1(h)K+01(h))2. | (3.9) |
In the following, we calculate the expressions of K+01(h), K±02(h), K±11(h), and v±2(h). According to (2.8), (3.2), and (3.3), we have
K+01(h)=(∂H+0∂x−∂H+0∂y)|A10(h)=−1,K+02(h)=(∂2H+0∂x2−2∂2H+0∂x∂y+∂2H+0∂y2)|A10(h)=0,K−02(h)=(∂2H−0∂x2−2∂2H−0∂x∂y+∂2H−0∂y2)|A10(h)=−2. | (3.10) |
According to (2.8) and (3.2), we have
v±2(h)=H±2(A0)−H±2(A10)=m+1∑i+j=1b±ij(12)i+j(−1)i[(−1)j−1](2h−1)i+j. | (3.11) |
Similarly, according to (2.8) and (3.2), we have
K±11(h)=(∂H±1∂x−∂H±1∂y)|A10(h)=m+1∑i+j=1a±ij(12)i+j−1(i+j)(−1)i−1(2h−1)i+j−1. | (3.12) |
Substituting (3.10)–(3.12) into (3.8) yields
M2(h)=−12h−1[−v−2(h)−K−11(h)v+1(h)−(v+1(h))2]+v+2(h)+K+11(h)v+1(h)=G3(h)+G4(h), | (3.13) |
where
G3(h)=v−2(h)2h−1+v+2(h),G4(h)=(K−11(h)+(2h−1)K+11(h)+v+1(h))v+1(h)2h−1. |
Inserting (3.11) into G3(h) yields
G3(h)=m+1∑i+j=1[b−ij(12)i+j(−1)i[(−1)j−1](2h−1)i+j−1+b+ij(12)i+j(−1)i[(−1)j−1](2h−1)i+j]=−b−01+m∑k=1[(−1)k2k−1∑i≥0,j≥0,i+2j+1=kb+i,2j+1+(−1)k−12k∑i≥0,j≥0,i+2j+1=k+1b−i,2j+1](2h−1)k+∑k=m+1[(−1)k2k−1∑i≥0,j≥0,i+2j+1=kb+i,2j+1](2h−1)k≜−b−01+m∑k=1ξ1(k)(2h−1)k+∑k=m+1ξ2(k)(2h−1)k. | (3.14) |
Substituting (3.12) and (3.6) into G4(h) yields
G4(h)=[m+1∑i+j=1a−ij(−1)i−1(i+j)(12)i+j−1(2h−1)i+j−1+m+1∑i+j=1a+ij(12)i+j(−1)i[(−1)j−1](2h−1)i+j+m+1∑i+j=1a+ij(−1)i−1(i+j)(12)i+j−1(2h−1)i+j]m+1∑i+j=1a+ij(12)i+j(−1)i[(−1)j−1](2h−1)i+j−1≜G41(h)G42(h), | (3.15) |
where
G41(h)=m∑k=0[(−1)k−1k2k−1∑i+2j=ka+i,2j+(−1)k(k+1)2k∑i+2j=k+1a−i,2j](2h−1)k+∑k=m+1[(−1)k−1k2k−1∑i+2j=ka+i,2j](2h−1)k≜m∑k=0ξ4(k)(2h−1)k+∑k=m+1ξ5(k)(2h−1)k | (3.16) |
and
G42(h)=m−1∑k=0[(−1)k+12k∑i+2j+1=k+1a+i,2j+1](2h−1)k≜m−1∑k=0ξ3(k)(2h−1)k. | (3.17) |
Substituting (3.16) and (3.17) into (3.15) yields
G4(h)={m∑k=0ξ4(k)(2h−1)k+∑k=m+1ξ5(k)(2h−1)k}m−1∑k=0ξ3(k)(2h−1)k=2m−1∑k=0[∑k1+k3=k,0≤k1≤m,0≤k3≤m−1ξ4(k1)ξ3(k3)](2h−1)k+2m∑k=m+1[∑k2+k3=k,k2=m+1,0≤k3≤m−1ξ5(k2)ξ3(k3)](2h−1)k=−a+01a−10+m∑k=1[∑k1+k3=k,0≤k1≤m,0≤k3≤m−1ξ4(k1)ξ3(k3)](2h−1)k+∑k=m+1[∑k1+k3=k,0≤k1≤m,0≤k3≤m−1ξ4(k1)ξ3(k3)+∑k2+k3=k,k2=m+1,0≤k3≤m−1ξ5(k2)ξ3(k3)](2h−1)k+2m−1∑k=m+2[∑k1+k3=k,0≤k1≤m,0≤k3≤m−1ξ4(k1)ξ3(k3)+∑k2+k3=k,k2=m+1,0≤k3≤m−1ξ5(k2)ξ3(k3)](2h−1)k+∑k=2m[∑k2+k3=k,k2=m+1,0≤k3≤m−1ξ5(k2)ξ3(k3)](2h−1)k. | (3.18) |
Inserting (3.14) and (3.18) into (3.13) yields
M2(h)=−b−01−a+01a−10+m∑k=1[ξ1(k)+∑k1+k3=k,0≤k1≤m,0≤k3≤m−1ξ4(k1)ξ3(k3)](2h−1)k+∑k=m+1[ξ2(k)+∑k1+k3=k,0≤k1≤m,0≤k3≤m−1ξ4(k1)ξ3(k3)+∑k2+k3=k,k2=m+1,0≤k3≤m−1ξ5(k2)ξ3(k3)](2h−1)k+2m−1∑k=m+2[∑k1+k3=k,0≤k1≤m,0≤k3≤m−1ξ4(k1)ξ3(k3)+∑k2+k3=k,k2=m+1,0≤k3≤m−1ξ5(k2)ξ3(k3)](2h−1)k+∑k=2m[∑k2+k3=k,k2=m+1,k3=m−1ξ5(k2)ξ3(k3)](2h−1)k, | (3.19) |
where
ξ1(k)=(−1)k2k−1∑i≥0,j≥0,i+2j+1=kb+i,2j+1+(−1)k−12k∑i≥0,j≥0,i+2j+1=k+1b−i,2j+1,1≤k≤m,ξ2(k)=(−1)k2k−1∑i≥0,j≥0,i+2j+1=kb+i,2j+1,k=m+1,ξ3(k)=(−1)k+12k∑i+2j+1=k+1a+i,2j+1,0≤k≤m−1,ξ4(k)=(−1)k−1k2k−1∑i+2j=ka+i,2j+(−1)k(k+1)2k∑i+2j=k+1a−i,2j,0≤k≤m,ξ5(k)=(−1)k−1k2k−1∑i+2j=ka+i,2j,k=m+1. |
Thus, according to Lemma 1 and (3.19), system (3.1) has at most 2m limit cycles bifurcated from the period annulus defined by {Lh}h∈J by the second order Melnikov function, multiplicity taken into account.
Theorem 4. Suppose that M1(h)=M2(h)≡0 and M3(h)≢0. Then, for sufficiently small |ϵ|>0, system (3.1) has at most 3m−1 limit cycles bifurcated from the period annulus defined by {Lh}h∈J, multiplicity taken into account.
Proof. When M2(h)≡0, we can obtain from (3.19) that
−b−01−a+01a−10=0,ξ1(k)+∑k1+k3=k,0≤k1≤m,0≤k3≤m−1ξ4(k1)ξ3(k3)=0,1≤k≤m,ξ2(k)+∑k1+k3=k,0≤k1≤m,0≤k3≤m−1ξ4(k1)ξ3(k3)+∑k2+k3=k,k2=m+1,0≤k3≤m−1ξ5(k2)ξ3(k3)=0,k=m+1,∑k1+k3=k,0≤k1≤m,0≤k3≤m−1ξ4(k1)ξ3(k3)+∑k2+k3=k,k2=m+1,0≤k3≤m−1ξ5(k2)ξ3(k3),m+2≤k≤2m−1,ξ5(m+1)ξ3(m−1)=0. |
Below, we give an expression of M3(h) in the case of M1(h)=M2(h)≡0 to estimate the maximum number of limit cycles of system (3.1). According to Theorem 1, the third order Melnikov function of system (3.1) is
M3(h)=M+3(h)+W+01(h)W−01(h)M−3(h), | (3.20) |
where
M+3(h)=v+3(h)−K+21(h)v+1(h)K+01(h)−K+12(h)2(v+1(h)K+01(h))2−K+03(h)6(v+1(h)K+01(h))3−K+11(h)K+01(h)M+2(h)−K+02(h)K+01(h)v+1(h)K+01(h)M+2(h),M−3(h)=−v−3(h)+K−21(h)v+1(h)K+01(h)+K−12(h)2(v+1(h)K+01(h))2+K−03(h)6(v+1(h)K+01(h))3+K−11(h)K+01(h)M+2(h)+K−02(h)K+01(h)v+1(h)K+01(h)M+2(h). |
In the following, we calculate the expressions of K+12(h), K±21(h), v±3(h), and M+2(h) based on (2.8) and (3.3).
According to (2.8) and (3.2), we have
v±3(h)=H±3(A0)−H±3(A10)=m+1∑i+j=1c±ij(12)i+j(−1)i[(−1)j−1](2h−1)i+j. | (3.21) |
We can directly obtain from (2.8) and (3.2) that
K±21(h)=(∂H±2∂x−∂H±2∂y)|A10(h)=m+1∑i+j=1b±ij(−1)i−1(i+j)(12)i+j−1(2h−1)i+j−1. | (3.22) |
According to (2.8) and (3.2), we have
K±12(h)=(∂2H±1∂x2−2∂2H±1∂x∂y+∂2H±1∂y2)|A10(h)=m+1∑i+j=2(a±ij(12)i+j−2(−1)i(i+j−1)(i+j))(2h−1)i+j−2. | (3.23) |
According to (3.3), we have
K±03(h)=(∂3H±0∂x3−3∂3H±0∂x2∂y+3∂3H±0∂x∂y2−∂3H±0∂y3)|A10(h)=0. | (3.24) |
Substituting K+01(h) and K+02(h) in (3.10) into M+2(h) in (3.9) yields
M+2(h)=v+2(h)+K+11(h)v+1(h)=m+1∑i+j=1b+ij(12)i+j(−1)i[(−1)j−1](2h−1)i+j+m+1∑i+j=1a+ij(−1)i−1(i+j)(12)i+j−1(2h−1)i+j−1×m+1∑i+j=1a+ij(12)i+j(−1)i[(−1)j−1](2h−1)i+j. | (3.25) |
Substituting (3.10) and (3.24) into (3.20) yields
M3(h)=W+01(h)W−01(h)[−v−3(h)−K−21(h)v+1(h)+12K−12(h)(v+1(h))2−K−11(h)M+2(h)−2v+1(h)M+2(h)]+v+3(h)+K+21(h)v+1(h)−12K+12(h)(v+1(h))2+K+11(h)M+2(h)≜˜H1(h)+˜H2(h)+˜H3(h)+˜H4(h), | (3.26) |
where
˜H1(h)=−W+01(h)W−01(h)v−3(h)+v+3(h),˜H2(h)=(−W+01(h)W−01(h)K−21(h)+K+21(h))v+1(h),˜H3(h)=12(W+01(h)W−01(h)K−12(h)−K+12(h))(v+1(h))2,˜H4(h)=[−W+01(h)W−01(h)(K−11(h)+2v+1(h))+K+11(h)]M+2(h). | (3.27) |
In the following, we will give an expression of M3(h) by evaluating ˜H1(h),˜H2(h),˜H3(h), and ˜H4(h) one by one.
Inserting (3.21) and (3.51) into the first equation in (3.27) yields
˜H1(h)=12h−1v−3(h)+v+3(h)=m+1∑i+j=1[c−ij(12)i+j(−1)i[(−1)j−1](2h−1)i+j−1+c+ij(12)i+j(−1)i[(−1)j−1](2h−1)i+j]=−c−01+m∑k=1[(−1)k2k−1∑i≥0,j≥0,i+2j+1=kc+i,2j+1+(−1)k+12k∑i≥0,j≥0,i+2j+1=k+1c−i,2j+1](2h−1)k+∑k=m+1[(−1)k2k−1∑i≥0,j≥0,i+2j+1=kc+i,2j+1](2h−1)k≜−c−01+m∑k=1I1(k)(2h−1)k+∑k=m+1I2(k)(2h−1)k. | (3.28) |
We can obtain from (3.28) that
deg(˜H1(h))=m+1. | (3.29) |
Substituting (3.5) into the second equation in (3.27) gives
˜H2(h)=(K−21(h)+(2h−1)K+21(h))v+1(h)2h−1=˜H21(h)˜H22(h). | (3.30) |
For ˜H21(h), substituting (3.22) into (3.30) yields
˜H21(h)=m+1∑i+j=1[b−ij(−1)i−1(i+j)(12)i+j−1(2h−1)i+j−1+b+ij(−1)i−1(i+j)(12)i+j−1(2h−1)i+j]=m∑k=0[k2k−1∑i+j=k(−1)i−1b+ij+k+12k∑i+j=k+1(−1)i−1b−ij](2h−1)k+∑k=m+1[k2k−1∑i+j=k(−1)i−1b+ij](2h−1)k≜m∑k=0˜L(k)(2h−1)k+∑k=m+1˜N(k)(2h−1)k. | (3.31) |
We can obtain from (3.31) that
deg(˜H21(h))=m+1. | (3.32) |
For ˜H22(h), similar to G42(h), we have
˜H22(h)=G42(h)=m−1∑k=0ξ3(k)(2h−1)k. | (3.33) |
We can obtain from (3.33) that
deg(˜H22(h))=m−1. | (3.34) |
Substituting (3.31) and (3.33) into (3.30) gives
deg(˜H2(h))=2m. | (3.35) |
For ˜H3(h), inserting (3.10) into ˜H3(h) in (3.27) yields
˜H3(h)=12(−12h−1K−12(h)−K+12(h))(v+1(h))2=(−12K−12(h)−2h−12K+12(h))v+1(h)2h−1v+1(h)=˜H31(h)˜H32(h)˜H33(h). | (3.36) |
In the following, we give ˜H31(h), ˜H32(h), and ˜H33(h) one by one. Substituting (3.23) into ˜H31(h) yields
˜H31(h)=m+1∑i+j=2[(−1)i−1(12)i+j−1(i+j−1)(i+j)a−ij(2h−1)i+j−2+(−1)i−1(12)i+j−1(i+j−1)(i+j)a+ij(2h−1)i+j−1]=m−1∑k=0[(−1)kk(k+1)2k∑i+2j=k+1a+i,2j+(−1)k(k+1)2k∑i+2j+1=k+2a−i,2j+1+(−1)k+1(k+1)(k+2)2k+1∑i+2j=k+2a−i,2j](2h−1)k+∑k=m[(−1)kk(k+1)2k∑i+2j=k+1a+i,2j](2h−1)k≜m−1∑k=0˜P(k)(2h−1)k+∑k=m˜Q(k)(2h−1)k. | (3.37) |
We can obtain from (3.37) that
deg(˜H31(h))=m. | (3.38) |
For ˜H32(h), similar to G42(h), we have
˜H32(h)=G42(h)=m−1∑k=0ξ3(k)(2h−1)k. |
From the above equality, we can obtain
deg(˜H32(h))=m−1. | (3.39) |
Inserting (3.23) into ˜H33(h) gives us
˜H33(h)=m+1∑i+j=1a+ij(12)i+j(−1)i[(−1)j−1](2h−1)i+j=m∑k=1[(−1)k2k−1∑i+2j+1=ka+i,2j+1](2h−1)k=m∑k=1R(k)(2h−1)k. | (3.40) |
From (3.40), we can obtain
deg(˜H33(h))=m. | (3.41) |
Substituting (3.37) and (3.40) into (3.36) yields
deg(˜H3(h))=deg(˜H31(h))+deg(˜H32(h))+deg(˜H33(h))=3m−1. | (3.42) |
For ˜H4(h), inserting (3.10) into H4(h) in (3.27) yields
˜H4(h)=[12h−1(K−11(h)+2v+1(h))+K+11(h)]M+2(h)=[(K−11(h)+2v+1(h))+(2h−1)K+11(h)]M+2(h)2h−1=˜H41(h)˜H42(h). | (3.43) |
Plugging (3.12) into ˜H41(h) yields
˜H41(h)=m+1∑i+j=1[a−ij(−1)i−1(i+j)(12)i+j−1(2h−1)i+j−1+a+ij(12)i+j−1(−1)i[(−1)j−1](2h−1)i+j+a+ij(−1)i−1(i+j)(12)i+j−1(2h−1)i+j]=a−10+m∑k=1[(−1)k−1k2k−1∑i+2j=ka+i,2j+(−1)k2k∑i+2j+1=k+1a−i,2j+1+(−1)k(k+1)2k∑i+2j=k+1a−i,2j](2h−1)k+∑k=m+1[(−1)k−1k2k−1∑i+2j=ka+i,2j](2h−1)k≜a−10+m∑k=1˜S(k)(2h−1)k+∑k=m+1ξ5(k)(2h−1)k. | (3.44) |
From (3.44), we can obtain
\begin{equation} \begin{split} \deg\left(\widetilde{H}_{41}(h)\right) = m+1. \end{split} \end{equation} | (3.45) |
For \widetilde{H}_{42}(h) , we have
\begin{equation} \begin{split} \widetilde{H}_{42}(h) & = \frac{v_{2}^{+}(h)}{2h-1}+K_{11}^{+}\cdot\frac{v_{1}^{+}(h)}{2h-1} = \sum\limits_{k = 0}^{m}\left[\frac{(-1)^{k+1}}{2^{k}}\sum\limits_{i+2j+1 = k+1}b_{i,2j+1}^{+}\right](2h-1)^{k}\\ &+\bigg(\sum\limits_{k = 0}^{m-1}\left[\frac{(-1)^{k}(k+1)}{2^{k}}\sum\limits_{i+2j = k+1}a_{i,2j}^{+} +\frac{(-1)^{k+1}(k+1)}{2^{k+1}}\sum\limits_{i+2j+1 = k+2}a_{i,2j+1}^{-} \right](2h-1)^{k}\\ &+\sum\limits_{k = m}\left[\frac{(-1)^{k}(k+1)}{2^{k}}\sum\limits_{i+2j = k+1}a_{i,2j}^{+}\right](2h-1)^{k}\bigg)\\ &\times \sum\limits_{k = 0}^{m-1}\left[\frac{(-1)^{k+1}}{2^{k}}\sum\limits_{i+2j+1 = k+1}a_{i,2j+1}^{+}\right](2h-1)^{k}\\ &\triangleq\sum\limits_{k = 0}^{m}U(k)(2h-1)^{k}+\bigg(\sum\limits_{k = 0}^{m-1}V_{1}(k)(2h-1)^{k}+\sum\limits_{k = m}V_{2}(k)(2h-1)^{k}\bigg) \cdot\sum\limits_{k = 0}^{m-1}\xi_{3}(k)(2h-1)^{k}. \end{split} \end{equation} | (3.46) |
From (3.46), we can obtain
\begin{equation} \begin{split} \deg\left(\widetilde{H}_{42}(h)\right) = 2m-1. \end{split} \end{equation} | (3.47) |
Due to \xi_{5}(m+1)\xi_{3}(m-1) = 0 , substituting (3.44) and (3.46) into (3.43) gives us
\begin{equation} \begin{split} \deg\left(\widetilde{H}_{4}(h)\right) = \deg\left(\widetilde{H}_{41}(h)\right)+\deg\left(\widetilde{H}_{42}(h)\right) = 3m-1. \end{split} \end{equation} | (3.48) |
Substituting (3.28), (3.35), (3.42), and (3.48) into (3.26) yields
\begin{equation} \begin{split} \deg\left(M_{3}(h)\right)& = \max \left\{\deg\left(\widetilde{H}_{1}(h)\right),\deg\left(\widetilde{H}_{2}(h)\right), \deg\left(\widetilde{H}_{3}(h)\right),\deg\left(\widetilde{H}_{4}(h)\right)\right\}\\ & = \max \left\{m+1,2m,3m-1,3m-1\right\}\\ & = 3m-1. \end{split} \end{equation} | (3.49) |
Thus, according to Lemma 1 and (3.49), system (3.1) has at most 3m-1 limit cycles bifurcated from the period annulus defined by \{L_{h}\}_{h\in J} by the third order Melnikov function, multiplicity taken into account.
Theorem 5. Suppose that M_{1}(h) = M_{2}(h) = M_{3}(h)\equiv0 and M_{4}(h)\not\equiv0 . Then, for sufficiently small |\epsilon| > 0 , system (3.1) has at most 4m limit cycles bifurcated from the period annulus defined by \{L_{h}\}_{h\in J} , multiplicity taken into account.
Proof. Below, we give an expression of M_{4}(h) in the case of M_{1}(h) = M_{2}(h) = M_{3}(h)\equiv0 to estimate the maximum number of limit cycles of system (3.1). According to Theorem 1, the fourth order Melnikov function of system (3.1) is
\begin{equation} \begin{split} M_{4}(h) = M_{4}^{+}(h)+\frac{W_{01}^{+}(h)}{W_{01}^{-}(h)}M_{4}^{-}(h),\\ \end{split} \end{equation} | (3.50) |
where
\begin{equation*} \begin{split} M_{4}^{+}(h)& = v_{4}^{+}(h)-K_{31}^{+}(h)\frac{v_{1}^{+}(h)}{K_{01}^{+}(h)}-\frac{K_{22}^{+}(h)}{2} \Big(\frac{v_{1}^{+}(h)}{K_{01}^{+}(h)}\Big)^{2} -\frac{K_{13}^{+}(h)}{6}\Big(\frac{v_{1}^{+}(h)}{K_{01}^{+}(h)}\Big)^{3} -\frac{K_{04}^{+}(h)}{24}\Big(\frac{v_{1}^{+}(h)}{K_{01}^{+}(h)}\Big)^{4}\\ &-\frac{K_{21}^{+}(h)}{K_{01}^{+}(h)}M_{2}^{+}(h) -\frac{K_{12}^{+}(h)}{K_{01}^{+}(h)}\frac{v_{1}^{+}(h)}{K_{01}^{+}(h)}M_{2}^{+}(h) -\frac{1}{2}\frac{K_{03}^{+}(h)}{K_{01}^{+}(h)}\Big(\frac{v_{1}^{+}(h)}{K_{01}^{+}(h)}\Big)^{2}M_{2}^{+}(h)\\ &-\frac{K_{11}^{+}(h)}{K_{01}^{+}(h)}M_{3}^{+}(h) -\frac{K_{02}^{+}(h)}{2}\Big(\frac{M_{2}^{+}(h)}{K_{01}^{+}(h)}\Big)^{2} -\frac{K_{02}^{+}(h)}{K_{01}^{+}(h)}\frac{v_{1}^{+}(h)}{K_{01}^{+}(h)}M_{3}^{+}(h),\\ \end{split} \end{equation*} |
\begin{equation*} \begin{split} M_{4}^{-}(h)& = -v_{4}^{-}(h)+K_{31}^{-}(h)\frac{v_{1}^{+}(h)}{K_{01}^{+}(h)}+\frac{K_{22}^{-}(h)}{2} \Big(\frac{v_{1}^{+}(h)}{K_{01}^{+}(h)}\Big)^{2}+\frac{K_{13}^{-}(h)}{6}\Big(\frac{v_{1}^{+}(h)}{K_{01}^{+}(h)}\Big)^{3} +\frac{K_{04}^{-}(h)}{24}\Big(\frac{v_{1}^{+}(h)}{K_{01}^{+}(h)}\Big)^{4}\\ &+\frac{K_{21}^{-}(h)}{K_{01}^{+}(h)}M_{2}^{+}(h) +\frac{K_{12}^{-}(h)}{K_{01}^{+}(h)}\frac{v_{1}^{+}(h)}{K_{01}^{+}(h)}M_{2}^{+}(h) +\frac{1}{2}\frac{K_{03}^{-}(h)}{K_{01}^{+}(h)}\Big(\frac{v_{1}^{+}(h)}{K_{01}^{+}(h)}\Big)^{2}M_{2}^{+}(h)\\ &+\frac{K_{11}^{-}(h)}{K_{01}^{+}(h)}M_{3}^{+}(h) +\frac{K_{02}^{-}(h)}{2}\Big(\frac{M_{2}^{+}(h)}{K_{01}^{+}(h)}\Big)^{2} +\frac{K_{02}^{-}(h)}{K_{01}^{+}(h)}\frac{v_{1}^{+}(h)}{K_{01}^{+}(h)}M_{3}^{+}(h). \end{split} \end{equation*} |
In the following, we calculate v_{4}^{\pm}(h) , K_{13}^{\pm}(h) , K_{22}^{\pm}(h) , K_{31}^{\pm}(h) , and M_{3}^{+}(h) based on (2.8) and (3.3). According to (2.8) and (3.2), we have
\begin{equation} \begin{split} v_{4}^{\pm}(h) = H_{4}^{\pm}(A_{0})-H_{4}^{\pm}(A_{10}) & = \sum\limits_{i+j = 1}^{m+1}d_{ij}^{\pm}\left(\frac{1}{2}\right)^{i+j}\left(-1\right)^{i} \left[\left(-1\right)^{j}-1\right](2h-1)^{i+j}. \end{split} \end{equation} | (3.51) |
According to (2.8) and (3.2), we have
\begin{equation} \begin{split} &K_{13}^{\pm}(h) = \left(\frac{\partial^{3} H_{1}^{\pm}}{\partial x^{3}} -3\frac{\partial^{3} H_{1}^{\pm}}{\partial x^{2}\partial y} +3\frac{\partial^{3} H_{1}^{\pm}}{\partial x\partial y^{2}} -\frac{\partial^{3} H_{1}^{\pm}}{\partial y^{3}}\right)\Bigg|_{A_{10}(h)}\\ & = \sum\limits_{i+j = 3}^{m+1}\Bigg[a_{ij}^{\pm}\left(\frac{1}{2}\right)^{i+j-3}(-1)^{i-1} \bigg(i(i-1)(i-2)+3ij(i+j-2)+j(j-1)(j-2)\bigg)\Bigg](2h-1)^{i+j-3}. \end{split} \end{equation} | (3.52) |
According to (2.8) and (3.2), similar to the derivation of (3.23), we have
\begin{equation} \begin{split} K_{22}^{\pm}(h) = &\left(\frac{\partial^{2} H_{2}^{\pm}}{\partial x^{2}} -2\frac{\partial^{2} H_{2}^{\pm}}{\partial x\partial y} +\frac{\partial^{2} H_{2}^{\pm}}{\partial y^{2}}\right)\Bigg|_{A_{10}(h)}\\ = &\sum\limits_{i+j = 2}^{m+1}\left(b_{ij}^{\pm}\left(\frac{1}{2}\right)^{i+j-2}(-1)^{i} (i+j-1)(i+j)\right)(2h-1)^{i+j-2}. \end{split} \end{equation} | (3.53) |
Similar to (3.12) and (3.22), from (2.8) and (3.2), we can directly obtain
\begin{equation} \begin{split} K_{31}^{\pm}(h)& = \left(\frac{\partial H_{3}^{\pm}}{\partial x}-\frac{\partial H_{3}^{\pm}}{\partial y}\right)\Bigg|_{A_{10}(h)} = \sum\limits_{i+j = 1}^{m+1}c_{ij}^{\pm}(-1)^{i-1}(i+j)\left(\frac{1}{2}\right)^{i+j-1}(2h-1)^{i+j-1}. \end{split} \end{equation} | (3.54) |
For M_{3}^{+}(h) , according to (3.20),
\begin{equation} \begin{split} M_{3}^{+}(h)& = v_{3}^{+}(h)+K_{21}^{+}(h)v_{1}^{+}(h)-\frac{1}{2}K_{12}^{+}(h) \Big(v_{1}^{+}(h)\Big)^{2} +K_{11}^{+}(h)M_{2}^{+}(h). \end{split} \end{equation} | (3.55) |
Returning our attention to (3.50), substituting K_{01}^{+}(h) , K_{02}^{\pm}(h) , K_{03}^{\pm}(h) , and K_{04}^{\pm}(h) into (3.50) yields
\begin{equation} \begin{split} M_{4}(h) = \widetilde{Y}_{1}(h)+\widetilde{Y}_{2}(h)+\widetilde{Y}_{3}(h)+\widetilde{Y}_{4}(h)+\widetilde{Y}_{5}(h) +\widetilde{Y}_{6}(h)+\widetilde{Y}_{7}(h)+\widetilde{Y}_{8}(h), \end{split} \end{equation} | (3.56) |
where
\begin{equation*} \begin{split} \widetilde{Y}_{1}(h)& = -\frac{W_{01}^{+}(h)}{W_{01}^{-}(h)}v_{4}^{-}(h)+v_{4}^{+}(h),\\ \widetilde{Y}_{2}(h)& = \left(-\frac{W_{01}^{+}(h)}{W_{01}^{-}(h)}K_{31}^{-}(h)+K_{31}^{+}(h)\right)v_{1}^{+}(h),\\ \widetilde{Y}_{3}(h)& = \frac{1}{2}\left(\frac{W_{01}^{+}(h)}{W_{01}^{-}(h)}K_{22}^{-}(h)-K_{22}^{+}(h)\right)(v_{1}^{+}(h))^{2},\\ \widetilde{Y}_{4}(h)& = \frac{1}{6}\left(-\frac{W_{01}^{+}(h)}{W_{01}^{-}(h)}K_{13}^{-}(h)+K_{13}^{+}(h)\right)(v_{1}^{+}(h))^{3},\\ \widetilde{Y}_{5}(h)& = \left(-\frac{W_{01}^{+}(h)}{W_{01}^{-}(h)}K_{21}^{-}(h)+K_{21}^{+}(h)\right)M_{2}^{+}(h),\\ \widetilde{Y}_{6}(h)& = \left(\frac{W_{01}^{+}(h)}{W_{01}^{-}(h)}K_{12}^{-}(h)-K_{12}^{+}(h)\right)v_{1}^{+}(h)M_{2}^{+}(h),\\ \widetilde{Y}_{7}(h)& = -\frac{W_{01}^{+}(h)}{W_{01}^{-}(h)}(M_{2}^{+}(h))^{2},\\ \widetilde{Y}_{8}(h)& = \left[-\frac{W_{01}^{+}(h)}{W_{01}^{-}(h)}\bigg(K_{11}^{-}(h)+2v_{1}^{+}(h)\bigg)+K_{11}^{+}(h)\right]M_{3}^{+}(h).\\ \end{split} \end{equation*} |
In the following, we will give an expression for M_{4}(h) by evaluating Y_{i}(h), \; (i = 1, \cdots, 8) .
For \widetilde{Y}_{1}(h) , substituting (3.5) and (3.51) into \widetilde{Y}_{1}(h) yields
\begin{equation} \begin{split} \widetilde{Y}_{1}(h) & = \frac{1}{2h-1}v_{4}^{-}(h)+v_{4}^{+}(h)\\ & = \sum\limits_{i+j = 1}^{m+1}\left[d_{ij}^{-}\left(\frac{1}{2}\right)^{i+j}\left(-1\right)^{i} \left[\left(-1\right)^{j}-1\right](2h-1)^{i+j-1} +d_{ij}^{+}\left(\frac{1}{2}\right)^{i+j}\left(-1\right)^{i} \left[\left(-1\right)^{j}-1\right](2h-1)^{i+j}\right]\\ & = -d_{01}^{-}+\sum\limits_{k = 1}^{m}\left[\frac{(-1)^{k}}{2^{k-1}}\sum\limits_{\substack{i\geq0,j\geq0,\\i+2j+1 = k}}d_{i,2j+1}^{+} +\frac{(-1)^{k+1}}{2^{k}}\sum\limits_{\substack{i\geq0,j\geq0,\\i+2j+1 = k+1}}d_{i,2j+1}^{-}\right](2h-1)^{k}\\ &+\sum\limits_{k = m+1}\left[\frac{(-1)^{k}}{2^{k-1}}\sum\limits_{\substack{i\geq0,j\geq0,\\i+2j+1 = k}}d_{i,2j+1}^{+}\right](2h-1)^{k}\\ &\triangleq-d_{01}^{-}+\sum\limits_{k = 1}^{m}\widetilde{Y}_{1,1}(k)(2h-1)^{k}+\sum\limits_{k = m+1}\widetilde{Y}_{1,2}(k)(2h-1)^{k}. \end{split} \end{equation} | (3.57) |
From (3.57), we can obtain
\begin{equation} \begin{split} \deg\left(\widetilde{Y}_{1}(h)\right) = m+1. \end{split} \end{equation} | (3.58) |
For \widetilde{Y}_{2}(h) , substituting (3.54) and (3.6) into \widetilde{Y}_{2}(h) yields
\begin{equation} \begin{split} \widetilde{Y}_{2}(h) & = \bigg(K_{31}^{-}(h)+(2h-1)K_{31}^{+}(h)\bigg)\frac{v_{1}^{+}(h)}{2h-1}\\ & = \widetilde{Y}_{21}(h)\widetilde{Y}_{22}(h). \end{split} \end{equation} | (3.59) |
Inserting (3.54) into \widetilde{Y}_{21}(h) yields
\begin{equation} \begin{split} \widetilde{Y}_{21}(h) & = \sum\limits_{i+j = 1}^{m+1}\left[c_{ij}^{-}(-1)^{i-1}(i+j)\left(\frac{1}{2}\right)^{i+j-1}(2h-1)^{i+j-1} +c_{ij}^{+}(-1)^{i-1}(i+j)\left(\frac{1}{2}\right)^{i+j-1}(2h-1)^{i+j}\right]\\ & = \sum\limits_{k = 0}^{m}\left[\frac{k}{2^{k-1}}\sum\limits_{i+j = k}(-1)^{i-1}c_{ij}^{+} +\frac{k+1}{2^{k}}\sum\limits_{i+j = k+1}(-1)^{i-1}c_{ij}^{-}\right] (2h-1)^{k}\\ &+\sum\limits_{k = m+1}\left[\frac{k}{2^{k-1}}\sum\limits_{i+j = k}(-1)^{i-1}c_{ij}^{+}\right](2h-1)^{k}\\ &\triangleq\sum\limits_{k = 0}^{m}\widetilde{Y}_{21,1}(k)(2h-1)^{k}+\sum\limits_{k = m+1}\widetilde{Y}_{21,2}(k)(2h-1)^{k}. \end{split} \end{equation} | (3.60) |
From (3.60), we can obtain
\begin{equation} \begin{split} \deg\left(\widetilde{Y}_{21}(h)\right) = m+1. \end{split} \end{equation} | (3.61) |
Similarly, we have
\begin{equation} \begin{split} \deg\left(\widetilde{Y}_{22}(h)\right) = \deg\left(G_{42}(h)\right) = m-1. \end{split} \end{equation} | (3.62) |
Plugging (3.60) and (3.62) into (3.59) yields
\begin{equation} \begin{split} \deg\left(\widetilde{Y}_{2}(h)\right) = \deg\left(\widetilde{Y}_{21}(h)\right)+\deg\left(\widetilde{Y}_{22}(h)\right) = 2m. \end{split} \end{equation} | (3.63) |
Substituting (3.53) and (3.6) into \widetilde{Y}_{3}(h) yields
\begin{equation} \begin{split} \widetilde{Y}_{3}(h) & = \left(-\frac{1}{2}K_{22}^{-}(h)-\frac{2h-1}{2}K_{22}^{+}(h)\right)\frac{v_{1}^{+}(h)}{2h-1}v_{1}^{+}(h)\\ & = \widetilde{Y}_{31}(h)\widetilde{Y}_{32}(h)\widetilde{Y}_{33}(h). \end{split} \end{equation} | (3.64) |
Inserting (3.53) into \widetilde{Y}_{31}(h) yields
\begin{equation} \begin{split} \widetilde{Y}_{31}(h)& = \sum\limits_{k = 0}^{m-1}\left[\frac{k(k+1)}{2^{k}}\sum\limits_{i+j = k+1}(-1)^{i-1}b_{ij}^{+} +\frac{(k+1)(k+2)}{2^{k+1}}\sum\limits_{i+j = k+2}(-1)^{i-1}b_{ij}^{-}\right](2h-1)^{k}\\ &+\sum\limits_{k = m}\left[\frac{k(k+1)}{2^{k}}\sum\limits_{i+j = k+1}(-1)^{i-1}b_{ij}^{+}\right](2h-1)^{k}\\ &\triangleq \sum\limits_{k = 0}^{m-1}\widetilde{Y}_{31,1}(k)(2h-1)^{k}+\sum\limits_{k = m}\widetilde{Y}_{31,2}(k)(2h-1)^{k}. \end{split} \end{equation} | (3.65) |
From (3.65), we can obtain
\begin{equation} \begin{split} \deg\left(\widetilde{Y}_{31}(h)\right) = m. \end{split} \end{equation} | (3.66) |
Similarly, we have
\begin{equation} \begin{split} \deg\left(\widetilde{Y}_{32}(h)\right)& = \deg\left(G_{42}(h)\right) = m-1,\\ \deg\left(\widetilde{Y}_{33}(h)\right)& = \deg\left(\widetilde{H}_{33}(h)\right) = m. \end{split} \end{equation} | (3.67) |
Substituting (3.65) and (3.67) into (3.64) yields
\begin{equation} \begin{split} \deg\left(\widetilde{Y}_{3}(h)\right) & = \deg\left(\widetilde{Y}_{31}(h)\right) +\deg\left(\widetilde{Y}_{32}(h)\right) +\deg\left(\widetilde{Y}_{33}(h)\right)\\ & = 3m-1. \end{split} \end{equation} | (3.68) |
For \widetilde{Y}_{4}(h) , substituting (3.52) and (3.6)into \widetilde{Y}_{4}(h) yields
\begin{equation} \begin{split} \widetilde{Y}_{4}(h) & = \frac{1}{6}\bigg(K_{13}^{-}(h)+(2h-1)K_{13}^{+}(h)\bigg)\frac{(v_{1}^{+}(h))^{2}}{2h-1}v_{1}^{+}(h)\\ & = \widetilde{Y}_{41}(h)\widetilde{Y}_{42}(h)\widetilde{Y}_{43}(h). \end{split} \end{equation} | (3.69) |
Inserting (3.52) into \widetilde{Y}_{41}(h) yields
\begin{equation} \begin{split} \widetilde{Y}_{41}(h)& = \frac{1}{6}\bigg(K_{13}^{-}(h)+(2h-1)K_{13}^{+}(h)\bigg)\\ & = \sum\limits_{k = 0}^{m-2}\bigg[\frac{(-1)^{k-1}}{2^{k-1}}\frac{k(k+1)(k+2)}{6}\sum\limits_{i+2j = k+2}a_{i,2j}^{+} +\frac{(-1)^{k+1}}{2^{k}}\frac{3(k+1)(k+2)}{6}\sum\limits_{i+2j+1 = k+3}a_{i,2j+1}^{-}\\ &+\frac{(-1)^{k}}{2^{k}}\frac{(k+1)(k+2)(k+3)}{6}\sum\limits_{i+2j = k+3}a_{i,2j}^{-}\bigg](2h-1)^{k}\\ &+\sum\limits_{k = m-1}\left[\frac{(-1)^{k-1}}{2^{k-1}}\frac{k(k+1)(k+2)}{6}\sum\limits_{i+2j = k+2}a_{i,2j}^{+}\right](2h-1)^{k}\\ &\triangleq\sum\limits_{k = 0}^{m-2}Y_{41,1}(k)(2h-1)^{k}+\sum\limits_{k = m-1}Y_{41,2}(k)(2h-1)^{k}. \end{split} \end{equation} | (3.70) |
From (3.70), we can obtain
\begin{equation} \begin{split} \deg\left(\widetilde{Y}_{41}(h)\right) = m-1. \end{split} \end{equation} | (3.71) |
Similarly, we have
\begin{equation} \begin{split} \deg\left(\widetilde{Y}_{42}(h)\right)& = \deg\left(\widetilde{Y}_{32}(h)\right)+\deg\left(\widetilde{Y}_{33}(h)\right) = 2m-1,\\ \deg\left(\widetilde{Y}_{43}(h)\right)& = \deg\left(\widetilde{Y}_{33}(h)\right) = m. \end{split} \end{equation} | (3.72) |
Substituting (3.70) and (3.72) into (3.69) yields
\begin{equation} \begin{split} \deg\left(\widetilde{Y}_{4}(h)\right) = \deg\left(\widetilde{Y}_{41}(h)\right)+\deg\left(\widetilde{Y}_{42}(h)\right)+\deg\left(\widetilde{Y}_{43}(h)\right) = 4m-2. \end{split} \end{equation} | (3.73) |
Inserting (3.22) and (3.25) into \widetilde{Y}_{5}(h) yields
\begin{equation} \begin{split} \widetilde{Y}_{5}(h) & = \bigg(K_{21}^{-}(h)+(2h-1)K_{21}^{+}(h)\bigg)\frac{M_{2}^{+}(h)}{2h-1}\\ & = \widetilde{H}_{21}(h)\widetilde{H}_{42}(h). \end{split} \end{equation} | (3.74) |
From (3.32), (3.47), and (3.74), we can obtain
\begin{equation} \begin{split} \deg\left(\widetilde{Y}_{5}(h)\right) = \deg\left(\widetilde{H}_{21}(h)\right)+\deg\left(\widetilde{H}_{42}(h)\right) = m+1+2m-1 = 3m. \end{split} \end{equation} | (3.75) |
Plugging (3.23) and (3.25) into \widetilde{Y}_{6}(h) yileds
\begin{equation} \begin{split} \widetilde{Y}_{6}(h) & = \bigg(-K_{12}^{-}(h)-(2h-1)K_{12}^{+}(h)\bigg)\frac{M_{2}^{+}(h)}{2h-1}v_{1}^{+}(h)\\ & = \widetilde{Y}_{61}(h)\widetilde{Y}_{62}(h)\widetilde{Y}_{63}(h). \end{split} \end{equation} | (3.76) |
For \widetilde{Y}_{61}(h) , we have
\begin{equation} \begin{split} \widetilde{Y}_{61}(h)& = 2\widetilde{H}_{31} = \sum\limits_{k = 0}^{m-1}\Bigg[\frac{(-1)^{k}k(k+1)}{2^{k-1}}\sum\limits_{i+2j = k+1}a_{i,2j}^{+} +\frac{(-1)^{k}(k+1)}{2^{k-1}}\sum\limits_{i+2j+1 = k+2}a_{i,2j+1}^{-}\\ &+\frac{(-1)^{k+1}(k+1)(k+2)}{2^{k}}\sum\limits_{i+2j = k+2}a_{i,2j}^{-}\Bigg](2h-1)^{k} +\sum\limits_{k = m}\left[\frac{(-1)^{k}k(k+1)}{2^{k-1}}\sum\limits_{i+2j = k+1}a_{i,2j}^{+}\right](2h-1)^{k}\\ &\triangleq\sum\limits_{k = 0}^{m-1}\widetilde{Y}_{61,1}(k)(2h-1)^{k}+\sum\limits_{k = m}\widetilde{Y}_{61,2}(k)(2h-1)^{k}. \end{split} \end{equation} | (3.77) |
From (3.77), we can obtain
\begin{equation} \begin{split} \deg\left(\widetilde{Y}_{61}(h)\right) = m. \end{split} \end{equation} | (3.78) |
Similarly, we have
\begin{equation} \begin{split} \deg\left(\widetilde{Y}_{62}(h)\right)& = \deg\left(\widetilde{H}_{42}(h)\right) = 2m-1,\\ \deg\left(\widetilde{Y}_{63}(h)\right)& = \deg\left(\widetilde{H}_{33}(h)\right) = m. \end{split} \end{equation} | (3.79) |
Substituting (3.77) and (3.79) into (3.76) yields
\begin{equation} \begin{split} \deg\left(\widetilde{Y}_{6}(h)\right) = \deg\left(\widetilde{Y}_{61}(h)\right) +\deg\left(\widetilde{Y}_{62}(h)\right) +\deg\left(\widetilde{Y}_{63}(h)\right) = 4m-1. \end{split} \end{equation} | (3.80) |
Inserting (3.25) into \widetilde{Y}_{7}(h) yields
\begin{equation} \begin{split} \widetilde{Y}_{7}(h)& = \frac{M_{2}^{+}(h)}{2h-1}M_{2}^{+}(h) = \widetilde{H}_{42}(h)M_{2}^{+}(h). \end{split} \end{equation} | (3.81) |
By direct calculation, we have
\begin{equation} \begin{split} M_{2}^{+}(h) & = \sum\limits_{k = 1}^{m+1}\frac{(-1)^{k}}{2^{k-1}}\sum\limits_{i+2j+1 = k}b_{i,2j+1}^{+}(2h-1)^{k} +\bigg(\sum\limits_{k = 0}^{m-1}V_{1}(k)(2h-1)^{k}+\sum\limits_{k = m}V_{2}(k)(2h-1)^{k}\bigg)\\ &\times\sum\limits_{k = 1}^{m}R(k)(2h-1)^{k}. \end{split} \end{equation} | (3.82) |
From (3.82), we can obtain
\begin{equation} \begin{split} \deg\left(M_{2}^{+}(h)\right) = 2m. \end{split} \end{equation} | (3.83) |
Hence, we have
\begin{equation} \begin{split} \deg\left(\widetilde{Y}_{7}(h)\right) = \deg\left(\widetilde{H}_{42}(h)\right)+\deg\left(M_{2}^{+}(h)\right) = 2m-1+2m = 4m-1. \end{split} \end{equation} | (3.84) |
For Y_{8}(h) , substituting (3.12) and (3.6) into \widetilde{Y}_{8}(h) yields
\begin{equation} \begin{split} \widetilde{Y}_{8}(h)& = \left[\frac{1}{2h-1}(K_{11}^{-}(h)+2v_{1}^{+}(h))+K_{11}^{+}(h)\right]M_{3}^{+}(h)\\ & = \left[(K_{11}^{-}(h)+2v_{1}^{+}(h))+(2h-1)K_{11}^{+}(h)\right]\frac{M_{3}^{+}(h)}{2h-1}\\ & = \widetilde{Y}_{81}(h)\widetilde{Y}_{82}(h). \end{split} \end{equation} | (3.85) |
Plugging (3.12) and (3.6) into \widetilde{Y}_{81}(h) yields
\begin{equation} \begin{split} \widetilde{Y}_{81}(h)& = \widetilde{H}_{41}(h) = a_{10}^{-}+\sum\limits_{k = 1}^{m}\widetilde{S}(k)(2h-1)^{k}+\sum\limits_{k = m+1}\widetilde{T}(k)(2h-1)^{k}. \end{split} \end{equation} | (3.86) |
From (3.86), we can obtain
\begin{equation} \begin{split} \deg\left(\widetilde{Y}_{81}(h)\right) = m+1. \end{split} \end{equation} | (3.87) |
Substituting (3.55) into \widetilde{Y}_{82}(h) yields
\begin{equation} \begin{split} \widetilde{Y}_{82}(h)& = \frac{1}{2h-1}\left[v_{3}^{+}(h)+K_{21}^{+}(h)v_{1}^{+}(h)-\frac{1}{2}K_{12}^{+}(h)(v_{1}^{+}(h))^{2} +K_{11}^{+}(h)M_{2}^{+}(h)\right]\\ & = \frac{v_{3}^{+}(h)}{2h-1}+K_{21}^{+}(h)\cdot\frac{v_{1}^{+}(h)}{2h-1} -\frac{1}{2}K_{12}^{+}(h)\cdot\frac{(v_{1}^{+}(h))^{2}}{2h-1} +K_{11}^{+}(h)\cdot\frac{M_{2}^{+}(h)}{2h-1}\\ & = Y_{82,1}(h)+Y_{82,2}(h)+Y_{82,3}(h)+Y_{82,4}(h). \end{split} \end{equation} | (3.88) |
By direct calculation, we have
\begin{equation*} \begin{split} Y_{82,1}(h)& = \frac{v_{3}^{+}(h)}{2h-1} = \sum\limits_{k = 1}^{m+1}\left[\frac{(-1)^{k}}{2^{k}}\sum\limits_{i+2j+1 = k}c_{i,2j+1}^{+}\right](2h-1)^{k}. \end{split} \end{equation*} |
Thus,
\begin{equation} \begin{split} \deg\left(Y_{82,1}(h)\right) = m+1. \end{split} \end{equation} | (3.89) |
Similarly, we have
\begin{equation*} \begin{split} Y_{82,2}(h) = K_{21}^{+}(h)\cdot\frac{v_{1}^{+}(h)}{2h-1} = \sum\limits_{k = 0}^{m}\left[\frac{k+1}{2^{k}}\sum\limits_{i+j = k+1}(-1)^{i-1}b_{ij}^{+}\right](2h-1)^{k}\cdot\sum\limits_{k = 0}^{m-1}\xi_{3}(k)(2h-1)^{k}. \end{split} \end{equation*} |
Thus,
\begin{equation} \begin{split} \deg\left(Y_{82,2}(h)\right) = 2m-1. \end{split} \end{equation} | (3.90) |
Similarly, we have
\begin{equation*} \begin{split} Y_{82,3}(h)& = -\frac{1}{2}K_{12}^{+}(h)\cdot\frac{v_{1}^{+}(h)}{2h-1}v_{1}^{+}(h) = -\frac{1}{2}K_{12}^{+}(h)G_{42}(h)\widetilde{H}_{33}(h)\\ & = \Bigg(\sum\limits_{k = 0}^{m-2}\left[\frac{(-1)^{k+1}(k+1)(k+2)}{2^{k+1}}\sum\limits_{i+2j = k+2}a_{i,2j}^{+} +\frac{(-1)^{k+1}(k+1)(k+2)}{2^{k+2}}\sum\limits_{i+2j+1 = k+3}a_{i,2j+1}^{-} \right](2h-1)^{k}\\ &+\sum\limits_{k = m-1}\left[\frac{(-1)^{k+1}(k+1)(k+2)}{2^{k+1}}\sum\limits_{i+2j = k+2}a_{i,2j}^{+}\right](2h-1)^{k}\Bigg) \times\sum\limits_{k = 0}^{m-1}\xi_{3}(k)(2h-1)^{k}\sum\limits_{k = 1}^{m}R(k)(2h-1)^{k}. \end{split} \end{equation*} |
Thus,
\begin{equation} \begin{split} \deg\left(Y_{82,3}(h)\right) = 3m-2. \end{split} \end{equation} | (3.91) |
Similarly, we have
\begin{equation*} \begin{split} Y_{82,4}(h)& = K_{11}^{+}(h)\cdot\frac{M_{2}^{+}(h)}{2h-1} = K_{11}^{+}(h)\widetilde{H}_{42}(h)\\ & = \bigg(\sum\limits_{k = 0}^{m-1}V_{1}(k)(2h-1)^{k}+\sum\limits_{k = m}V_{2}(k)(2h-1)^{k}\bigg) \cdot\Bigg[\sum\limits_{k = 0}^{m}U(k)(2h-1)^{k}+\bigg(\sum\limits_{k = 0}^{m-1}V_{1}(k)(2h-1)^{k}\\ &+\sum\limits_{k = m}V_{2}(k)(2h-1)^{k}\bigg) \cdot\sum\limits_{k = 0}^{m-1}\xi_{3}(k)(2h-1)^{k}\Bigg].\\ \end{split} \end{equation*} |
Thus,
\begin{equation} \begin{split} \deg\left(Y_{82,4}(h)\right) = 3m-1. \end{split} \end{equation} | (3.92) |
Substituting (3.89)–(2.37) and (3.93) into (3.88) yields
\begin{equation} \begin{split} &\deg\left(\widetilde{Y}_{82}(h)\right) = \max\{\deg\left(Y_{82,1}(h)\right),\deg\left(Y_{82,2}(h)\right),\deg\left(Y_{82,3}(h)\right),\\ &\deg\left(Y_{82,4}(h)\right)\} = \max\{m+1,2m-1, 3m-2,3m-1\} = 3m-1. \end{split} \end{equation} | (3.93) |
Inserting (3.87) and (3.93) into (3.85) yields
\begin{equation} \begin{split} \deg\left(\widetilde{Y}_{8}(h)\right) = \deg\left(\widetilde{Y}_{81}(h)\right)+\deg\left(\widetilde{Y}_{82}(h)\right) = m+1+3m-1 = 4m. \end{split} \end{equation} | (3.94) |
Plugging (3.58), (3.63), (3.68), (3.73), (3.75), (3.80), (3.84), and (3.29) into (3.56) yields
\begin{equation} \begin{split} \deg\left(M_{4}(h)\right) & = \max\bigg\{\deg\left(\widetilde{Y}_{1}(h)\right),\deg\left(\widetilde{Y}_{2}(h)\right), \deg\left(\widetilde{Y}_{3}(h)\right),\deg\left(\widetilde{Y}_{4}(h)\right), \deg\left(\widetilde{Y}_{5}(h)\right),\deg\left(\widetilde{Y}_{6}(h)\right),\\ &\deg\left(\widetilde{Y}_{7}(h)\right),\deg\left(\widetilde{Y}_{8}(h)\right)\bigg\}\\ & = \max\left\{m+1,2m,3m-1,4m-2,3m,4m-1,4m-1,4m\right\}\\ & = 4m. \end{split} \end{equation} | (3.95) |
Thus, according to Lemma 1 together with (3.95), system (3.1) has at most 4m limit cycles bifurcated from the period annulus defined by \{L_{h}\}_{h\in J} by the fourth order Melnikov function, multiplicity taken into account.
In this part, we consider the piecewise polynomial Hamiltonian system (3.1) with m = 1, 2 . Before giving the main results, we first introduce the following two lemmas, which are calculated directly from Theorems 2-5.
Lemma 6. When m = 1 , we have
\begin{equation*} \begin{split} M_{1}(h) & = -a_{01}^{-} +\left(-a_{01}^{+}+\frac{1}{2}a_{11}^{-}\right)(2h-1) +\frac{1}{2}a_{11}^{+}(2h-1)^{2}.\\ M_{2}(h) & = -b_{01}^{-}-a_{10}^{-}a_{01}^{+} +\left[-b_{01}^{+}+\frac{1}{2}b_{11}^{-}-a_{01}^{+}\left(a_{10}^{+}-a_{20}^{-}-a_{02}^{-}\right) \right](2h-1)\\ &+\left[\frac{1}{2}b_{11}^{+}+a_{01}^{+}\left(a_{02}^{+}+a_{20}^{+}\right)\right](2h-1)^{2}.\\ \end{split} \end{equation*} |
\begin{equation*} \begin{split} M_{3}(h) = \sum\limits_{k = 0}^{2}A_{k}(2h-1)^{k}, \end{split} \end{equation*} |
where
\begin{equation*} \begin{split} A_{0}& = -c_{01}^{-}-a_{01}^{+}(-b_{01}^{-}+b_{10}^{-})-a_{10}^{-}\left[b_{01}^{+}+a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right],\\ A_{1}& = -c_{01}^{+}+\frac{1}{2}c_{11}^{-}+a_{01}^{+}(b_{01}^{+}-b_{10}^{+}+b_{02}^{-}-b_{11}^{-}+b_{20}^{-}) +(a_{01}^{+})^{2}(a_{11}^{-}-a_{02}^{-}-a_{20}^{-})\\ &+\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}-a_{02}^{-}-a_{20}^{-}\right)\left[-b_{01}^{+} -a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right],\\ A_{2}& = \frac{1}{2}c_{11}^{+}+a_{01}^{+}(b_{02}^{+}-b_{11}^{+}+b_{20}^{+}) -(a_{01}^{+})^{2}(a_{02}^{+}+a_{20}^{+}) +(a_{02}^{+}+a_{20}^{+})\left[b_{01}^{+} +a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right]. \end{split} \end{equation*} |
\begin{equation*} \begin{split} M_{4}(h) = \sum\limits_{k = 0}^{4}A_{k}(2h-1)^{k}, \end{split} \end{equation*} |
where
\begin{equation*} \begin{split} A_{0}& = A_{01}+A_{02},\\ A_{1}& = A_{11}+A_{12}+A_{13}+A_{14}+A_{15},\\ A_{2}& = A_{21}+A_{22}+A_{23}+A_{24}+A_{25},\\ A_{3}& = A_{31}+A_{32},\\ A_{4}& = -\frac{1}{4}c_{11}^{+}(a_{02}^{+}+a_{20}^{+}),\\ \end{split} \end{equation*} |
and
\begin{equation*} \begin{split} A_{01}& = -d_{01}^{-}+a_{01}^{+}(c_{01}^{-}-c_{10}^{-}) +(-b_{01}^{-}+b_{10}^{-})\left[-b_{01}^{+}-a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right],\\ A_{02}& = a_{10}^{-}\left\{-a_{01}^{+}(-b_{01}^{+}+b_{10}^{+}) +\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right) \left[-b_{01}^{+}-a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right] \right\},\\ A_{11}& = -d_{01}^{+}+\frac{1}{2}d_{11}^{-} +a_{01}^{+}(c_{01}^{+}-c_{11}^{+}+c_{02}^{-}-c_{11}^{-}+c_{20}^{-}) +(a_{01}^{+})^{2}(-b_{02}^{-}+b_{11}^{-}-b_{20}^{-}), \end{split} \end{equation*} |
\begin{equation*} \begin{split} A_{12}& = (-b_{01}^{+}+b_{10}^{+}-b_{02}^{-}+b_{11}^{-} -b_{20}^{-})\left[-b_{01}^{+}-a_{01}^{+}\left(a_{10}^{+} -\frac{1}{2}a_{11}^{-}\right)\right],\\ A_{13}& = +2a_{01}^{+}(a_{11}^{-}-a_{02}^{-}-a_{20}^{-}) \left[b_{01}^{+} +a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right] +\left[-b_{01}^{+}-a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right]^{2},\\ A_{14}& = a_{10}^{-}\left\{-\frac{1}{2}c_{01}^{+}-a_{01}^{+}(-b_{02}^{+}+b_{11}^{+}-b_{20}^{+}) -(a_{01}^{+})^{2}(a_{02}^{+}+a_{20}^{+}) +(a_{02}^{+}+a_{20}^{+})\left[b_{01}^{+}+a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right] \right\},\\ A_{15}& = \left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}-a_{02}^{-}-a_{20}^{-}\right) \left\{-a_{01}^{+}(-b_{01}^{+}+b_{10}^{+}) +\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right) \left[-b_{01}^{+}-a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right]\right\},\\ A_{21}& = \frac{1}{2}d_{11}^{+} +a_{01}^{+}(c_{02}^{+}-c_{11}^{+}+c_{20}^{+}) +(a_{01}^{+})^{2}(-b_{02}^{+}+b_{11}^{+}-b_{20}^{+}),\\ A_{22}& = (-b_{02}^{+}+b_{11}^{+}-b_{20}^{+}) \left[-b_{01}^{+}-a_{01}^{+}\left(a_{10}^{+} -\frac{1}{2}a_{11}^{-}\right)\right],\\ A_{23}& = -2a_{01}^{+}(a_{02}^{+}+a_{20}^{+})\left[b_{01}^{+} +a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right] +\frac{1}{4}c_{11}^{+}a_{10}^{-},\\ A_{24}& = \left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}-a_{02}^{-}-a_{20}^{-}\right) \left\{-\frac{1}{2}c_{01}^{+}-a_{01}^{+}(-b_{02}^{+}+b_{11}^{+}-b_{20}^{+}) -(a_{01}^{+})^{2}(a_{02}^{+}+a_{20}^{+}) +(a_{02}^{+}+a_{20}^{+})\left[b_{01}^{+}\right.\right.\\ &\left.\left.+a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right] \right\},\\ A_{25}& = (-a_{02}^{+}-a_{20}^{+}) \left\{-a_{01}^{+}(-b_{01}^{+}+b_{10}^{+})+\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right) \left[-b_{01}^{+}-a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right]\right\},\\ \end{split} \end{equation*} |
\begin{equation*} \begin{split} A_{31}& = \frac{1}{4}c_{11}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}-a_{02}^{-}-a_{20}^{-}\right),\\ A_{32}& = (-a_{02}^{+}-a_{20}^{+})\left\{-\frac{1}{2}c_{01}^{+}-a_{01}^{+}(-b_{02}^{+}+b_{11}^{+}-b_{20}^{+}) -(a_{01}^{+})^{2}(a_{02}^{+}+a_{20}^{+}) +(a_{02}^{+}+a_{20}^{+})\left[b_{01}^{+}+a_{01}^{+} \left(a_{10}^{+}\right.\right.\right.\\ &\left.\left.\left.-\frac{1}{2}a_{11}^{-}\right)\right] \right\}. \end{split} \end{equation*} |
Lemma 7. When m = 2 , we have
\begin{equation*} \begin{split} M_{1}(h) = \sum\limits_{k = 0}^{3}A_{k}(2h-1)^{k}, \end{split} \end{equation*} |
where
\begin{equation*} \begin{split} A_{0}& = -a_{01}^{-},\\ A_{1}& = -a_{01}^{+}+\frac{1}{2}a_{11}^{-},\\ A_{2}& = \frac{1}{2}a_{11}^{+}-\frac{1}{4}a_{21}^{-}-\frac{1}{4}a_{03}^{-},\\ A_{3}& = -\frac{1}{4}a_{21}^{+}-\frac{1}{4}a_{03}^{+}. \end{split} \end{equation*} |
\begin{equation*} \begin{split} M_{2}(h) = \sum\limits_{k = 0}^{4}A_{k}(2h-1)^{k}, \end{split} \end{equation*} |
where
\begin{equation*} \begin{split} A_{0}& = -b_{01}^{-}-a_{01}^{+}a_{10}^{-},\\ A_{1}& = -b_{01}^{+}+\frac{1}{2}b_{11}^{-}-a_{01}^{+}(a_{10}^{+}-a_{20}^{-}-a_{02}^{-}) +\frac{1}{2}a_{10}^{-}a_{11}^{+},\\ A_{2}& = \frac{1}{2}b_{11}^{+}-\frac{1}{4}(b_{21}^{-}+b_{03}^{-}) -a_{01}^{+}\left[-a_{02}^{+}-a_{20}^{+}+\frac{3}{4}(a_{30}^{-}+a_{12}^{-})\right] +\frac{1}{2}a_{11}^{+}(a_{10}^{+}-a_{20}^{-}-a_{02}^{-}),\\ A_{3}& = -\frac{1}{4}(b_{21}^{+}+b_{03}^{+}) +\frac{1}{2}a_{11}^{+}\left[-a_{02}^{+}-a_{20}^{+}+\frac{3}{4}(a_{30}^{-} +a_{12}^{-})\right] -\frac{3}{4}a_{01}^{+}(a_{30}^{+}+a_{12}^{+}),\\ A_{4}& = \frac{3}{8}a_{11}^{+}(a_{30}^{+}+a_{12}^{+}). \end{split} \end{equation*} |
M_{3}(h) and M_{4}(h) are expressed in the following three cases.
Case 1: When a_{11}^{+} = 0, \; a_{30}^{+}+a_{12}^{+}\neq0 , we have
\begin{equation*} \begin{split} M_{3}(h) = \sum\limits_{k = 0}^{4}A_{k}(2h-1)^{k}, \end{split} \end{equation*} |
where
\begin{equation*} \begin{split} A_{0}& = -c_{01}^{-}-a_{01}^{+}(-b_{01}^{-}+b_{10}^{-}) +a_{10}^{-}\left[-b_{01}^{+}-a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right],\\ A_{1}& = A_{11}+A_{12}+A_{13},\\ A_{2}& = A_{21}+A_{22}+A_{23}+A_{24},\\ A_{3}& = A_{31}+A_{32}+A_{33},\\ A_{4}& = \frac{3}{4}(a_{30}^{+}+a_{12}^{+}) \left\{\frac{1}{2}b_{11}^{+} -a_{01}^{+}\left[-a_{02}^{+}-a_{20}^{+} +\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right] \right\}, \end{split} \end{equation*} |
and
\begin{equation*} \begin{split} A_{11}& = -c_{01}^{+}+\frac{1}{2}c_{11}^{-} -a_{01}^{+}(-b_{01}^{+}+b_{10}^{+} -b_{02}^{-}+b_{11}^{-}-b_{20}^{-}) +(a_{01}^{+})^{2}(a_{11}^{-}-a_{20}^{-}-a_{02}^{-}),\\ A_{12}& = a_{10}^{-}\left\{\frac{1}{2}b_{11}^{+}-a_{01}^{+}\left[-a_{20}^{+}-a_{02}^{+} +\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right]\right\},\\ A_{13}& = (a_{10}^{+}-\frac{1}{2}a_{11}^{-}-a_{20}^{-}-a_{02}^{-}) \left[-b_{01}^{+} -a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right],\\ A_{21}& = \frac{1}{2}c_{11}^{+}-\frac{1}{4}(c_{21}^{-}+c_{03}^{-}) -a_{01}^{+}\left[-b_{02}^{+}+b_{11}^{+} -b_{20}^{+}+\frac{3}{4}(b_{03}^{-}+b_{12}^{-} -b_{21}^{-}+b_{30}^{-})\right],\\ A_{22}& = (a_{01}^{+})^{2} \left[-a_{20}^{+}-a_{02}^{+}-a_{21}^{-}-a_{03}^{-} +\frac{3}{2}(a_{30}^{-}+a_{12}^{-})\right],\\ A_{23}& = \left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}-a_{20}^{-}-a_{02}^{-}\right) \left\{\frac{1}{2}b_{11}^{+} -a_{01}^{+} \left[-a_{02}^{+}-a_{20}^{+}+\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right]\right\},\\ A_{24}& = \left[-a_{02}^{+}-a_{20}^{+}+\frac{1}{4}(a_{21}^{-}+a_{03}^{-})+\frac{3}{4}(a_{30}^{-}+a_{12}^{-})\right] \left[-b_{01}^{+}-a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right],\end{split} \end{equation*} |
\begin{equation*} \begin{split} A_{31}& = -\frac{1}{4}\left(c_{21}^{+}+c_{03}^{+}\right) -\frac{3}{4}a_{01}^{+}(-b_{03}^{+}+b_{12}^{+}-b_{21}^{+}+b_{30}^{+}) +\frac{3}{2}(a_{01}^{+})^{2}(a_{30}^{+}+a_{12}^{+}),\\ A_{32}& = \left[-a_{02}^{+}-a_{20}^{+}+\frac{1}{4}(a_{21}^{-}+a_{03}^{-})+\frac{3}{4}(a_{30}^{-}+a_{12}^{-})\right] \left\{\frac{1}{2}b_{11}^{+} -a_{01}^{+}\left[-a_{02}^{+}-a_{20}^{+} +\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right] \right\},\\ A_{33}& = \frac{3}{4}(a_{30}^{+}+a_{12}^{+})\left[-b_{01}^{+}-a_{01}^{+}\left(a_{10}^{+} -\frac{1}{2}a_{11}^{-}\right)\right]. \end{split} \end{equation*} |
Case 2: When a_{30}^{+}+a_{12}^{+} = 0, \; a_{11}^{+}\neq0 , we have
\begin{equation*} \begin{split} M_{3}(h) = \sum\limits_{k = 0}^{4}A_{k}(2h-1)^{k}, \end{split} \end{equation*} |
where
\begin{equation*} \begin{split} A_{0}& = -c_{01}^{-} -a_{01}^{+}(-b_{01}^{-}+b_{10}^{-}) +a_{10}^{-}\left[-b_{01}^{+}-a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right],\\ A_{1}& = A_{11}+A_{12}+A_{13}+A_{14},\\ A_{2}& = A_{21}+A_{22}+A_{23}+A_{24}+A_{25}+A_{26},\\ A_{3}& = A_{31}+A_{32}+A_{33}+A_{34}+A_{35}+A_{36},\\ A_{4}& = A_{41}+A_{42}, \end{split} \end{equation*} |
and
\begin{equation*} \begin{split} A_{11}& = -c_{01}^{+}+\frac{1}{2}c_{11}^{-} -a_{01}^{+}(-b_{01}^{+}+b_{10}^{+} -b_{02}^{-}+b_{11}^{-}-b_{20}^{-}),\\ A_{12}& = \frac{1}{2}a_{11}^{+}(-b_{01}^{-}+b_{10}^{-}) +(a_{01}^{+})^{2}(a_{11}^{-}-a_{20}^{-}-a_{02}^{-}),\\ A_{13}& = a_{10}^{-} \left\{\frac{1}{2}b_{11}^{+}+\frac{1}{2}a_{11}^{+}\left(a_{10}^{+} -\frac{1}{2}a_{11}^{-}\right)-a_{01}^{+}\left[-a_{20}^{+}-a_{02}^{+} +\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right]\right\},\\ A_{14}& = (a_{10}^{+}-\frac{1}{2}a_{11}^{-}-a_{20}^{-}-a_{02}^{-}) \left[-b_{01}^{+}-a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right],\\ A_{21}& = \frac{1}{2}c_{11}^{+}-\frac{1}{4}(c_{21}^{-}+c_{03}^{-}) -a_{01}^{+}\left[-b_{02}^{+}+b_{11}^{+} -b_{20}^{+}+\frac{3}{4}(b_{03}^{-}+b_{12}^{-} -b_{21}^{-}+b_{30}^{-})\right],\\ A_{22}& = \frac{1}{2}a_{11}^{+}(-b_{01}^{+}+b_{10}^{+} -b_{02}^{-} +b_{11}^{-}-b_{20}^{-}) -a_{01}^{+}a_{11}^{+}(a_{11}^{-}-a_{20}^{-}-a_{02}^{-}),\\ A_{23}& = (a_{01}^{+})^{2}\left[-a_{20}^{+}-a_{02}^{+}-a_{21}^{-}-a_{03}^{-} +\frac{3}{2}(a_{30}^{-}+a_{12}^{-})\right],\\ A_{24}& = a_{10}^{-}\left\{-\frac{1}{4}(b_{21}^{+}+b_{03}^{+}) +\frac{1}{2}a_{11}^{+}\left[-a_{02}^{+}-a_{20}^{+} +\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right]\right\},\\ A_{25}& = \left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}-a_{20}^{-}-a_{02}^{-}\right) \left\{\frac{1}{2}b_{11}^{+}+\frac{1}{2}a_{11}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right) -a_{01}^{+}\left[-a_{02}^{+}-a_{20}^{+}+\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right]\right\},\\ A_{26}& = \left[-a_{02}^{+}-a_{20}^{+}+\frac{1}{4}(a_{21}^{-}+a_{03}^{-})+\frac{3}{4}(a_{30}^{-}+a_{12}^{-})\right] \left[-b_{01}^{+}-a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right], \end{split} \end{equation*} |
\begin{equation*} \begin{split} A_{31}& = -\frac{1}{4}\left(c_{21}^{+}+c_{03}^{+}\right) -\frac{3}{4}a_{01}^{+}(-b_{03}^{+}+b_{12}^{+}-b_{21}^{+}+b_{30}^{+}),\\ A_{32}& = \frac{1}{2}a_{11}^{+}\left[-b_{02}^{+}+b_{11}^{+} -b_{20}^{+}+\frac{3}{4}(-b_{03}^{+}+b_{12}^{+} -b_{21}^{-}+b_{30}^{-})\right],\\ A_{33}& = -a_{01}^{+}a_{11}^{+}\left[-a_{20}^{+} -a_{02}^{+}-a_{21}^{-}-a_{03}^{-} +\frac{3}{2}(a_{30}^{-}+a_{12}^{-})\right],\\ A_{34}& = \frac{1}{4}(a_{11}^{+})^{2} (a_{11}^{-}-a_{20}^{-}-a_{02}^{-}),\\ A_{35}& = \left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}-a_{20}^{-}-a_{02}^{-}\right) \left\{-\frac{1}{4}(b_{21}^{+}+b_{03}^{+})+\frac{1}{2}a_{11}^{+} \left[-a_{02}^{+}-a_{20}^{+}+\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right] \right\},\\ A_{36}& = \left[-a_{02}^{+}-a_{20}^{+}+\frac{1}{4}(a_{21}^{-}+a_{03}^{-})+\frac{3}{4}(a_{30}^{-}+a_{12}^{-})\right] \left\{\frac{1}{2}b_{11}^{+}+\frac{1}{2}a_{11}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right) -a_{01}^{+}\left[-a_{02}^{+}-a_{20}^{+}\right.\right.\\ &\left.\left.+\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right] \right\},\\ A_{41}& = \frac{3}{8}a_{11}^{+}(-b_{03}^{+}+b_{12}^{+}-b_{21}^{+} +b_{30}^{+}) +\frac{1}{4}(a_{11}^{+})^{2}\left[-a_{20}^{+}-a_{02}^{+}-a_{21}^{-}-a_{03}^{-} +\frac{3}{2}(a_{30}^{-}+a_{12}^{-})\right],\\ A_{42}& = \left[-a_{02}^{+}-a_{20}^{+}+\frac{1}{4}(a_{21}^{-}+a_{03}^{-})+\frac{3}{4}(a_{30}^{-}+a_{12}^{-})\right] \left\{-\frac{1}{4}(b_{21}^{+}+b_{03}^{+})+\frac{1}{2}a_{11}^{+} \left[-a_{02}^{+}-a_{20}^{+}+\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right] \right\}. \end{split} \end{equation*} |
Case 3: When a_{30}^{+}+a_{12}^{+} = 0 and a_{11}^{+} = 0 , we have
\begin{equation*} \begin{split} M_{3}(h) = \sum\limits_{k = 0}^{3}A_{k}(2h-1)^{k}, \end{split} \end{equation*} |
where
\begin{equation*} \begin{split} A_{0}& = -c_{01}^{-} -a_{01}^{+}(-b_{01}^{-}+b_{10}^{-}) +a_{10}^{-}\left[-b_{01}^{+}-a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right],\\ A_{1}& = A_{11}+A_{12}+A_{13},\\ A_{2}& = A_{21}+A_{22}+A_{23}+A_{24},\\ A_{3}& = A_{31}+A_{32}, \end{split} \end{equation*} |
and
\begin{equation*} \begin{split} A_{11}& = -c_{01}^{+}+\frac{1}{2}c_{11}^{-} -a_{01}^{+}(-b_{01}^{+}+b_{10}^{+} -b_{02}^{-}+b_{11}^{-}-b_{20}^{-}) +(a_{01}^{+})^{2}(a_{11}^{-}-a_{20}^{-}-a_{02}^{-}),\\ A_{12}& = a_{10}^{-}\left\{\frac{1}{2}b_{11}^{+}-a_{01}^{+}\left[-a_{20}^{+}-a_{02}^{+} +\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right]\right\},\\ A_{13}& = (a_{10}^{+}-\frac{1}{2}a_{11}^{-}-a_{20}^{-}-a_{02}^{-}) \left[-b_{01}^{+}-a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right],\\ A_{21}& = \frac{1}{2}c_{11}^{+}-\frac{1}{4}(c_{21}^{-}+c_{03}^{-}) -a_{01}^{+}\left[-b_{02}^{+}+b_{11}^{+} -b_{20}^{+}+\frac{3}{4}(b_{03}^{-}+b_{12}^{-} -b_{21}^{-}+b_{30}^{-})\right],\\ A_{22}& = (a_{01}^{+})^{2}\left[-a_{20}^{+} -a_{02}^{+}-a_{21}^{-}-a_{03}^{-} +\frac{3}{2}(a_{30}^{-}+a_{12}^{-})\right],\end{split} \end{equation*} |
\begin{equation*} \begin{split} A_{23}& = \left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}-a_{20}^{-}-a_{02}^{-}\right) \left\{\frac{1}{2}b_{11}^{+}-a_{01}^{+}\left[-a_{02}^{+}-a_{20}^{+}+\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right]\right\},\\ A_{24}& = \left[-a_{02}^{+}-a_{20}^{+}+\frac{1}{4}(a_{21}^{-}+a_{03}^{-})+\frac{3}{4}(a_{30}^{-}+a_{12}^{-})\right] \left[-b_{01}^{+}-a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right],\\ A_{31}& = -\frac{1}{4}\left(c_{21}^{+}+c_{03}^{+}\right) -\frac{3}{4}a_{01}^{+}(b_{12}^{+}+b_{30}^{+}),\\ A_{32}& = \left[-a_{02}^{+}-a_{20}^{+}+\frac{1}{4}(a_{21}^{-}+a_{03}^{-})+\frac{3}{4}(a_{30}^{-}+a_{12}^{-})\right] \left\{\frac{1}{2}b_{11}^{+} -a_{01}^{+}\left[-a_{02}^{+}-a_{20}^{+} +\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right] \right\}. \end{split} \end{equation*} |
Case 1: When a_{11}^{+} = 0, \; a_{30}^{+}+a_{12}^{+}\neq0 , we have
\begin{equation*} \begin{split} M_{4}(h) = \sum\limits_{k = 0}^{6}A_{k}(2h-1)^{k}, \end{split} \end{equation*} |
where
\begin{equation*} \begin{split} A_{0}& = A_{01}+A_{02},\\ A_{1}& = A_{11}+A_{12}+A_{13}+A_{14}+A_{15}+A_{16},\\ A_{2}& = A_{21}+A_{22}+A_{23}+A_{24}+A_{25}+A_{26}+A_{27},\\ \end{split} \end{equation*} |
\begin{equation*} \begin{split} A_{3}& = A_{31}+A_{32}+A_{33}+A_{34}+A_{35}+A_{36}+A_{37},\\ A_{4}& = A_{41}+A_{42}+A_{43}+A_{44},\\ A_{5}& = A_{51}+A_{52},\\ A_{6}& = \frac{3}{4}(a_{30}^{+}+a_{12}^{+})\left[ -\frac{1}{8}(c_{21}^{+}+c_{03}^{+})\right], \end{split} \end{equation*} |
and
\begin{equation*} \begin{split} A_{01}& = -d_{01}^{-} -\frac{1}{2}a_{01}^{+}(-c_{01}^{-}+c_{10}^{-}) +(-b_{01}^{-}+b_{10}^{-})\left[-b_{01}^{+}-a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right],\\ A_{02}& = a_{10}^{-}\left\{-a_{01}^{+}(-b_{01}^{+}+b_{10}^{+}) +\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right) \left[-b_{01}^{+}-a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right]\right\},\\ A_{11}& = \left(-d_{01}^{+}+\frac{1}{2}d_{11}^{-}\right) -a_{01}^{+}(-c_{01}^{+}+c_{10}^{+}-c_{02}^{-}+c_{11}^{-}-c_{20}^{-}) +(a_{01}^{+})^{2}(-b_{02}^{-}+b_{11}^{-}-b_{20}^{-}),\\ A_{12}& = \left(-b_{01}^{+} +a_{01}^{+}a_{10}^{+} -\frac{1}{2}a_{01}^{+}a_{11}^{-}\right)(-b_{01}^{+}+b_{10}^{+}-b_{02}^{-} +b_{11}^{-}-b_{20}^{-}),\\ A_{13}& = (2a_{11}^{-}-2a_{20}^{-}-2a_{02}^{-})\left[a_{01}^{+}b_{01}^{+} +(a_{01}^{+})^{2}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right) \right],\\ A_{14}& = \left[-b_{01}^{+}-a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right]^{2},\\ A_{15}& = a_{10}^{-}\left\{ -\frac{1}{2}c_{01}^{+} +\left(-a_{01}^{+}(-b_{02}^{+}+b_{11}^{+}-b_{20}^{+})\right) +(a_{01}^{+})^{2}\left[-(a_{02}^{+}+a_{20}^{+})-\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right]\right.\\ &\left.+\left[-b_{01}^{+}-a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right] \left[-(a_{02}^{+}+a_{20}^{+})+\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right] \right\},\end{split} \end{equation*} |
\begin{equation*} \begin{split} A_{16}& = \left\{-a_{01}^{+}(-b_{01}^{+}+b_{10}^{+}) +\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right) \left[-b_{01}^{+}-a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right]\right\} \left[a_{10}^{+}-\frac{1}{2}a_{11}^{-}-(a_{20}^{-}+a_{02}^{-})\right],\\ A_{21}& = \left(\frac{1}{2}d_{11}^{+}-\frac{1}{4}d_{03}^{-}-\frac{1}{4}d_{21}^{-}\right) +\left[ -a_{01}^{+}(-c_{02}^{+}+c_{11}^{+}-c_{20}^{+} -\frac{3}{4}c_{03}^{-}+\frac{3}{4}c_{12}^{-}-\frac{3}{4}c_{21}^{-} +\frac{3}{4}c_{30}^{-})\right],\\ A_{22}& = (a_{01}^{+})^{2}(-b_{02}^{+}+b_{11}^{+}-b_{20}^{+} -\frac{3}{2}b_{03}^{-} +\frac{3}{2}b_{12}^{-}-\frac{3}{2}b_{21}^{-}+\frac{3}{2}b_{30}^{-}) +(a_{01}^{+})^{3}(a_{21}^{-}+a_{03}^{-}-a_{30}^{-}-a_{12}^{-}),\\ A_{23}& = \left(b_{01}^{+}-a_{01}^{+}a_{10}^{+}+\frac{1}{2}a_{01}^{+}a_{11}^{-}\right) \left(-b_{02}^{+}+b_{11}^{+}-b_{20}^{+}-\frac{3}{4}b_{03}^{-}+\frac{3}{4}b_{12}^{-}-\frac{3}{4}b_{21}^{-} +\frac{3}{4}b_{30}^{-}\right),\\ A_{24}& = \left[a_{01}^{+}b_{01}^{+}+(a_{01}^{+})^{2}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right] \left[-2(a_{20}^{+}+a_{02}^{+}) -2(a_{21}^{-}+a_{03}^{-})+3(a_{30}^{-}+a_{12}^{-})\right],\\ A_{25}& = a_{10}^{-}\left\{\frac{1}{4}c_{11}^{+} -\frac{3}{4}a_{01}^{+}(-b_{03}^{+}+b_{12}^{+}-b_{21}^{+}+b_{30}^{+}) +\frac{3}{2}(a_{01}^{+})^{2}(a_{30}^{+}+a_{12}^{+}) +\frac{3}{4}(a_{30}^{+}+a_{12}^{+}) \left[-b_{01}^{+}\right.\right.\\ &\left.\left.-a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right] \right\},\\ A_{26}& = \left[a_{10}^{+}-\frac{1}{2}a_{11}^{-}-(a_{20}^{-}+a_{02}^{-})\right] \left\{ -\frac{1}{2}c_{01}^{+} +\left(-a_{01}^{+}(-b_{02}^{+}+b_{11}^{+}-b_{20}^{+})\right) +(a_{01}^{+})^{2}\right.\\ &\left.\times\left[-(a_{02}^{+}+a_{20}^{+}) -\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right] +\left[-b_{01}^{+}-a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right] \left[-(a_{02}^{+}+a_{20}^{+})+\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right] \right\},\\ A_{27}& = \left[-(a_{20}^{+}+a_{02}^{+})+\frac{1}{4}(a_{21}^{-}+a_{03}^{-}) +\frac{3}{4}(a_{30}^{-}+a_{12}^{-}) \right]\left\{-a_{01}^{+}(-b_{01}^{+}+b_{10}^{+}) +\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right) \left[-b_{01}^{+}\right.\right.\\ &\left.\left.-a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right]\right\},\\ A_{31}& = \left(-\frac{1}{4}d_{03}^{+}-\frac{1}{4}d_{21}^{+}\right) -a_{01}^{+}(-\frac{3}{4}c_{03}^{+}+\frac{3}{4}c_{12}^{+}-\frac{3}{4}c_{21}^{+}+\frac{3}{4}c_{30}^{+}) +\left[\frac{3}{2}(a_{01}^{+})^{2}(-b_{03}^{+}+b_{12}^{+}-b_{21}^{+}+b_{30}^{+})\right],\\ A_{32}& = -(a_{01}^{+})^{3}(a_{30}^{+}+a_{12}^{+}) +\frac{3}{4}(-b_{03}^{+}+b_{12}^{+}-b_{21}^{+}+b_{30}^{+})(-b_{01}^{+} -a_{01}^{+}a_{10}^{+}+\frac{1}{2}a_{01}^{+}a_{11}^{-}),\\ A_{33}& = (2a_{11}^{-}-2a_{20}^{-}-2a_{02}^{-}) \left[ \frac{1}{4}a_{01}^{+}(b_{21}^{+}+b_{03}^{+}) +\frac{3}{4}(a_{01}^{+})^{2}(a_{30}^{+}+a_{12}^{+}) \right],\\\ A_{34}& = 3(a_{30}^{+}+a_{12}^{+})\left[a_{01}^{+}b_{01}^{+} +(a_{01}^{+})^{2}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right) \right], A_{35} = a_{10}^{-}\left[-\frac{1}{8}(c_{21}^{+}+c_{03}^{+})\right],\\ A_{36}& = \left[a_{10}^{+}-\frac{1}{2}a_{11}^{-}-(a_{20}^{-}+a_{02}^{-})\right] \left\{\frac{1}{4}c_{11}^{+} -\frac{3}{4}a_{01}^{+}(-b_{03}^{+}+b_{12}^{+}-b_{21}^{+}+b_{30}^{+}) +\frac{3}{2}(a_{01}^{+})^{2}(a_{30}^{+}+a_{12}^{+}) \right.\\ &\left.+\frac{3}{4}(a_{30}^{+}+a_{12}^{+})\times\left[-b_{01}^{+}-a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right] \right\},\\ A_{37}& = \left[-(a_{20}^{+}+a_{02}^{+})+\frac{1}{4}(a_{21}^{-}+a_{03}^{-})+\frac{3}{4}(a_{30}^{-}+a_{12}^{-}) \right] \left\{ -\frac{1}{2}c_{01}^{+} -a_{01}^{+}(-b_{02}^{+}+b_{11}^{+}-b_{20}^{+}) \right.\\ &\left.+(a_{01}^{+})^{2}\left[-(a_{02}^{+}+a_{20}^{+})\right.\right. \left.\left.-\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right] +\left[-b_{01}^{+}-a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right] \left[-(a_{02}^{+}+a_{20}^{+}) +\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right] \right.\\ &\left.+\left[\frac{3}{4}(a_{30}^{+}+a_{12}^{+})\right]\times\left\{-a_{01}^{+}(-b_{01}^{+}+b_{10}^{+}) +\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right) \left[-b_{01}^{+}-a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right]\right\}\right\},\end{split} \end{equation*} |
\begin{equation*} \begin{split} A_{41}& = \left[-2(a_{20}^{+}+a_{02}^{+})-2(a_{21}^{-}+a_{03}^{-})+3(a_{30}^{-}+a_{12}^{-})\right] \left[ \frac{1}{4}a_{01}^{+}(b_{21}^{+}+b_{03}^{+})+\frac{3}{4}(a_{01}^{+})^{2}(a_{30}^{+}+a_{12}^{+}) \right],\\ A_{42}& = \left[a_{10}^{+}-\frac{1}{2}a_{11}^{-}-(a_{20}^{-}+a_{02}^{-})\right] \left[-\frac{1}{8}(c_{21}^{+}+c_{03}^{+}) \right],\\ A_{43}& = \left[-(a_{20}^{+}+a_{02}^{+})+\frac{1}{4}(a_{21}^{-}+a_{03}^{-})+\frac{3}{4}(a_{30}^{-}+a_{12}^{-}) \right] \left\{\frac{1}{4}c_{11}^{+} -\frac{3}{4}a_{01}^{+}(-b_{03}^{+}+b_{12}^{+}-b_{21}^{+}+b_{30}^{+})\right.\\ &\left.+\frac{3}{2}(a_{01}^{+})^{2}(a_{30}^{+}+a_{12}^{+}) +\frac{3}{4}(a_{30}^{+}+a_{12}^{+})\left[-b_{01}^{+}-a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right] \right\},\\ A_{44}& = \frac{3}{4}(a_{30}^{+}+a_{12}^{+})\left\{ -\frac{1}{2}c_{01}^{+} -a_{01}^{+}(-b_{02}^{+}+b_{11}^{+}-b_{20}^{+}) +(a_{01}^{+})^{2}\left[-(a_{02}^{+}+a_{20}^{+}) -\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right]\right.\\ &\left.+\left[-b_{01}^{+}-a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right] \left[-(a_{02}^{+}+a_{20}^{+})+\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right] \right\}\Bigg\},\\ A_{51}& = \left[-(a_{20}^{+}+a_{02}^{+})+\frac{1}{4}(a_{21}^{-}+a_{03}^{-})+\frac{3}{4}(a_{30}^{-}+a_{12}^{-}) \right] \left[-\frac{1}{8}(c_{21}^{+}+c_{03}^{+}) \right],\\ A_{52}& = \frac{3}{4}(a_{30}^{+}+a_{12}^{+}) \left\{\frac{1}{4}c_{11}^{+} -\frac{3}{4}a_{01}^{+}(-b_{03}^{+}+b_{12}^{+}-b_{21}^{+}+b_{30}^{+}) +\frac{3}{2}(a_{01}^{+})^{2}(a_{30}^{+}+a_{12}^{+}) +\frac{3}{4}(a_{30}^{+}+a_{12}^{+})\right.\\ &\left.\times\left[-b_{01}^{+} -a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right] \right\}. \end{split} \end{equation*} |
Case 2: When a_{30}^{+}+a_{12}^{+} = 0, \; a_{11}^{+}\neq0 , we have
\begin{equation*} \begin{split} M_{4}(h) = \sum\limits_{k = 0}^{5}A_{k}(2h-1)^{k}, \end{split} \end{equation*} |
where
\begin{equation*} \begin{split} A_{0} = A_{01}+A_{02}, A_{1} = \sum\limits_{j = 1}^{7}A_{1j}, A_{2} = \sum\limits_{j = 1}^{13}A_{2j}, A_{3} = \sum\limits_{j = 1}^{14}A_{3j}, A_{4} = \sum\limits_{j = 1}^{10}A_{4j}, A_{5} = \sum\limits_{j = 1}^{5}A_{5j}, \end{split} \end{equation*} |
and
\begin{equation*} \begin{split} A_{01}& = -d_{01}^{-} -\frac{1}{2}a_{01}^{+}(-c_{01}^{-}+c_{10}^{-}) +(-b_{01}^{-}+b_{10}^{-})\left[-b_{01}^{+}-a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right],\\ A_{02}& = a_{10}^{-}\left\{-a_{01}^{+}(-b_{01}^{+}+b_{10}^{+}) +\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right) \left[-b_{01}^{+}-a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right]\right\},\\ A_{11}& = -d_{01}^{+}+\frac{1}{2}d_{11}^{-} +\frac{1}{2}a_{11}^{+}(-c_{01}^{-}+c_{10}^{-})-a_{01}^{+}(-c_{01}^{+}+c_{10}^{+}-c_{02}^{-}+c_{11}^{-}-c_{20}^{-}) +(a_{01}^{+})^{2}(-b_{02}^{-}+b_{11}^{-}-b_{20}^{-}),\\ A_{12}& = (-b_{01}^{-}+b_{10}^{-})\left(\frac{1}{2}b_{11}^{+}+\frac{1}{2}a_{11}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right) +a_{01}^{+}\left(a_{20}^{+}+a_{02}^{+}-\frac{1}{2}a_{21}^{-}-\frac{1}{2}a_{03}^{-}\right)\right),\\ A_{13}& = (-b_{01}^{+} +a_{01}^{+}a_{10}^{+} -\frac{1}{2}a_{01}^{+}a_{11}^{-})(-b_{01}^{+}+b_{10}^{+}-b_{02}^{-} +b_{11}^{-}-b_{20}^{-}),\\ A_{14}& = (2a_{11}^{-}-2a_{20}^{-}-2a_{02}^{-})\left[a_{01}^{+}b_{01}^{+} +(a_{01}^{+})^{2}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right) \right],\\ A_{15}& = \left[-b_{01}^{+}-a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right]^{2},\end{split} \end{equation*} |
\begin{equation*} \begin{split} A_{16}& = a_{10}^{-}\left\{ -\frac{1}{2}c_{01}^{+} +\left(\frac{1}{2}a_{11}^{+}(-b_{01}^{+}+b_{10}^{+}) -a_{01}^{+}(-b_{02}^{+}+b_{11}^{+}-b_{20}^{+})\right) +(a_{01}^{+})^{2}\left[-(a_{02}^{+}+a_{20}^{+})-\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right]\right.\\ &\left.+\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right) \left[\frac{1}{2}b_{11}^{+} +\frac{1}{2}a_{11}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right) -a_{01}^{+}\left(-(a_{02}^{+}+a_{20}^{+})+\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right)\right]\right.\\ &\left.+\left[-b_{01}^{+}-a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right] \left[-(a_{02}^{+}+a_{20}^{+})+\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right] \right\},\\ A_{17}& = \left\{-a_{01}^{+}(-b_{01}^{+}+b_{10}^{+}) +\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right) \left[-b_{01}^{+}-a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right]\right\} \left[a_{10}^{+}-\frac{1}{2}a_{11}^{-}-(a_{20}^{-}+a_{02}^{-})\right],\\ A_{21}& = \frac{1}{2}d_{11}^{+}-\frac{1}{4}d_{03}^{-}-\frac{1}{4}d_{21}^{-},\\ A_{22}& = \frac{1}{2}a_{11}^{+}(-c_{01}^{+}+c_{10}^{+}-c_{02}^{-}+c_{11}^{-}-c_{20}^{-}) -a_{01}^{+}(-c_{02}^{+}+c_{11}^{+}-c_{20}^{+} -\frac{3}{4}c_{03}^{-}+\frac{3}{4}c_{12}^{-}-\frac{3}{4}c_{21}^{-} +\frac{3}{4}c_{30}^{-}),\\ A_{23}& = -a_{01}^{+}a_{11}^{+}(-b_{02}^{-}+b_{11}^{-}-b_{20}^{-}) +(a_{01}^{+})^{2}(-b_{02}^{+}+b_{11}^{+}-b_{20}^{+} -\frac{3}{2}b_{03}^{-} +\frac{3}{2}b_{12}^{-}-\frac{3}{2}b_{21}^{-}+\frac{3}{2}b_{30}^{-}),\\ A_{24}& = (a_{01}^{+})^{3}(a_{21}^{-}+a_{03}^{-}-a_{30}^{-}-a_{12}^{-}),\\ A_{25}& = (-b_{01}^{-}+b_{10}^{-})\left[-\frac{1}{4}(b_{21}^{+}+b_{03}^{+}) +\frac{1}{2}a_{11}^{+} \left(-a_{20}^{+}-a_{02}^{+}+\frac{1}{2}a_{21}^{-}+\frac{1}{2}a_{03}^{-}\right) \right],\\ A_{26}& = (-b_{01}^{+}+b_{10}^{+}-b_{02}^{-}+b_{11}^{-}-b_{20}^{-}) \left[\frac{1}{2}b_{11}^{+} +\frac{1}{2}a_{11}^{+}(a_{10}^{+}-\frac{1}{2}a_{11}^{-})+a_{01}^{+}(a_{20}^{+}+a_{02}^{+} -\frac{1}{2}a_{21}^{-}-\frac{1}{2}a_{03}^{-})\right],\\ A_{27}& = \left(b_{01}^{+}-a_{01}^{+}a_{10}^{+}+\frac{1}{2}a_{01}^{+}a_{11}^{-}\right) \left(-b_{02}^{+}+b_{11}^{+}-b_{20}^{+}-\frac{3}{4}b_{03}^{-}+\frac{3}{4}b_{12}^{-}-\frac{3}{4}b_{21}^{-} +\frac{3}{4}b_{30}^{-}\right),\\ A_{28}& = (2a_{11}^{-}-2a_{20}^{-}-2a_{02}^{-})\left[-\frac{1}{2}a_{11}^{+}b_{01}^{+} -\frac{1}{2}a_{11}^{+}a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)-\frac{1}{2}a_{01}^{+}b_{11}^{+} -\frac{1}{2}a_{11}^{+}a_{01}^{+}\left(a_{10}^{-}-\frac{1}{2}a_{11}^{-}\right)\right.\\ &\left.+(a_{01}^{+})^{2} \left(-a_{20}^{+}-a_{02}^{+}+\frac{1}{2}a_{21}^{-}+\frac{1}{2}a_{03}^{-}\right)\right],\\ A_{29}& = \left[a_{01}^{+}b_{01}^{+}+(a_{01}^{+})^{2}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right] \left[-2(a_{20}^{+}+a_{02}^{+}) -2(a_{21}^{-}+a_{03}^{-})+3(a_{30}^{-}+a_{12}^{-})\right],\\ A_{2,10}& = 2\left[-b_{01}^{+}-a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right] \left[\frac{1}{2}b_{11}^{+}+\frac{1}{2}a_{11}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right) +a_{01}^{+}\left(a_{02}^{+}+a_{20}^{+}-\frac{1}{2}a_{21}^{-}-\frac{1}{2}a_{03}^{-}\right) \right],\\ A_{2,11}& = a_{10}^{-}\left\{\frac{1}{4}c_{11}^{+} +\frac{1}{2}a_{11}^{+}(-b_{02}^{+}+b_{11}^{+}-b_{20}^{+}) -\frac{3}{4}a_{01}^{+}(-b_{03}^{+}+b_{12}^{+}-b_{21}^{+}+b_{30}^{+}) -a_{01}^{+}a_{11}^{+}\right.\\ &\left.\times\left[-(a_{02}^{+}+a_{20}^{+}) -\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right] +\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right) \left[-\frac{1}{4}(b_{21}^{+}+b_{03}^{+})+\frac{1}{2}a_{11}^{+}\left(-(a_{02}^{+}+a_{20}^{+})\right.\right.\right.\\ &\left.\left.\left.+\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right) \right]+\left[\frac{1}{2}b_{11}^{+}+\frac{1}{2}a_{11}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)-a_{01}^{+}\left(-(a_{02}^{+}+a_{20}^{+}) +\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right)\right]\right.\\ &\left.\times\left[-(a_{02}^{+}+a_{20}^{+})+\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right] \right\},\end{split} \end{equation*} |
\begin{equation*} \begin{split} A_{2,12}& = \left[a_{10}^{+}-\frac{1}{2}a_{11}^{-}-(a_{20}^{-}+a_{02}^{-})\right] \left\{ -\frac{1}{2}c_{01}^{+} +\left(\frac{1}{2}a_{11}^{+}(-b_{01}^{+}+b_{10}^{+})-a_{01}^{+}(-b_{02}^{+}+b_{11}^{+}-b_{20}^{+})\right)\right.\\ &\left.+(a_{01}^{+})^{2}\left[-(a_{02}^{+}+a_{20}^{+}) -\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right] +\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right) \left[\frac{1}{2}b_{11}^{+} +\frac{1}{2}a_{11}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right.\right.\\ &\left.\left.-a_{01}^{+}\left(-(a_{02}^{+}+a_{20}^{+})+\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right)\right] +\left[-b_{01}^{+}-a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right] \left[-(a_{02}^{+}+a_{20}^{+})+\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right] \right\},\\ A_{2,13}& = \left[-(a_{20}^{+}+a_{02}^{+})+\frac{1}{4}(a_{21}^{-}+a_{03}^{-})+\frac{3}{4}(a_{30}^{-}+a_{12}^{-}) \right]\left\{-a_{01}^{+}(-b_{01}^{+}+b_{10}^{+}) +\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right) \left[-b_{01}^{+}\right.\right.\\ &\left.\left.-a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right]\right\},\\ A_{31}& = -\frac{1}{4}d_{03}^{+}-\frac{1}{4}d_{21}^{+},\\ A_{32}& = \frac{1}{2}a_{11}^{+}(-c_{02}^{+}+c_{11}^{+}-c_{20}^{+}-\frac{3}{4}c_{03}^{-}+\frac{3}{4}c_{12}^{-}-\frac{3}{4}c_{21}^{-} +\frac{3}{4}c_{30}^{-})-a_{01}^{+}(-\frac{3}{4}c_{03}^{+}+\frac{3}{4}c_{12}^{+} -\frac{3}{4}c_{21}^{+}+\frac{3}{4}c_{30}^{+}),\\ A_{33}& = \left[\frac{3}{2}(a_{01}^{+})^{2}(-b_{03}^{+}+b_{12}^{+}-b_{21}^{+}+b_{30}^{+}) -a_{01}^{+}a_{11}^{+}(-b_{02}^{+}+b_{11}^{+}-b_{20}^{+}-\frac{3}{2}b_{03}^{-} +\frac{3}{2}b_{12}^{-}-\frac{3}{2}b_{21}^{-}+\frac{3}{2}b_{30}^{-})\right.\\ &\left.+\frac{1}{4}(a_{11}^{+})^{2}(-b_{02}^{-}+b_{11}^{-}-b_{20}^{-}) \right],\\ A_{34}& = -\frac{3}{2}a_{11}^{+}(a_{01}^{+})^{2}(a_{21}^{-}+a_{03}^{-}-a_{30}^{-}-a_{12}^{-}),\\ A_{35}& = (-b_{01}^{+}+b_{10}^{+}-b_{02}^{-}+b_{11}^{-}-b_{20}^{-})\left[-\frac{1}{4}(b_{21}^{+}+b_{03}^{+}) +\frac{1}{2}a_{11}^{+} \left(-a_{20}^{+} -a_{02}^{+}+\frac{1}{2}a_{21}^{-}+\frac{1}{2}a_{03}^{-}\right) \right],\\ A_{36}& = (-b_{02}^{+}+b_{11}^{+}-b_{20}^{+}-\frac{3}{4}b_{03}^{-}+\frac{3}{4}b_{12}^{-}-\frac{3}{4}b_{21}^{-} +\frac{3}{4}b_{30}^{-})\left[\frac{1}{2}b_{11}^{+} +\frac{1}{2}a_{11}^{+}(a_{10}^{+}-\frac{1}{2}a_{11}^{-})\right.\\ &\left.+a_{01}^{+}(a_{20}^{+}+a_{02}^{+} -\frac{1}{2}a_{21}^{-}-\frac{1}{2}a_{03}^{-})\right],\\ A_{37}& = \frac{3}{4}(-b_{03}^{+}+b_{12}^{+}-b_{21}^{+}+b_{30}^{+})(-b_{01}^{+} -a_{01}^{+}a_{10}^{+}+\frac{1}{2}a_{01}^{+}a_{11}^{-}),\\ A_{38}& = (2a_{11}^{-}-2a_{20}^{-}-2a_{02}^{-}) \left[\frac{1}{4}a_{11}^{+}b_{11}^{+}+\frac{1}{4}(a_{11}^{+})^{2}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right) -\frac{1}{2}a_{11}^{+}a_{01}^{+}\left(-a_{20}^{+} -a_{02}^{+}+\frac{1}{2}a_{21}^{-}+\frac{1}{2}a_{03}^{-}\right)\right.\\ &\left.+\frac{1}{4}a_{01}^{+}(b_{21}^{+}+b_{03}^{+}) -\frac{1}{2}a_{11}^{+}a_{01}^{+}\left(-a_{20}^{+}-a_{02}^{+}+\frac{1}{2}a_{21}^{-}+\frac{1}{2}a_{03}^{-}\right) \right],\\ A_{39}& = \left[-2(a_{20}^{+}+a_{02}^{+}) -2(a_{21}^{-}+a_{03}^{-})+3(a_{30}^{-}+a_{12}^{-})\right] \left[-\frac{1}{2}a_{11}^{+}b_{01}^{+} -\frac{1}{2}a_{11}^{+}a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)-\frac{1}{2}a_{01}^{+}b_{11}^{+}\right.\\ &\left.-\frac{1}{2}a_{11}^{+}a_{01}^{+}\left(a_{10}^{-}-\frac{1}{2}a_{11}^{-}\right) +(a_{01}^{+})^{2} \left(-a_{20}^{+}-a_{02}^{+}+\frac{1}{2}a_{21}^{-}+\frac{1}{2}a_{03}^{-}\right)\right],\\ A_{3,10}& = 2\left[-b_{01}^{+}-a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right] \left[-\frac{1}{4}(b_{21}^{+}+b_{03}^{+})+\frac{1}{2}a_{11}^{+} \left(-a_{02}^{+}-a_{20}^{+}+\frac{1}{2}a_{21}^{-}+\frac{1}{2}a_{03}^{-}\right) \right],\\ A_{3,11}& = \left[\frac{1}{2}b_{11}^{+}+\frac{1}{2}a_{11}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right) +a_{01}^{+}\left(a_{02}^{+} +a_{20}^{+}-\frac{1}{2}a_{21}^{-}-\frac{1}{2}a_{03}^{-}\right) \right]^{2},\end{split} \end{equation*} |
\begin{equation*} \begin{split} A_{3,12}& = a_{10}^{-}\left\{-\frac{1}{8}(c_{21}^{+}+c_{03}^{+}) +\frac{3}{8}a_{11}^{+}(-b_{03}^{+}+b_{12}^{+}-b_{21}^{+}+b_{30}^{+}) +\frac{1}{4}(a_{11}^{+})^{2}\right.\\ &\left.\times\left[-(a_{02}^{+}+a_{20}^{+}) -\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right] +\left[-(a_{02}^{+}+a_{20}^{+})+\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right]\right.\\ &\left.\times\left[-\frac{1}{4}(b_{21}^{+}+b_{03}^{+})+\frac{1}{2}a_{11}^{+} \left(-(a_{02}^{+}+a_{20}^{+})+\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right) \right] \right\},\\ A_{3,13}& = \left[a_{10}^{+}-\frac{1}{2}a_{11}^{-}-(a_{20}^{-}+a_{02}^{-})\right] \left\{\frac{1}{4}c_{11}^{+} +\frac{1}{2}a_{11}^{+}(-b_{02}^{+}+b_{11}^{+}-b_{20}^{+}) -\frac{3}{4}a_{01}^{+}(-b_{03}^{+}+b_{12}^{+}-b_{21}^{+}+b_{30}^{+})\right.\\ &\left.-a_{01}^{+}a_{11}^{+}\left[-(a_{02}^{+}+a_{20}^{+}) \frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right] +\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right) \left[-\frac{1}{4}(b_{21}^{+}+b_{03}^{+}) +\frac{1}{2}a_{11}^{+}\left(-(a_{02}^{+}+a_{20}^{+})\right.\right.\right.\\ &\left.\left.\left.+\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right)\right] +\left[\frac{1}{2}b_{11}^{+}+\frac{1}{2}a_{11}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right) -a_{01}^{+}\left(-(a_{02}^{+}+a_{20}^{+})+\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right)\right]\right.\\ &\left.\times\left[-(a_{02}^{+}+a_{20}^{+})+\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right] \right\},\\ A_{3,14}& = \left[-(a_{20}^{+}+a_{02}^{+})+\frac{1}{4}(a_{21}^{-}+a_{03}^{-})+\frac{3}{4}(a_{30}^{-}+a_{12}^{-}) \right] \left\{ -\frac{1}{2}c_{01}^{+} +\left(\frac{1}{2}a_{11}^{+}(-b_{01}^{+}+b_{10}^{+}) -a_{01}^{+}(-b_{02}^{+}+b_{11}^{+}-b_{20}^{+})\right)\right.\\ &\left.+(a_{01}^{+})^{2}\left[-(a_{02}^{+}+a_{20}^{+})-\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right] +\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right) \left[\frac{1}{2}b_{11}^{+}+\frac{1}{2}a_{11}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right.\right.\\ &\left.-a_{01}^{+} \left(-(a_{02}^{+}+a_{20}^{+}) +\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right)\right] +\left[-b_{01}^{+}-a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right] \left[-(a_{02}^{+}+a_{20}^{+})+\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right] \Bigg\},\\ A_{41}& = \frac{1}{2}a_{11}^{+}(-\frac{3}{4}c_{03}^{+}+\frac{3}{4}c_{12}^{+}-\frac{3}{4}c_{21}^{+} +\frac{3}{4}c_{30}^{+}),\\ A_{42}& = -\frac{3}{2}a_{01}^{+}a_{11}^{+}(-b_{03}^{+}+b_{12}^{+}-b_{21}^{+}+b_{30}^{+}) +\frac{1}{4}(a_{11}^{+})^{2}(-b_{02}^{+}+b_{11}^{+}-b_{20}^{+}-\frac{3}{2}b_{03}^{-} +\frac{3}{2}b_{12}^{-}-\frac{3}{2}b_{21}^{-}+\frac{3}{2}b_{30}^{-}),\\ A_{43}& = \frac{3}{4}(a_{11}^{+})^{2}a_{01}^{+}(a_{21}^{-}+a_{03}^{-}-a_{30}^{-} -a_{12}^{-}),\\ A_{44}& = (-b_{02}^{+}+b_{11}^{+}-b_{20}^{+}-\frac{3}{4}b_{03}^{-}+\frac{3}{4}b_{12}^{-}-\frac{3}{4}b_{21}^{-} +\frac{3}{4}b_{30}^{-}) \left[-\frac{1}{4}(b_{21}^{+}+b_{03}^{+})+\frac{1}{2}a_{11}^{+}(-a_{20}^{+}-a_{02}^{+} +\frac{1}{2}a_{21}^{-}+\frac{1}{2}a_{03}^{-}) \right],\\ A_{45}& = \frac{3}{4}(-b_{03}^{+}+b_{12}^{+}-b_{21}^{+}+b_{30}^{+})\left[\frac{1}{2}b_{11}^{+}+\frac{1}{2}a_{11}^{+} (a_{10}^{+}-\frac{1}{2}a_{11}^{-})+a_{10}^{+}(a_{20}^{+}+a_{02}^{+} -\frac{1}{2}a_{21}^{-}-\frac{1}{2}a_{03}^{-}) \right],\\ A_{46}& = (2a_{11}^{-}-2a_{20}^{-}-2a_{02}^{-}) \left[-\frac{1}{8}a_{11}^{+}(b_{21}^{+}+b_{03}^{+}) +\frac{1}{4}(a_{11}^{+})^{2}\left(-a_{20}^{+}-a_{02}^{+}+\frac{1}{2}a_{21}^{-}+\frac{1}{2}a_{03}^{-}\right) \right],\\ A_{47}& = \left[-2(a_{20}^{+}+a_{02}^{+})-2(a_{21}^{-}+a_{03}^{-})+3(a_{30}^{-}+a_{12}^{-})\right] \left[\frac{1}{4}a_{11}^{+}b_{11}^{+}+\frac{1}{4}(a_{11}^{+})^{2}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right.\\ &\left.-\frac{1}{2}a_{11}^{+}a_{01}^{+} \left(-a_{20}^{+}-a_{02}^{+}+\frac{1}{2}a_{21}^{-}+\frac{1}{2}a_{03}^{-}\right) +\frac{1}{4}a_{01}^{+}(b_{21}^{+}+b_{03}^{+}) -\frac{1}{2}a_{11}^{+}a_{01}^{+}\left(-a_{20}^{+}-a_{02}^{+}+\frac{1}{2}a_{21}^{-}+\frac{1}{2}a_{03}^{-}\right) \right],\\ A_{48}& = 2\left[\frac{1}{2}b_{11}^{+}+\frac{1}{2}a_{11}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right) +a_{01}^{+}\left(a_{02}^{+}+a_{20}^{+} -\frac{1}{2}a_{21}^{-}-\frac{1}{2}a_{03}^{-}\right) \right] \left[-\frac{1}{4}(b_{21}^{+}+b_{03}^{+})\right.\\ &\left.+\frac{1}{2}a_{11}^{+} \left(-a_{02}^{+}-a_{20}^{+} +\frac{1}{2}a_{21}^{-}+\frac{1}{2}a_{03}^{-}\right) \right],\end{split} \end{equation*} |
\begin{equation*} \begin{split} A_{49}& = \left[a_{10}^{+}-\frac{1}{2}a_{11}^{-}-(a_{20}^{-}+a_{02}^{-})\right] \left\{-\frac{1}{8}(c_{21}^{+}+c_{03}^{+})+\frac{3}{8}a_{11}^{+}(-b_{03}^{+}+b_{12}^{+}-b_{21}^{+}+b_{30}^{+})\right.\\ &\left.+\frac{1}{4}(a_{11}^{+})^{2}\left[-(a_{02}^{+}+a_{20}^{+})-\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right] +\left[-(a_{02}^{+}+a_{20}^{+}) +\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right] \left[-\frac{1}{4}(b_{21}^{+}+b_{03}^{+})\right.\right.\\ &\left.\left.+\frac{1}{2}a_{11}^{+} \left(-(a_{02}^{+}+a_{20}^{+}) +\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right) \right] \right\},\\ A_{4,10}& = \left[-(a_{20}^{+}+a_{02}^{+})+\frac{1}{4}(a_{21}^{-}+a_{03}^{-})+\frac{3}{4}(a_{30}^{-}+a_{12}^{-}) \right] \left\{\frac{1}{4}c_{11}^{+} +\frac{1}{2}a_{11}^{+}(-b_{02}^{+}+b_{11}^{+}-b_{20}^{+})\right.\\ &\left.-\frac{3}{4}a_{01}^{+}(-b_{03}^{+}+b_{12}^{+}-b_{21}^{+}+b_{30}^{+}) -a_{01}^{+}a_{11}^{+}\left[-(a_{02}^{+}+a_{20}^{+}) -\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right] \right.\\ &\left.+\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right) \left[-\frac{1}{4}(b_{21}^{+}+b_{03}^{+}) +\frac{1}{2}a_{11}^{+}\left(-(a_{02}^{+}+a_{20}^{+}) +\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right) \right]\right.\\ &\left.+\left[\frac{1}{2}b_{11}^{+}+\frac{1}{2}a_{11}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right) -a_{01}^{+}\left(-(a_{02}^{+}+a_{20}^{+}) +\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right)\right] \left[-(a_{02}^{+}+a_{20}^{+})+\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right] \right\},\\ A_{51}& = \frac{3}{8}(a_{11}^{+})^{2}(-b_{03}^{+}+b_{12}^{+}-b_{21}^{+}+b_{30}^{+}) +\frac{1}{8}(a_{11}^{+})^{3}(a_{21}^{-}-a_{03}^{-}+a_{30}^{-}+a_{12}^{-}),\\ A_{52}& = \frac{3}{4}(-b_{03}^{+}+b_{12}^{+}-b_{21}^{+}+b_{30}^{+}) \left[-\frac{1}{4}(b_{21}^{+}+b_{03}^{+}) +\frac{1}{2}a_{11}^{+}\left(-a_{20}^{+} -a_{02}^{+}+\frac{1}{2}a_{21}^{-}+\frac{1}{2}a_{03}^{-}\right) \right],\\ A_{53}& = \left[-2(a_{20}^{+}+a_{02}^{+}) -2(a_{21}^{-}+a_{03}^{-})+3(a_{30}^{-}+a_{12}^{-})\right] \left[-\frac{1}{8}a_{11}^{+}(b_{21}^{+}+b_{03}^{+})\right.\\ &\left.+\frac{1}{4}(a_{11}^{+})^{2}\left(-a_{20}^{+}-a_{02}^{+}+\frac{1}{2}a_{21}^{-}+\frac{1}{2}a_{03}^{-}\right) \right],\\ \end{split} \end{equation*} |
\begin{equation*} \begin{split} A_{54}& = \left[-\frac{1}{4}(b_{21}^{+}+b_{03}^{+})+\frac{1}{2}a_{11}^{+} \left(-a_{02}^{+}-a_{20}^{+}+\frac{1}{2}a_{21}^{-}+\frac{1}{2}a_{03}^{-}\right) \right]^{2},\\ A_{55}& = \left[-(a_{20}^{+}+a_{02}^{+})+\frac{1}{4}(a_{21}^{-}+a_{03}^{-})+\frac{3}{4}(a_{30}^{-}+a_{12}^{-}) \right]\left\{-\frac{1}{8}(c_{21}^{+}+c_{03}^{+}) +\frac{3}{8}a_{11}^{+}(-b_{03}^{+}+b_{12}^{+}-b_{21}^{+}+b_{30}^{+})\right.\\ &\left.+\frac{1}{4}(a_{11}^{+})^{2}\left[-(a_{02}^{+}+a_{20}^{+})-\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right] +\left[-(a_{02}^{+}+a_{20}^{+})+\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right] \left[-\frac{1}{4}(b_{21}^{+}+b_{03}^{+})\right.\right.\\ &\left.\left.+\frac{1}{2}a_{11}^{+} \left(-(a_{02}^{+}+a_{20}^{+})+\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right) \right] \right\}. \end{split} \end{equation*} |
Case 3: When a_{30}^{+}+a_{12}^{+} = 0 and a_{11}^{+} = 0 , we have
\begin{equation*} \begin{split} M_{4}(h) = \sum\limits_{k = 0}^{4}A_{k}(2h-1)^{k}, \end{split} \end{equation*} |
where
\begin{equation*} \begin{split} A_{0} = A_{01}+A_{02}, A_{1} = \sum\limits_{j = 1}^{5}A_{1j}, A_{2} = \sum\limits_{j = 1}^{9}A_{2j}, A_{3} = \sum\limits_{j = 1}^{8}A_{3j}, A_{4} = A_{41}+A_{42}, \end{split} \end{equation*} |
and
\begin{equation*} \begin{split} A_{01}& = -d_{01}^{-} -\frac{1}{2}a_{01}^{+}(-c_{01}^{-}+c_{10}^{-}) +(-b_{01}^{-}+b_{10}^{-})\left[-b_{01}^{+}-a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right],\\ A_{02}& = a_{10}^{-}\left\{-a_{01}^{+}(-b_{01}^{+}+b_{10}^{+})+\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right) \left[-b_{01}^{+}-a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right]\right\},\\ A_{11}& = \left(-d_{01}^{+}+\frac{1}{2}d_{11}^{-}\right) +-a_{01}^{+}(-c_{01}^{+}+c_{10}^{+}-c_{02}^{-}+c_{11}^{-}-c_{20}^{-}) +(a_{01}^{+})^{2}(-b_{02}^{-}+b_{11}^{-}-b_{20}^{-}),\\ A_{12}& = (-b_{01}^{-}+b_{10}^{-})\left(\frac{1}{2}b_{11}^{+} +a_{01}^{+}\left(a_{20}^{+}+a_{02}^{+}-\frac{1}{2}a_{21}^{-}-\frac{1}{2}a_{03}^{-}\right)\right) +(-b_{01}^{+} +a_{01}^{+}a_{10}^{+} -\frac{1}{2}a_{01}^{+}a_{11}^{-})\\ &\times(-b_{01}^{+}+b_{10}^{+}-b_{02}^{-} +b_{11}^{-}-b_{20}^{-}),\\ A_{13}& = (2a_{11}^{-}-2a_{20}^{-}-2a_{02}^{-})\left[a_{01}^{+}b_{01}^{+} +(a_{01}^{+})^{2}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right) \right]+\left[-b_{01}^{+}-a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right]^{2},\\ A_{14}& = a_{10}^{-}\left\{ -\frac{1}{2}c_{01}^{+} -a_{01}^{+}(-b_{02}^{+}+b_{11}^{+}-b_{20}^{+}) +(a_{01}^{+})^{2}\left[-(a_{02}^{+}+a_{20}^{+}) -\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right] +\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right.\\ &\left.\times\left[\frac{1}{2}b_{11}^{+} -a_{01}^{+}\left(-(a_{02}^{+}+a_{20}^{+})+\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right)\right] +\left[-b_{01}^{+}-a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right] \left[-(a_{02}^{+}+a_{20}^{+})\right.\right.\\ &\left.\left.+\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right] \right\},\\ A_{15}& = \left\{-a_{01}^{+}(-b_{01}^{+}+b_{10}^{+}) +\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right) \left[-b_{01}^{+}-a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right]\right\} \left[a_{10}^{+}-\frac{1}{2}a_{11}^{-}-(a_{20}^{-}+a_{02}^{-})\right],\\ A_{21}& = \frac{1}{2}d_{11}^{+}-\frac{1}{4}d_{03}^{-}-\frac{1}{4}d_{21}^{-} -a_{01}^{+}(-c_{02}^{+}+c_{11}^{+}-c_{20}^{+} -\frac{3}{4}c_{03}^{-}+\frac{3}{4}c_{12}^{-}-\frac{3}{4}c_{21}^{-} +\frac{3}{4}c_{30}^{-}),\\ A_{22}& = (a_{01}^{+})^{2}(-b_{02}^{+}+b_{11}^{+}-b_{20}^{+} -\frac{3}{2}b_{03}^{-} +\frac{3}{2}b_{12}^{-}-\frac{3}{2}b_{21}^{-}+\frac{3}{2}b_{30}^{-}) +(a_{01}^{+})^{3}(a_{21}^{-}+a_{03}^{-}-a_{30}^{-}-a_{12}^{-}),\\ A_{23}& = (-b_{01}^{+}+b_{10}^{+}-b_{02}^{-}+b_{11}^{-}-b_{20}^{-}) \left[\frac{1}{2}b_{11}^{+} +a_{01}^{+}(a_{20}^{+}+a_{02}^{+} -\frac{1}{2}a_{21}^{-}-\frac{1}{2}a_{03}^{-})\right],\\ A_{24}& = \left(b_{01}^{+}-a_{01}^{+}a_{10}^{+}+\frac{1}{2}a_{01}^{+}a_{11}^{-}\right) \left(-b_{02}^{+}+b_{11}^{+}-b_{20}^{+}-\frac{3}{4}b_{03}^{-}+\frac{3}{4}b_{12}^{-}-\frac{3}{4}b_{21}^{-} +\frac{3}{4}b_{30}^{-}\right),\\ A_{25}& = (2a_{11}^{-}-2a_{20}^{-}-2a_{02}^{-})\left[-\frac{1}{2}a_{01}^{+}b_{11}^{+} +(a_{01}^{+})^{2} \left(-a_{20}^{+}-a_{02}^{+}+\frac{1}{2}a_{21}^{-}+\frac{1}{2}a_{03}^{-}\right)\right],\\ A_{26}& = \left[a_{01}^{+}b_{01}^{+}+(a_{01}^{+})^{2}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right] \left[-2(a_{20}^{+}+a_{02}^{+}) -2(a_{21}^{-}+a_{03}^{-})+3(a_{30}^{-}+a_{12}^{-})\right],\\ A_{27}& = 2\left[-b_{01}^{+}-a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right] \left[\frac{1}{2}b_{11}^{+} +a_{01}^{+}\left(a_{02}^{+}+a_{20}^{+}-\frac{1}{2}a_{21}^{-}-\frac{1}{2}a_{03}^{-}\right) \right],\\ A_{28}& = a_{10}^{-}\left\{\frac{1}{4}c_{11}^{+} -\frac{3}{4}a_{01}^{+}(-b_{03}^{+}+b_{12}^{+}-b_{21}^{+}+b_{30}^{+}) +\left[\frac{1}{2}b_{11}^{+} -a_{01}^{+}\left(-(a_{02}^{+}+a_{20}^{+}) +\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right)\right]\right.\\ &\left.\times\left[-(a_{02}^{+}+a_{20}^{+})+\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right] \right\},\end{split} \end{equation*} |
\begin{equation*} \begin{split} A_{29}& = \left[a_{10}^{+}-\frac{1}{2}a_{11}^{-}-(a_{20}^{-}+a_{02}^{-})\right] \left\{ -\frac{1}{2}c_{01}^{+} +-a_{01}^{+}(-b_{02}^{+}+b_{11}^{+}-b_{20}^{+})\right.\\ &\left.+(a_{01}^{+})^{2}\left[-(a_{02}^{+}+a_{20}^{+}) -\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right] +\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right) \left[\frac{1}{2}b_{11}^{+} -a_{01}^{+}\left(-(a_{02}^{+}+a_{20}^{+})+\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right)\right]\right.\\ &\left.+\left[-b_{01}^{+}-a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right] \left[-(a_{02}^{+}+a_{20}^{+})+\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right] \right\} +\left[-(a_{20}^{+}+a_{02}^{+})+\frac{1}{4}(a_{21}^{-}+a_{03}^{-})\right.\\ &\left.+\frac{3}{4}(a_{30}^{-}+a_{12}^{-}) \right]\left\{-a_{01}^{+}(-b_{01}^{+}+b_{10}^{+}) +\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right) \left[-b_{01}^{+}-a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right]\right\},\\ A_{31}& = -\frac{1}{4}d_{03}^{+}-\frac{1}{4}d_{21}^{+} -a_{01}^{+}(-\frac{3}{4}c_{03}^{+}+\frac{3}{4}c_{12}^{+}-\frac{3}{4}c_{21}^{+}+\frac{3}{4}c_{30}^{+}) +\frac{3}{2}(a_{01}^{+})^{2}(-b_{03}^{+}+b_{12}^{+}-b_{21}^{+}+b_{30}^{+}),\\ A_{32}& = (-b_{02}^{+}+b_{11}^{+}-b_{20}^{+}-\frac{3}{4}b_{03}^{-}+\frac{3}{4}b_{12}^{-}-\frac{3}{4}b_{21}^{-} +\frac{3}{4}b_{30}^{-}) \left[\frac{1}{2}b_{11}^{+} +a_{01}^{+}(a_{20}^{+}+a_{02}^{+} -\frac{1}{2}a_{21}^{-}-\frac{1}{2}a_{03}^{-})\right],\\ A_{33}& = \frac{3}{4}(-b_{03}^{+}+b_{12}^{+}-b_{21}^{+}+b_{30}^{+})(-b_{01}^{+} -a_{01}^{+}a_{10}^{+}+\frac{1}{2}a_{01}^{+}a_{11}^{-}),\\ A_{34}& = \left[-2(a_{20}^{+}+a_{02}^{+}) -2(a_{21}^{-}+a_{03}^{-})+3(a_{30}^{-}+a_{12}^{-})\right] \left[ -\frac{1}{2}a_{01}^{+}b_{11}^{+} +(a_{01}^{+})^{2} \left(-a_{20}^{+}-a_{02}^{+}+\frac{1}{2}a_{21}^{-}+\frac{1}{2}a_{03}^{-}\right)\right],\\ A_{35}& = \left[\frac{1}{2}b_{11}^{+} +a_{01}^{+}\left(a_{02}^{+}+a_{20}^{+}-\frac{1}{2}a_{21}^{-}-\frac{1}{2}a_{03}^{-}\right) \right]^{2},\\ A_{36}& = a_{10}^{-}\left[-\frac{1}{8}(c_{21}^{+}+c_{03}^{+})\right],\\ A_{37}& = \left[a_{10}^{+}-\frac{1}{2}a_{11}^{-}-(a_{20}^{-}+a_{02}^{-})\right] \left\{\frac{1}{4}c_{11}^{+} -\frac{3}{4}a_{01}^{+}(-b_{03}^{+}+b_{12}^{+}-b_{21}^{+}+b_{30}^{+})\right.\\ &\left.+\left[\frac{1}{2}b_{11}^{+} -a_{01}^{+}\left(-(a_{02}^{+}+a_{20}^{+})+\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right)\right] \left[-(a_{02}^{+}+a_{20}^{+})+\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right] \right\},\\ \end{split} \end{equation*} |
\begin{equation*} \begin{split} A_{38}& = \left[-(a_{20}^{+}+a_{02}^{+})+\frac{1}{4}(a_{21}^{-}+a_{03}^{-})+\frac{3}{4}(a_{30}^{-}+a_{12}^{-}) \right] \left\{ -\frac{1}{2}c_{01}^{+} +\left( -a_{01}^{+}(-b_{02}^{+}+b_{11}^{+}-b_{20}^{+})\right)\right.\\ &\left.+(a_{01}^{+})^{2}\left[-(a_{02}^{+}+a_{20}^{+})-\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right] +\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right) \left[\frac{1}{2}b_{11}^{+} -a_{01}^{+} \left(-(a_{02}^{+}+a_{20}^{+})+\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right)\right]\right.\\ &\left.+\left[-b_{01}^{+}-a_{01}^{+}\left(a_{10}^{+}-\frac{1}{2}a_{11}^{-}\right)\right] \left[-(a_{02}^{+}+a_{20}^{+})+\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right] \right\},\\ A_{41}& = \left[a_{10}^{+}-\frac{1}{2}a_{11}^{-}-(a_{20}^{-}+a_{02}^{-})\right] \left[-\frac{1}{8}(c_{21}^{+}+c_{03}^{+})\right],\\ A_{42}& = \left[-(a_{20}^{+}+a_{02}^{+})+\frac{1}{4}(a_{21}^{-}+a_{03}^{-})+\frac{3}{4}(a_{30}^{-}+a_{12}^{-}) \right] \left\{\frac{1}{4}c_{11}^{+} -\frac{3}{4}a_{01}^{+}(-b_{03}^{+}+b_{12}^{+}-b_{21}^{+}+b_{30}^{+})\right.\\ &\left.+\left[\frac{1}{2}b_{11}^{+} -a_{01}^{+}\left(-(a_{02}^{+}+a_{20}^{+}) +\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right)\right] \left[-(a_{02}^{+}+a_{20}^{+}) +\frac{1}{2}(a_{21}^{-}+a_{03}^{-})\right] \right\}. \end{split} \end{equation*} |
Theorem 6. Consider the piecewise polynomial Hamiltonian system (3.1) with m = 1. By using the up to the fourth order Melnikov function, the following statements hold.
(i) If the first order Melnikov function M_{1}(h) is not zero identically, then for sufficiently small |\epsilon| > 0 , system (3.1) has at most 2 limit cycles bifurcated from the period annulus \{L_{h}\}_{h\in J} , multiplicity taken into account. Moreover, this maximum is achievable.
(ii) If M_{1}(h)\equiv0 and M_{2}(h)\not\equiv0 , for sufficiently small |\epsilon| > 0 , system (3.1) has at most 2 limit cycles bifurcated from the period annulus \{L_{h}\}_{h\in J} , multiplicity taken into account. Moreover, this maximum is achievable.
(iii) If M_{1}(h) = M_{2}(h)\equiv0 and M_{3}(h)\not\equiv0 , for sufficiently small |\epsilon| > 0 , system (3.1) has at most 2 limit cycles bifurcated from the period annulus \{L_{h}\}_{h\in J} , multiplicity taken into account. Moreover, this maximum is achievable.
(iv) If M_{1}(h) = M_{2}(h) = M_{3}(h)\equiv0 and M_{4}(h)\not\equiv0 , for sufficiently small |\epsilon| > 0 , system (3.1) has at most 4 limit cycles bifurcated from the period annulus \{L_{h}\}_{h\in J} , multiplicity taken into account. Moreover, this maximum is achievable.
Proof. According to the expression for M_{1}(h) in Lemma 6, we know that
\begin{equation*} \begin{split} M_{1}(h) = \sum\limits_{k = 0}^{2}A_{k}(2h-1)^{k}, \end{split} \end{equation*} |
where
\begin{equation*} \begin{split} A_{0} = -a_{01}^{-},\; A_{1} = -a_{01}^{+}+\frac{1}{2}a_{11}^{-},\; A_{2} = \frac{1}{2}a_{11}^{+}. \end{split} \end{equation*} |
Let a_{01}^{-} = 0, \; a_{11}^{+} = 2, \; a_{11}^{-} = 2 . Denote
\begin{equation*} \begin{split} \delta = (a_{01}^{-},a_{01}^{+}),\; \delta_{0} = (0,1). \end{split} \end{equation*} |
Then, through direct calculation, we have
\begin{equation*} \begin{split} A_{0}(\delta_{0}) = 0,\; A_{1}(\delta_{0}) = 0.\; A_{2}(\delta_{0}) = 1\neq0. \end{split} \end{equation*} |
Further more,
\begin{equation*} \begin{split} \det\frac{\partial(A_{0},A_{1})}{\partial(a_{01}^{-},a_{01}^{+})}(\delta_{0}) = \left | \begin{matrix} -1 & 0 \\ 0 & -1 \\ \end{matrix} \right | = 1\neq0. \end{split} \end{equation*} |
It follows that A_{0}, A_{1} can be taken as free parameters. We can obtain that system (3.1) has 2 limit cycles for m = 1 . The proof of (ⅰ) is completed.
According to the expression for M_{2}(h) in Lemma 6, we know that
\begin{equation*} \begin{split} M_{2}(h) = \sum\limits_{k = 0}^{2}A_{k}(2h-1)^{k}, \end{split} \end{equation*} |
where
\begin{equation*} \begin{split} A_{0}& = -b_{01}^{-}-a_{10}^{-}a_{01}^{+},\\ A_{1}& = -b_{01}^{+}+\frac{1}{2}b_{11}^{-}-a_{01}^{+}\left(a_{10}^{+}-a_{20}^{-}-a_{02}^{-}\right),\\ A_{2}& = \frac{1}{2}b_{11}^{+}+a_{01}^{+}\left(a_{02}^{+}+a_{20}^{+}\right). \end{split} \end{equation*} |
Let a_{01}^{+} = 0, \; b_{01}^{+} = 1, \; b_{11}^{+} = 2 . Denote
\begin{equation*} \begin{split} \delta = (b_{01}^{-},b_{11}^{-}),\; \delta_{0} = (0,2). \end{split} \end{equation*} |
Then, through direct calculation, we have
\begin{equation*} \begin{split} A_{0}(\delta_{0}) = 0,\; A_{1}(\delta_{0}) = 0.\; A_{2}(\delta_{0}) = \frac{1}{2}\neq0. \end{split} \end{equation*} |
Further more,
\begin{equation*} \begin{split} \det\frac{\partial(A_{0},A_{1})}{\partial(b_{01}^{-},b_{11}^{-})}(\delta_{0}) = \left | \begin{matrix} -1 & 0 \\ 0 & \frac{1}{2} \\ \end{matrix} \right | = -\frac{1}{2}\neq0. \end{split} \end{equation*} |
It follows that A_{0}, A_{1} can be taken as free parameters. We can obtain that system (3.1) has 2 limit cycles for m = 1 . The proof of (ⅱ) is completed.
According to the expression for M_{3}(h) in Lemma 6, let a_{01}^{+} = 0, \; b_{01}^{+} = 0, \; c_{11}^{-} = 2, \; c_{11}^{+} = 1 . Denote
\begin{equation*} \begin{split} \delta = (c_{01}^{-},c_{01}^{+}),\; \delta_{0} = (0,1). \end{split} \end{equation*} |
Then, through direct calculation, we have
\begin{equation*} \begin{split} A_{0}(\delta_{0}) = 0,\; A_{1}(\delta_{0}) = 0,\; A_{2}(\delta_{0}) = \frac{1}{2}\neq0. \end{split} \end{equation*} |
Further more,
\begin{equation*} \begin{split} \det\frac{\partial(A_{0},A_{1})}{\partial(c_{01}^{-},c_{01}^{+})}(\delta_{0}) = \left | \begin{matrix} -1 & 0 \\ 0 & -1 \\ \end{matrix} \right | = 1\neq0. \end{split} \end{equation*} |
It follows that A_{0}, A_{1}, A_{2} can be taken as free parameters. We can obtain that system (3.1) has 2 limit cycles for m = 1 . The proof of (iii) is completed.
In the expression of M_{4}(h) in Lemma 6, let a_{01}^{+} = 0, \; b_{01}^{+} = 0, \; a_{02}^{+} = \frac{1}{2}, \; a_{20}^{+} = \frac{1}{2}, \; c_{01}^{+} = -2, \; a_{10}^{+} = 1, \; a_{11}^{-} = 0, \; a_{02}^{-} = 0, \; a_{20}^{-} = 0, \; a_{10}^{-} = -2, \; d_{11}^{-} = 2 . Denote
\begin{equation*} \begin{split} \delta = (d_{01}^{-},d_{01}^{+},d_{11}^{+},c_{11}^{+}),\; \delta_{0} = (0,-1,2,4). \end{split} \end{equation*} |
Then, through direct calculation, we have
\begin{equation*} \begin{split} A_{0}(\delta_{0}) = 0,\; A_{1}(\delta_{0}) = 0,\; A_{2}(\delta_{0}) = 0,\; A_{3}(\delta_{0}) = 0,\; A_{4}(\delta_{0}) = -1\neq0. \end{split} \end{equation*} |
Further more,
\begin{equation*} \begin{split} \det\frac{\partial(A_{0},A_{1},A_{2},A_{3})}{\partial(d_{01}^{-},d_{01}^{+},d_{11}^{+},c_{11}^{+})}(\delta_{0}) = \left | \begin{matrix} -1 & 0 & 0 & 0\\ 0 & -1 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & -\frac{1}{2} & \frac{1}{4} \\ \end{matrix} \right | = \frac{1}{8}\neq0. \end{split} \end{equation*} |
It follows that A_{0}, A_{1}, A_{2}, A_{3} can be taken as free parameters. We can obtain that system (3.1) has 4 limit cycles for m = 1 . The proof of (ⅳ) is completed.
Theorem 7. Consider the piecewise polynomial Hamiltonian system (3.1) with m = 2. By using the up to the fourth order Melnikov function, the following statements hold.
(i) If the first order Melnikov function M_{1}(h) is not zero identically, then for sufficiently small |\epsilon| > 0 , system (3.1) has at most 3 limit cycles bifurcated from the period annulus \{L_{h}\}_{h\in J} , multiplicity taken into account.
(ii) If M_{1}(h)\equiv0 and M_{2}(h)\not\equiv0 , for sufficiently small |\epsilon| > 0 , system (3.1) has at most 4 limit cycles bifurcated from the period annulus \{L_{h}\}_{h\in J} , multiplicity taken into account.
(iii) If M_{1}(h) = M_{2}(h)\equiv0 and M_{3}(h)\not\equiv0 , for sufficiently small |\epsilon| > 0 , system (3.1) has at most 4 limit cycles bifurcated from the period annulus \{L_{h}\}_{h\in J} , multiplicity taken into account.
(iv) If M_{1}(h) = M_{2}(h) = M_{3}(h)\equiv0 and M_{4}(h)\not\equiv0 , for sufficiently small |\epsilon| > 0 , system (3.1) has at most 6 limit cycles bifurcated from the period annulus \{L_{h}\}_{h\in J} , multiplicity taken into account.
Proof. According to M_{1}(h) in Lemma 7, let a_{01}^{+} = 1, \; a_{11}^{-} = 2, \; a_{21}^{-} = 4, \; a_{03}^{-} = 4, \; a_{03}^{+} = 4, \; a_{21}^{+} = 4 . Denote
\begin{equation*} \begin{split} \delta = (a_{01}^{-},a_{01}^{+},a_{11}^{+}),\; \delta_{0} = (0,1,4). \end{split} \end{equation*} |
Then, through direct calculation, we have
\begin{equation*} \begin{split} A_{0}(\delta_{0}) = 0,\; A_{1}(\delta_{0}) = 0,\; A_{2}(\delta_{0}) = 0,\; A_{3}(\delta_{0}) = -2\neq0. \end{split} \end{equation*} |
Further more,
\begin{equation*} \begin{split} \det\frac{\partial(A_{0},A_{1},A_{2})}{\partial(a_{01}^{-},a_{01}^{+},a_{11}^{+})}(\delta_{0}) = \left | \begin{matrix} -1 & 0 & 0\\ 0 & -1 & 0 \\ 0 & 0 & \frac{1}{2} \\ \end{matrix} \right | = \frac{1}{2}\neq0. \end{split} \end{equation*} |
It follows that A_{0}, A_{1}, A_{2} can be taken as free parameters. We can obtain that system (3.1) has 3 limit cycles for m = 2 . The proof of (ⅰ) is completed.
According to M_{2}(h) in the Lemma 7, let a_{01}^{+} = 0, a_{11}^{+} = 1, a_{30}^{+} = \frac{1}{2}, a_{12}^{+} = \frac{1}{2}, b_{11}^{-} = 1, a_{10}^{-} = 1, a_{10}^{+} = 0, a_{20}^{-} = 0, a_{02}^{-} = 0, b_{21}^{-} = 2, b_{03}^{-} = 2, b_{03}^{+} = 2, a_{30}^{-} = 2, a_{12}^{-} = 2, a_{20}^{+} = \frac{1}{2}, a_{02}^{+} = \frac{1}{2} . Denote
\begin{equation*} \begin{split} \delta = (b_{01}^{-},b_{01}^{+},b_{11}^{+},b_{21}^{+}),\; \delta_{0} = (0,1,2,2). \end{split} \end{equation*} |
Then, through direct calculation, we have
\begin{equation*} \begin{split} A_{0}(\delta_{0}) = 0,\; A_{1}(\delta_{0}) = 0,\; A_{2}(\delta_{0}) = 0,\; A_{3}(\delta_{0}) = 0,\; A_{4}(\delta_{0}) = \frac{3}{8}\neq0. \end{split} \end{equation*} |
Further more,
\begin{equation*} \begin{split} \det\frac{\partial(A_{0},A_{1},A_{2},A_{3})}{\partial(b_{01}^{-},b_{01}^{+},b_{11}^{+},b_{21}^{+})}(\delta_{0}) = \left | \begin{matrix} -1 & 0 & 0 & 0\\ 0 & -1 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & -\frac{1}{4} \\ \end{matrix} \right | = -\frac{1}{8}\neq0. \end{split} \end{equation*} |
It follows that A_{0}, A_{1}, A_{2}, A_{3} can be taken as free parameters. We can obtain that system (3.1) has 4 limit cycles for m = 2 . The proof of (ⅱ) is completed.
According to the M_{3}(h) in the Case 1, let a_{01}^{+} = 0, b_{01}^{+} = 0, b_{11}^{+} = 2, a_{10}^{-} = 1, c_{11}^{-} = 2, c_{21}^{-} = 2, c_{03}^{-} = 2, a_{10}^{+} = 1, c_{03}^{+} = 14, a_{11}^{-} = 2, a_{30}^{+} = 2, a_{12}^{+} = 2, a_{20}^{-} = 1, a_{02}^{-} = -1, a_{02}^{+} = 0, a_{20}^{+} = 0, a_{21}^{-} = 2, a_{03}^{-} = 2, a_{30}^{-} = 2, a_{12}^{-} = 2 . Denote
\begin{equation*} \begin{split} \delta = (c_{01}^{-},c_{01}^{+},c_{11}^{+},c_{21}^{+}),\; \delta_{0} = (0,2,2,2). \end{split} \end{equation*} |
Then, through direct calculation, we have
\begin{equation*} \begin{split} A_{0}(\delta_{0}) = 0,\; A_{1}(\delta_{0}) = 0,\; A_{2}(\delta_{0}) = 0,\; A_{3}(\delta_{0}) = 0,\; A_{4}(\delta_{0}) = 3\neq0. \end{split} \end{equation*} |
Further more,
\begin{equation*} \begin{split} \det\frac{\partial(A_{0},A_{1},A_{2},A_{3})}{\partial(c_{01}^{-},c_{01}^{+},c_{11}^{+},c_{21}^{+})}(\delta_{0}) = \left | \begin{matrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & -\frac{1}{4}\\ \end{matrix} \right | = -\frac{1}{8}\neq0. \end{split} \end{equation*} |
It follows that A_{0}, A_{1}, A_{2}, A_{3} can be taken as free parameters. We can obtain that system (3.1) has 4 limit cycles for m = 2 in Case 1.
According to M_{3}(h) in Case 2, Let a_{01}^{+} = 0, \; b_{01}^{+} = 0, \; a_{10}^{-} = 0, c_{11}^{-} = 2, \; a_{11}^{+} = 2, \; b_{01}^{-} = 1, b_{10}^{-} = 1, \; a_{02}^{+} = 0, \; a_{20}^{+} = 0, a_{21}^{-} = 0, \; a_{03}^{-} = 0, \; a_{30}^{-} = 0, a_{12}^{-} = 0, \; b_{03}^{+} = \frac{1}{2}, \; b_{12}^{+} = 1, \; b_{21}^{+} = \frac{1}{2}, b_{30}^{+} = 1, \; a_{10}^{+} = 0, \; a_{11}^{-} = 0, a_{20}^{-} = 0, \; a_{02}^{-} = 0, \; b_{21}^{-} = 1, b_{30}^{-} = \frac{1}{2}, \; c_{03}^{+} = 2, c_{21}^{-} = 2, \; c_{03}^{-} = 2, \; b_{10}^{+} = 0, b_{02}^{-} = 0, \; b_{11}^{-} = 0, \; b_{20}^{-} = 0, b_{02}^{+} = 0, \; b_{11}^{+} = \frac{3}{4}, \; b_{20}^{+} = 0 . Denote
\begin{equation*} \begin{split} \delta = (c_{01}^{-},c_{01}^{+},c_{11}^{+},c_{21}^{+}),\; \delta_{0} = (0,1,2,1). \end{split} \end{equation*} |
Then, through direct calculation, we have
\begin{equation*} \begin{split} A_{0}(\delta_{0}) = 0,\; A_{1}(\delta_{0}) = 0,\; A_{2}(\delta_{0}) = 0,\; A_{3}(\delta_{0}) = 0,\; A_{4}(\delta_{0}) = \frac{3}{4}\neq0. \end{split} \end{equation*} |
Further more,
\begin{equation*} \begin{split} \det\frac{\partial(A_{0},A_{1},A_{2},A_{3})}{\partial(c_{01}^{-},c_{01}^{+},c_{11}^{+},c_{21}^{+})}(\delta_{0}) = \left | \begin{matrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & -\frac{1}{4}\\ \end{matrix} \right | = -\frac{1}{8}\neq0. \end{split} \end{equation*} |
It follows that A_{0}, A_{1}, A_{2}, A_{3} can be taken as free parameters. We can obtain that system (3.1) has 4 limit cycles for m = 2 in Case 2.
According to M_{3}(h) in Case 3, Let a_{01}^{+} = 0, \; b_{01}^{+} = 0, \; a_{10}^{-} = 0, \; c_{11}^{-} = 2, \; b_{11}^{+} = 0, \; c_{21}^{-} = 2, \; c_{03}^{-} = 2, \; c_{21}^{+} = 2, \; c_{03}^{+} = 2 . Denote
\begin{equation*} \begin{split} \delta = (c_{01}^{-},c_{01}^{+},c_{11}^{+}),\; \delta_{0} = (0,1,2). \end{split} \end{equation*} |
Then, through direct calculation, we have
\begin{equation*} \begin{split} A_{0}(\delta_{0}) = 0,\; A_{1}(\delta_{0}) = 0,\; A_{2}(\delta_{0}) = 0,\; A_{3}(\delta_{0}) = -1\neq0. \end{split} \end{equation*} |
Further more,
\begin{equation*} \begin{split} \det\frac{\partial(A_{0},A_{1},A_{2})}{\partial(c_{01}^{-},c_{01}^{+},c_{11}^{+})}(\delta_{0}) = \left | \begin{matrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & \frac{1}{2}\\ \end{matrix} \right | = \frac{1}{2}\neq0. \end{split} \end{equation*} |
It follows that A_{0}, A_{1}, A_{2} can be taken as free parameters. We can obtain that system (3.1) has 3 limit cycles for m = 2 in Case 3. The proof of (ⅲ) is completed.
According to M_{4}(h) in Case 1, let a_{01}^{+} = 0, \; b_{01}^{+} = 0, \; a_{10}^{-} = 0, d_{11}^{-} = 2, \; c_{01}^{+} = 0, \; d_{03}^{-} = 4, d_{21}^{-} = 4, \; d_{21}^{+} = 4, \; a_{20}^{-} = 1, a_{02}^{-} = 1, \; a_{11}^{-} = 2, \; b_{03}^{+} = 0, b_{12}^{+} = 0, \; b_{21}^{+} = 0, \; b_{30}^{+} = 0, a_{20}^{+} = 0, \; a_{02}^{+} = 0, \; a_{21}^{-} = 0, a_{03}^{-} = 0, \; a_{30}^{-} = 0, \; a_{12}^{-} = 0, a_{30}^{+} = 2, \; a_{12}^{+} = 2, c_{21}^{+} = 4, c_{03}^{+} = 4 . Denote
\begin{equation*} \begin{split} \delta = (d_{01}^{-},d_{01}^{+},d_{11}^{+},d_{03}^{+},a_{10}^{+},c_{11}^{+}),\; \delta_{0} = (0,1,4,-4,3,0). \end{split} \end{equation*} |
Then, through direct calculation, we have
\begin{equation*} \begin{split} A_{0}(\delta_{0}) = 0,\; A_{1}(\delta_{0}) = 0,\; A_{2}(\delta_{0}) = 0,\; A_{3}(\delta_{0}) = 0,\; A_{4}(\delta_{0}) = 0,\; A_{5}(\delta_{0}) = 0,\; A_{6}(\delta_{0}) = -3\neq0. \end{split} \end{equation*} |
Further more,
\begin{equation*} \begin{split} \det\frac{\partial(A_{0},A_{1},A_{2},A_{3},A_{4},A_{5})} {\partial(d_{01}^{-},d_{01}^{+},d_{11}^{+},d_{03}^{+},a_{10}^{+},c_{11}^{+})}(\delta_{0}) = \left | \begin{matrix} -1 & 0 & 0 & 0 & 0 & 0\\ 0 & -1 & 0 & 0 & 0 & 0\\ 0 & 0 & \frac{1}{2} & 0 & 0 & 0\\ 0 & 0 & 0 & -\frac{1}{4} & 0 & 0\\ 0 & 0 & 0 & 0 & -1 & 0\\ 0 & 0 & 0 & 0 & 0 & \frac{3}{4}\\ \end{matrix} \right | = -\frac{3}{32}\neq0. \end{split} \end{equation*} |
It follows that A_{0}, A_{1}, A_{2}, A_{3}, A_{4}, A_{5} can be taken as free parameters. We can obtain that system (3.1) has 6 limit cycles for m = 2 in Case 1.
According to M_{4}(h) in Case 2, Let a_{01}^{+} = 0, b_{01}^{+} = 0, a_{10}^{-} = 0, a_{11}^{+} = 1, b_{11}^{+} = 0, c_{01}^{-} = 0, c_{10}^{-} = 0, b_{01}^{-} = 1, b_{10}^{-} = 1, d_{11}^{-} = 2, c_{01}^{+} = 1, c_{10}^{+} = 1, c_{02}^{-} = 1, c_{11}^{-} = 1, c_{20}^{-} = 1, b_{10}^{+} = 1, b_{02}^{-} = 1, b_{11}^{-} = 1, b_{20}^{-} = 1, a_{10}^{+} = 1, a_{11}^{-} = 2, a_{20}^{-} = 1, a_{02}^{-} = -1, d_{03}^{-} = -4, d_{21}^{-} = 4, c_{03}^{-} = 1, c_{12}^{-} = 1, c_{21}^{-} = 1, c_{30}^{-} = 1, c_{02}^{+} = 1, c_{11}^{+} = 0, c_{20}^{+} = 1, d_{21}^{+} = -3, a_{30}^{-} = 2, a_{12}^{-} = 2, c_{21}^{+} = -1, a_{20}^{+} = 0, a_{02}^{+} = 0, a_{21}^{-} = 0, a_{03}^{-} = 0, b_{03}^{+} = 0, b_{12}^{+} = 0, b_{21}^{+} = 0, b_{30}^{+} = 0, b_{02}^{+} = 0, b_{20}^{+} = 0, b_{03}^{-} = 0, b_{12}^{-} = 0, b_{21}^{-} = 0, b_{30}^{-} = 0, c_{12}^{+} = 0, c_{30}^{+} = 0 . Denote
\begin{equation*} \begin{split} \delta = (d_{01}^{-},d_{01}^{+},d_{11}^{+},d_{03}^{+},c_{03}^{+}),\; \delta_{0} = (0,1,1,-2,1). \end{split} \end{equation*} |
Then, through direct calculation, we have
\begin{equation*} \begin{split} A_{0}(\delta_{0}) = 0,\; A_{1}(\delta_{0}) = 0,\; A_{2}(\delta_{0}) = 0,\; A_{3}(\delta_{0}) = 0,\; A_{4}(\delta_{0}) = 0,\; A_{5}(\delta_{0}) = \frac{1}{2}\neq0. \end{split} \end{equation*} |
Further more,
\begin{equation*} \begin{split} \det\frac{\partial(A_{0},A_{1},A_{2},A_{3},A_{4})} {\partial(d_{01}^{-},d_{01}^{+},d_{11}^{+},d_{03}^{+},c_{03}^{+})}(\delta_{0}) = \left | \begin{matrix} -1 & 0 & 0 & 0 & 0\\ 0 & -1 & 0 & 0 & 0\\ 0 & 0 & \frac{1}{2} & 0 & 0\\ 0 & 0 & 0 & -\frac{1}{4} & 0\\ 0 & 0 & 0 & 0 & -\frac{3}{8}\\ \end{matrix} \right | = \frac{3}{64}\neq0. \end{split} \end{equation*} |
It follows that A_{0}, A_{1}, A_{2}, A_{3}, A_{4} can be taken as free parameters. We can obtain that system (3.1) has 5 limit cycles for m = 2 in Case 2.
According to M_{4}(h) in Case 3, let a_{01}^{+} = 0, b_{01}^{+} = 0, a_{10}^{-} = 0, b_{11}^{+} = 0, d_{11}^{-} = 2, c_{01}^{+} = 0, a_{02}^{-} = 0, a_{10}^{+} = -1, d_{03}^{-} = 0, d_{21}^{-} = 0, d_{21}^{+} = 4, a_{11}^{-} = 0, a_{20}^{-} = 0, c_{21}^{+} = 4, c_{03}^{+} = 4, c_{11}^{+} = 0 . Denote
\begin{equation*} \begin{split} \delta = (d_{01}^{-},d_{01}^{+},d_{11}^{+},d_{03}^{+}),\; \delta_{0} = (0,1,0,-4). \end{split} \end{equation*} |
Then, through direct calculation, we have
\begin{equation*} \begin{split} A_{0}(\delta_{0}) = 0,\; A_{1}(\delta_{0}) = 0,\; A_{2}(\delta_{0}) = 0,\; A_{3}(\delta_{0}) = 0,\; A_{4}(\delta_{0}) = 1\neq0. \end{split} \end{equation*} |
Further more,
\begin{equation*} \begin{split} \det\frac{\partial(A_{0},A_{1},A_{2},A_{3})} {\partial(d_{01}^{-},d_{01}^{+},d_{11}^{+},d_{03}^{+})}(\delta_{0}) = \left | \begin{matrix} -1 & 0 & 0 & 0\\ 0 & -1 & 0 & 0\\ 0 & 0 & \frac{1}{2} & 0\\ 0 & 0 & 0 & -\frac{1}{4}\\ \end{matrix} \right | = -\frac{1}{8}\neq0. \end{split} \end{equation*} |
It follows that A_{0}, A_{1}, A_{2}, A_{3} can be taken as free parameters. We can obtain that system (3.1) has 4 limit cycles for m = 2 in Case 3. The proof of (ⅳ) is completed.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The corresponding author is supported by the National Natural Science Foundation of China (11931016).
The authors declare that they have no conflict of interest.
[1] |
X. Chen, M. Han, Number of limit cycles from a class of perturbed piecewise polynomial systems, Internat. J. Bifur. Chaos, 31 (2021), 2150123. https://doi.org/10.1142/S0218127421501236 doi: 10.1142/S0218127421501236
![]() |
[2] |
X. Chen, T. Li, J. Llibre, Melnikov functions of arbitrary order for piecewise smooth differential systems in \mathbb{R}^n and applications, J. Differ. Equ., 314 (2022), 340–369. https://doi.org/10.1016/j.jde.2022.01.019 doi: 10.1016/j.jde.2022.01.019
![]() |
[3] |
J. Giné, J. Llibre, K. Wu, X. Zhang, Averaging methods of arbitrary order, periodic solutions and integrability, J. Differ. Equ., 260 (2016), 4130–4156. https://doi.org/10.1016/j.jde.2015.11.005 doi: 10.1016/j.jde.2015.11.005
![]() |
[4] |
M. Han, On the maximum number of periodic solutions of piecewise smooth periodic equations by average method, J. Differ. Equ., 7 (2017), 788–794. https://doi.org/10.11948/2017049 doi: 10.11948/2017049
![]() |
[5] |
M. Han, V. G. Romanovski, X. Zhang, Equivalence of the Melnikov function method and the averaging method, Qual. Theory Dyn. Syst., 15 (2016), 471–479. https://doi.org/10.1007/s12346-015-0179-3 doi: 10.1007/s12346-015-0179-3
![]() |
[6] | M. Han, L. Sheng, Bifurcation of limit cycles in piecewise smooth systems via Melnikov function, J. Appl. Anal. Comput., 5 (2015), 809–815. |
[7] |
M. Han, J. Yang, The maximum number of zeros of functions with parameters and application to differential equations, J. Nonlinear Model. Anal., 3 (2021), 13–34. https://doi.org/10.12150/jnma.2021.13 doi: 10.12150/jnma.2021.13
![]() |
[8] |
J. Huang, Y. Jin, Bifurcation of a kind of 1D piecewise differential equation and its application to piecewise planar polynomial systems, Int. J. Bifur. Chaos Appl. Sci. Engrg., 29 (2019), 1950072. https://doi.org/10.1142/S021812741950072X doi: 10.1142/S021812741950072X
![]() |
[9] |
J. Itikawa, J. Llibre, D. D. Novaes, A new result on averaging theory for a class of discontinuous planar differential systems with applications, Rev. Mat. Iberoam., 33 (2017), 1247–1265. https://doi.org/10.4171/RMI/970 doi: 10.4171/RMI/970
![]() |
[10] |
G. Ji, Y. Sun, Bifurcation for a class of piecewise cubic systems with two centers, Electron. J. Qual. Theory Differ. Equ., 46 (2022), 1–12. https://doi.org/10.14232/ejqtde.2022.1.46 doi: 10.14232/ejqtde.2022.1.46
![]() |
[11] |
W. Liu, M. Han, Limit cycle bifurcations of near-Hamiltonian systems with multiple switching curves and applications, Discrete Contin. Dyn. Syst. Ser. S, 16 (2022), 498–532. https://doi.org/10.3934/dcdss.2022053 doi: 10.3934/dcdss.2022053
![]() |
[12] |
X. Liu, M. Han, Bifurcation of limit cycles by perturbing piecewise Hamiltonian systems, Int. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), 1379–1390. https://doi.org/10.1142/S021812741002654X doi: 10.1142/S021812741002654X
![]() |
[13] |
S. Liu, M. Han, Bifurcation of limit cycles in a family of piecewise smooth systems via averaging theory, Discrete Contin. Dyn. Syst., Ser. B, 13 (2020), 3115–3124. https://doi.org/10.3934/dcdss.2020133 doi: 10.3934/dcdss.2020133
![]() |
[14] |
S. Liu, M. Han, J. Li, Bifurcation methods of periodic orbits for piecewise smooth systems, J. Differ. Equ., 275 (2021), 204–233. https://doi.org/10.1016/j.jde.2020.11.040 doi: 10.1016/j.jde.2020.11.040
![]() |
[15] |
S. Liu, X. Jin, Y. Xiong, The number of limit cycles in a class of piecewise polynomial systems, J. Nonlinear Model. Anal., 4 (2022), 352–370. https://doi.org/10.12150/jnma.2022.352 doi: 10.12150/jnma.2022.352
![]() |
[16] |
J. Llibre, A. C. Mereu, D. D. Novaes, Averaging theory for discontinuous piecewise differential systems, J. Differ. Equ., 258 (2015), 4007–4032. https://doi.org/10.1016/j.jde.2015.01.022 doi: 10.1016/j.jde.2015.01.022
![]() |
[17] |
L. Sheng, S. Wang, X. Li, M. Han, Bifurcation of periodic orbits of periodic equations with multiple parameters by averaging method, J. Math. Anal. Appl., 490 (2020), 124311. https://doi.org/10.1016/j.jmaa.2020.124311 doi: 10.1016/j.jmaa.2020.124311
![]() |
[18] |
H. Tian, M. Han, Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 5581–5599. https://doi.org/10.3934/dcdsb.2020368 doi: 10.3934/dcdsb.2020368
![]() |
[19] |
Y. Xiong, M. Han, Limit cycle bifurcations in discontinuous planar systems with multiple lines, J. Appl. Anal. Comput., 10 (2020), 361–377. https://doi.org/10.11948/20190274 doi: 10.11948/20190274
![]() |
[20] |
J. Yang, Limit cycles appearing from the perturbation of differential systems with multiple switching curves, Chaos Solitons Fract., 135 (2020), 109764. https://doi.org/10.1016/j.chaos.2020.109764 doi: 10.1016/j.chaos.2020.109764
![]() |
[21] |
J. Yang, L. Zhao, Limit cycle bifurcations for piecewise smooth Hamiltonian systems with a generalized eye-figure loop, Int. J. Bifur. Chaos Appl. Sci. Engrg., 26 (2016), 1650204. https://doi.org/10.1142/S0218127416502047 doi: 10.1142/S0218127416502047
![]() |
[22] |
J. Yang, M. Han, W. Huang, On Hopf bifurcations of piecewise planar Hamiltonian systems, J. Differ. Equ., 250 (2011), 1026–1051. https://doi.org/10.1016/j.jde.2010.06.012 doi: 10.1016/j.jde.2010.06.012
![]() |
[23] |
P. Yang, Y. Yang, J. Yu, Up to second order Melnikov functions for general piecewise Hamiltonian systems with nonregular separation line, J. Differ. Equ., 285 (2021), 583–606. https://doi.org/10.1016/j.jde.2021.03.020 doi: 10.1016/j.jde.2021.03.020
![]() |
[24] |
F. Li, P. Yu, Y. Liu, Y. Liu, Centers and isochronous centers of a class of quasi-analytic switching systems, Sci. China Math., 61 (2018), 1201–1218. https://doi.org/10.1007/s11425-016-9158-2 doi: 10.1007/s11425-016-9158-2
![]() |
[25] |
W. Hou, S. Liu, Melnikov functions for a class of piecewise Hamiltonian systems, J. Nonlinear Model. Anal., 5 (2023), 123–145. https://doi.org/10.12150/jnma.2023.123 doi: 10.12150/jnma.2023.123
![]() |
1. | Deyue Ma, Junmin Yang, Limit cycles near a homoclinic loop in two classes of piecewise smooth near-Hamiltonian systems, 2025, 192, 09600779, 116027, 10.1016/j.chaos.2025.116027 | |
2. | Wenwen Hou, Maoan Han, Limit cycle bifurcations in a class of piecewise Hamiltonian systems, 2025, 143, 10075704, 108643, 10.1016/j.cnsns.2025.108643 |