Research article Special Issues

Research on nonlinear infectious disease models influenced by media factors and optimal control

  • Received: 05 November 2023 Revised: 30 December 2023 Accepted: 02 January 2024 Published: 08 January 2024
  • MSC : 65P40, 92D30, 93E20

  • In this article, a mathematical model was developed to describe disease control by media factors. The Lambert W function was used to convert the system definition by implicit functions into explicit functions. We analyzed the dynamics of the defined piecewise smooth system and verified the correctness of the theoretical analysis through numerical simulation. Research revealed that media factors can delay the peak of an epidemic and reduce the scale of the epidemic. It is worth noting that adopting different control measures has a certain impact on the scale of the epidemic; the analysis results indicate that implementing dual-control is the most effective way to limit the spread of diseases and this strategy may provide clues for disease control.

    Citation: Danni Wang, Hongli Yang, Liangui Yang. Research on nonlinear infectious disease models influenced by media factors and optimal control[J]. AIMS Mathematics, 2024, 9(2): 3505-3520. doi: 10.3934/math.2024172

    Related Papers:

  • In this article, a mathematical model was developed to describe disease control by media factors. The Lambert W function was used to convert the system definition by implicit functions into explicit functions. We analyzed the dynamics of the defined piecewise smooth system and verified the correctness of the theoretical analysis through numerical simulation. Research revealed that media factors can delay the peak of an epidemic and reduce the scale of the epidemic. It is worth noting that adopting different control measures has a certain impact on the scale of the epidemic; the analysis results indicate that implementing dual-control is the most effective way to limit the spread of diseases and this strategy may provide clues for disease control.



    加载中


    [1] R. Wijk, L. Mockeliunas, G. Hoogen, C. Upton, A. Diacon, U. Simonsson, Reproducibility in pharmacometrics applied in a phase III trial of BCG-vaccination for COVID-19, Sci. Rep., 13 (2023), 16292. https://doi.org/10.1038/s41598-023-43412-3 doi: 10.1038/s41598-023-43412-3
    [2] Y. Bai, L. Yao, T. Wei, F. Tian, D. Y. Jin, L. Chen, et al., Presumed asymptomatic carrier transmission of COVID-19, JAMA, 323 (2020), 1406–1407. https://doi.org/10.1001/jama.2020.2565 doi: 10.1001/jama.2020.2565
    [3] WHO COVID-19 dashboard, World Health Organization, 2023. Available form: https://covid19.who.int.
    [4] S. Olaniy, O. S. Obabiyi, K. O. Okosun, A. T. Oladipo, S. O. Adewale, Mathematical modelling and optimal cost-effective control of COVID-19 transmission dynamics, Eur. Phys. J. Plus, 135 (2020), 938. https://doi.org/10.1140/epjp/s13360-020-00954-z doi: 10.1140/epjp/s13360-020-00954-z
    [5] B. Salzberger, T. Gl$\ddot{u}$ck, B. Ehrenstein, Successful containment of COVID-19: the WHO-Report on the COVID-19 outbreak in China, Infection, 48 (2020), 151–153. https://doi.org/10.1007/s15010-020-01409-4 doi: 10.1007/s15010-020-01409-4
    [6] S. Goel, S. Bhatia, J. Tripathi, S. Bugalia, M. Rana, V. Bajiya, SIRC epidemic model with cross-immunity and multiple time delays, J. Math. Biol., 87 (2023), 42. https://doi.org/10.1007/s00285-023-01974-w doi: 10.1007/s00285-023-01974-w
    [7] X. Huo, J. Chen, S. Ruan, Estimating asymptomatic, undetected and total cases for the COVID-19 outbreak in Wuhan: a mathematical modeling study, BMC Infect. Dis., 21 (2021), 476. https://doi.org/10.1186/s12879-021-06078-8 doi: 10.1186/s12879-021-06078-8
    [8] S. Bergeron, A. Sanchez, Media effects on students during SARS outbreak, Emerging Infect. Dis., 11 (2005), 732. https://doi.org/10.3201/eid1105.040512 doi: 10.3201/eid1105.040512
    [9] J. Cui, Y. Sun, H. Zhu, The impact of media on the control of infectious diseases, J. Dyn. Diff. Equat., 20 (2008), 31–53. https://doi.org/10.1007/s10884-007-9075-0 doi: 10.1007/s10884-007-9075-0
    [10] K. Louis, M. F. Shannon, M. Natasha, S. Jeffrey, Incorporating media data into a model of infectious disease transmission, PLoS ONE, 14 (2019), e0197646. https://doi.org/10.1371/journal.pone.0197646 doi: 10.1371/journal.pone.0197646
    [11] R. J. Blendon, J. M. Benson, C. M. Desroches, E. Raleigh, K. Taylor-Clark, The public's response to severe acute respiratory syndrome in Toronto and the United States, Clin. Infect. Dis., 38 (2004), 925–931. https://doi.org/10.1086/382355 doi: 10.1086/382355
    [12] Y. Xiao, T. Zhao, S. Tang, Dynamics of an infectious disease with media/psychology induced non-smooth incidence, Math. Biosci. Eng., 10 (2013), 445–461. https://doi.org/10.3934/mbe.2013.10.445 doi: 10.3934/mbe.2013.10.445
    [13] C. Sun, W. Yang, J. Arino, K. Khan, Effect of media-induced social distancing on disease transmission in a two patch setting, Math. Biosci., 230 (2011), 87–95. https://doi.org/10.1016/j.mbs.2011.01.005 doi: 10.1016/j.mbs.2011.01.005
    [14] S. L. Bergeron, A. L. Sanchez, Media effects on students during SARS outbreak, Emerg. Infect Dis., 11 (2005), 732–734. https://doi.org/10.3201/eid1105.040512 doi: 10.3201/eid1105.040512
    [15] I. Dhaoui, W. V. Bortel, E. Arsevska, C. Hautefeuille, S. T. Alonso, E. V. Kleef, Mathematical modelling of COVID-19: a systematic review and quality assessment in the early epidemic response phase, Int. J. Infect. Dis., 116 (2022), S110. https://doi.org/10.1016/j.ijid.2021.12.260 doi: 10.1016/j.ijid.2021.12.260
    [16] R. K. Rai, A. K. Misra, Y. Takeuchi, Modeling the impact of sanitation and awareness on the spread of infectious diseases, Math. Biosci. Eng., 16 (2019), 667–700. https://doi.org/10.3934/mbe.2019032 doi: 10.3934/mbe.2019032
    [17] Y. Yang, L. Zou, J. Zhou, S. Ruan, Dynamics of a nonlocal viral infection model with spatial heterogeneity and general incidence, J. Evol. Equ., 23 (2023), 29. https://doi.org/10.1007/s00028-023-00879-x doi: 10.1007/s00028-023-00879-x
    [18] D. Kalajdzievska, M. Li, Modeling the effects of carriers on transmission dynamics of infectious diseases, Math. Biosci. Eng., 8 (2011), 711–722. https://doi.org/10.3934/mbe.2011.8.711 doi: 10.3934/mbe.2011.8.711
    [19] B. Pell, S. Brozak, T. Phan, F. Wu, Y. Kuang, The emergence of a virus variant: dynamics of a competition model with cross-immunity time-delay validated by wastewater surveillance data for COVID-19, J. Math. Biol., 86 (2023), 63. https://doi.org/10.1007/s00285-023-01900-0 doi: 10.1007/s00285-023-01900-0
    [20] J. Jia, J. Ding, S. Liu, G. Liao, J. Li, B. Duan, et al., Modeling the control of COVID-19: impact of policy interventions and meteorological factors, arXiv, 2020. https://doi.org/10.48550/arXiv.2003.02985
    [21] H. Huang, Y. Chen, Z. Yan, Impacts of social distancing on the spread of infectious diseases with asymptomatic infection: a mathematical model, Appl. Math. Comput., 398 (2021), 125983. https://doi.org/10.1016/j.amc.2021.125983 doi: 10.1016/j.amc.2021.125983
    [22] C. Maji, F. Al-Basir, D. Mukherjee, K. S. Nisar, C. Ravichandran, COVID-19 propagation and the usefulness of awareness-based control measures: a mathematical model with delay, AIMS Math., 7 (2022), 12091–12105. https://doi.org/10.3934/math.2022672 doi: 10.3934/math.2022672
    [23] O. Diekmann, J. A. P. Heesterbeek, Mathematical epidemiology of infectious diseases: model building, analysis and interpretation, John Wiley & Son, Ltd., 2000.
    [24] H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599–653. https://doi.org/10.1137/S0036144500371907 doi: 10.1137/S0036144500371907
    [25] R. Corless, G. Gonnet, D. Hare, D. Jeffrey, D. Knuth, On the Lambert W function, Adv. Comput. Math., 5 (1996), 329–359. https://doi.org/10.1007/BF02124750
    [26] M. D. Bernardo, C. J. Budd, A. R. Champneys, P. Kowalczyk, A. B. Nordmark, G. O. Tost, et al., Bifurcations in nonsmooth dynamical systems, SIAM Rev., 50 (2008), 629–701. https://doi.org/10.1137/050625060 doi: 10.1137/050625060
    [27] H. Nasir, A time-delay model of diabetic population: dynamics analysis, sensitivity, and optimal control, Phys. Scr., 96 (2021), 115002. https://doi.org/10.1088/1402-4896/ac1473 doi: 10.1088/1402-4896/ac1473
    [28] S. Lenhart, J. T. Workman, Optimal control applied to biological models, New York: Chapman and Hall/CRC, 2007. https://doi.org/10.1201/9781420011418
    [29] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko, The mathematical theory of optimal processes, New York: John Wiley and Sons, Inc., 1962.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(846) PDF downloads(89) Cited by(0)

Article outline

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog