We presented a comprehensive theory for deriving closed-form expressions and representations of the general solutions for a specific case of systems involving Riccati difference equations of order $ m+1 $, as discussed in the literature. However, our focus was on coefficients dependent on the Jacobsthal sequence. Importantly, this system of difference equations represents a natural extension of the corresponding one-dimensional difference equation, uniquely characterized by its theoretical solvability in a closed form. Our primary objective was to demonstrate a direct linkage between the solutions of this system and Jacobsthal and Lucas-Jacobsthal numbers. The system's capacity for theoretical solvability in a closed form enhances its distinctiveness and potential applications. To accomplish this, we detailed offer theoretical explanations and proofs, establishing the relationship between the solutions and the Jacobsthal sequence. Subsequently, our exploration addressed key aspects of the Jacobsthal system, placing particular emphasis on the local stability of positive solutions. Additionally, we employed mathematical software to validate the theoretical results of this novel system in our research.
Citation: Ahmed Ghezal, Mohamed Balegh, Imane Zemmouri. Solutions and local stability of the Jacobsthal system of difference equations[J]. AIMS Mathematics, 2024, 9(2): 3576-3591. doi: 10.3934/math.2024175
We presented a comprehensive theory for deriving closed-form expressions and representations of the general solutions for a specific case of systems involving Riccati difference equations of order $ m+1 $, as discussed in the literature. However, our focus was on coefficients dependent on the Jacobsthal sequence. Importantly, this system of difference equations represents a natural extension of the corresponding one-dimensional difference equation, uniquely characterized by its theoretical solvability in a closed form. Our primary objective was to demonstrate a direct linkage between the solutions of this system and Jacobsthal and Lucas-Jacobsthal numbers. The system's capacity for theoretical solvability in a closed form enhances its distinctiveness and potential applications. To accomplish this, we detailed offer theoretical explanations and proofs, establishing the relationship between the solutions and the Jacobsthal sequence. Subsequently, our exploration addressed key aspects of the Jacobsthal system, placing particular emphasis on the local stability of positive solutions. Additionally, we employed mathematical software to validate the theoretical results of this novel system in our research.
[1] | A. Ghezal, A doubly Markov switching $AR$ model: some probabilistic properties and strong consistency, J. Math. Sci., 271 (2023), 66–75. https://doi.org/10.1007/s10958-023-06262-y doi: 10.1007/s10958-023-06262-y |
[2] | A. Bibi, A. Ghezal, $QMLE$ of periodic bilinear models and of $PARMA$ models with periodic bilinear innovations, Kybernetika, 54 (2017), 375–399. https://doi.org/10.14736/kyb-2018-2-0375 doi: 10.14736/kyb-2018-2-0375 |
[3] | A. Bibi, A. Ghezal, Minimum distance estimation of Markov-switching bilinear processes, Statistics, 50 (2016), 1290–1309. https://doi.org/10.1080/02331888.2016.1229783 doi: 10.1080/02331888.2016.1229783 |
[4] | A. Bibi, A. Ghezal, On periodic time-varying bilinear processes: structure and asymptotic inference, Stat. Methods Appl., 25 (2016), 395–420. https://doi.org/10.1007/s10260-015-0344-5 doi: 10.1007/s10260-015-0344-5 |
[5] | A. Bibi, A. Ghezal, Consistency of quasi-maximum likelihood estimator for Markov-switching bilinear time series models, Stat. Probab. Lett., 100 (2015), 192–202. https://doi.org/10.1016/j.spl.2015.02.010 doi: 10.1016/j.spl.2015.02.010 |
[6] | A. Ghezal, Spectral representation of Markov-switching bilinear processes, São Paulo J. Math. Sci., 2023. https://doi.org/10.1007/s40863-023-00380-w |
[7] | A. Bibi, A. Ghezal, $QMLE$ of periodic time-varying bilinear-$GARCH$ models, Commun. Stat.-Theory Methods, 48 (2019), 3291–3310. https://doi.org/10.1080/03610926.2018.1476703 doi: 10.1080/03610926.2018.1476703 |
[8] | A. Bibi, A. Ghezal, Markov-switching $BILINEAR$-$GARCH$ models: structure and estimation, Commun. Stat.-Theory Methods, 47 (2018), 307–323. https://doi.org/10.1080/03610926.2017.1303732 doi: 10.1080/03610926.2017.1303732 |
[9] | A. Ghezal, I. Zemmouri, M-estimation in periodic Threshold GARCH models: Consistency and asymptotic normality, Miskolc Math. Notes, unpublished work. |
[10] | A. Ghezal, I. Zemmouri, On Markov-switching asymmetric $\log GARCH$ models: stationarity and estimation, Filomat, 37 (2023), 9879–9897. https://doi.org/10.2298/FIL2329879G doi: 10.2298/FIL2329879G |
[11] | A. Ghezal, $QMLE$ for periodic time-varying asymmetric $\log GARCH$ models, Commun. Math. Stat., 9 (2021), 273–297. https://doi.org/10.1007/s40304-019-00193-4 doi: 10.1007/s40304-019-00193-4 |
[12] | A. Ghezal, I. Zemmouri, On the Markov-switching autoregressive stochastic volatility processes, SeMA J., 2023. https://doi.org/10.1007/s40324-023-00329-1 |
[13] | L. Euler, Introductio in analysin infinitorum, tomus primus, University of Lausanne, 1748. |
[14] | S. F. Lacroix, Traité des differénces et des séries, Paris: J. B. M. Duprat, 1800. |
[15] | P. S. Laplace, Recherches sur l'intégration des équations différentielles aux différences finies et sur leur usage dans la théorie des hasards, Mém. Acad. R. Sci. Paris, 7 (1776), 69–197. |
[16] | A. de Moivre, Miscellanea analytica de seriebus et quadraturis, London: J. Tonson and J. Watts, 1730. |
[17] | G. Boole, A treatise on the calculus of finite differences, 3 Eds., London: Macmillan and Co., 1880. |
[18] | V. A. Krechmar, A problem book in algebra, Moscow: MIR Publishers, 1974. |
[19] | A. A. Markoff, Differenzenrechnung, Teubner, Leipzig, 1896. |
[20] | Y. N. Raffoul, Qualitative theory of Volterra difference equations, Springer, 2018. https://doi.org/10.1007/978-3-319-97190-2 |
[21] | I. M. Alsulami, E. M. Elsayed, On a class of nonlinear rational systems of difference equations, AIMS Math., 8 (2023), 15466–15485. https://doi.org/10.3934/math.2023789 doi: 10.3934/math.2023789 |
[22] | E. M. Elsayed, B. S. Alofi, The periodic nature and expression on solutions of some rational systems of difference equations, Alex. Eng. J., 74 (2023), 269–283. https://doi.org/10.1016/j.aej.2023.05.026 doi: 10.1016/j.aej.2023.05.026 |
[23] | E. M. Elsayed, A. Alshareef, F. Alzahrani, Qualitative behavior and solution of a system of three-dimensional rational difference equations, Math. Meth. Appl. Sci., 45 (2022), 5456–5470. https://doi.org/10.1002/mma.8120 doi: 10.1002/mma.8120 |
[24] | E. M. Elsayed, H. S. Gafel, On the solutions and behavior of rational systems of difference equations, Bol. Soc. Paran. Mat., unpublished work. |
[25] | A. Ghezal, I. Zemmouri, Solution forms for generalized hyperbolic cotangent type systems of $p-$difference equations, Bol. Soc. Paran. Mat., unpublished work. |
[26] | A. Ghezal, Note on a rational system of $(4k+4)$-order difference equations: periodic solution and convergence, J. Appl. Math. Comput., 69 (2023), 2207–2215. https://doi.org/10.1007/s12190-022-01830-y doi: 10.1007/s12190-022-01830-y |
[27] | A. Ghezal, I. Zemmouri, On systems of difference equations: closed-form solutions and convergence, Dyn. Cont. Discrete Impulsive Syst. Ser. A: Math. Anal., 30 (2023), 293–302. |
[28] | A. Ghezal, I. Zemmouri, Representation of solutions of a second-order system of two difference equations with variable coefficients, Pan-Amer. J. Math., 2 (2023), 2. https://doi.org/10.28919/cpr-pajm/2-2 doi: 10.28919/cpr-pajm/2-2 |
[29] | A. Ghezal, I. Zemmouri, The solution of a system of difference equations of higher order in terms of Balancing numbers, Pan-Amer. J. Math., 2 (2023), 9. https://doi.org/10.28919/cpr-pajm/2-9 doi: 10.28919/cpr-pajm/2-9 |
[30] | A. Ghezal, I. Zemmouri, On a solvable $p-$dimensional system of nonlinear difference equations, J. Math. Comput. Sci., 12 (2022), 195. |
[31] | A. Ghezal, I. Zemmouri, Higher-order system of $p-$nonlinear difference equations solvable in closed-form with variable coefficients, Bol. Soc. Paran. Mat., 41 (2022), 1–14. https://doi.org/10.5269/bspm.63529 doi: 10.5269/bspm.63529 |
[32] | T. F. Ibrahim, A. Q. Khan, B. Oǧul, D. Şimşek, Closed-form solution of a rational difference equation, Math. Prob. Eng., 2021 (2021), 3168671. https://doi.org/10.1155/2021/3168671 doi: 10.1155/2021/3168671 |
[33] | M. Kara, Y. Yazlik, Solvable three-dimensional system of higher-order nonlinear difference equations, Filomat, 36 (2022), 3453–3473. https://doi.org/10.2298/FIL2210449K doi: 10.2298/FIL2210449K |
[34] | M. Kara, Y. Yazlik, Solvability of a nonlinear three-dimensional system of difference equations with constant coefficients, Math. Slovaca, 71 (2021), 1133–1148. https://doi.org/10.1515/ms-2021-0044 doi: 10.1515/ms-2021-0044 |
[35] | M. Kara, Y. Yazlik, On a solvable three-dimensional system of difference equations, Filomat, 34 (2020), 1167–1186. https://doi.org/10.2298/FIL2004167K doi: 10.2298/FIL2004167K |
[36] | B. Ogul, D. Şimşek, T. F. Ibrahim, Solution of the rational difference equation, Dyn. Contin., Discrete Impulsive Syst. Ser. $B$: Appl. Algorithms, 28 (2021), 125–141. |
[37] | D. Simşek, B. Oğul, C. Çınar, Solution of the rational difference equation $x_{n+1} = \frac{x_{n-17}} {1+x_{n-5}.x_{n-11}}$, Filomat, 33 (2019), 1353–1359. https://doi.org/10.2298/FIL1905353S doi: 10.2298/FIL1905353S |
[38] | G. Papaschinopoulos, C. J. Schinas, Invariants and oscillation for systems of two nonlinear difference equations, Nonlinear Anal., 7 (2001), 967–978. https://doi.org/10.1016/S0362-546X(00)00146-2 doi: 10.1016/S0362-546X(00)00146-2 |
[39] | C. J. Schinas, Invariants for difference equations and systems of difference equations of rational form, J. Math. Anal. Appl., 216 (1997), 164–179. https://doi.org/10.1006/jmaa.1997.5667 doi: 10.1006/jmaa.1997.5667 |
[40] | R. Abo-Zeid, Global behavior of two third order rational difference equations with quadratic terms, Math. Slovaca, 69 (2019), 147–158. https://doi.org/10.1515/ms-2017-0210 doi: 10.1515/ms-2017-0210 |
[41] | R. Abo-Zeid, Global behavior of a higher order difference equation, Math. Slovaca, 64 (2014), 931–940. https://doi.org/10.2478/s12175-014-0249-z doi: 10.2478/s12175-014-0249-z |
[42] | R. Abo-Zeid, C. Cinar, Global behavior of the difference equation $x_{n+1} = \frac{Ax_{n-1}} {B-Cx_{n}x_{n-2}}$, Bol. Soc. Paran. Mat., 31 (2013), 43–49. https://doi.org/10.5269/bspm.v31i1.14432 doi: 10.5269/bspm.v31i1.14432 |
[43] | M. Berkal, J. F. Navarro, Qualitative study of a second order difference equation, Turk. J. Math., 47 (2023), 516–527. https://doi.org/10.55730/1300-0098.3375 doi: 10.55730/1300-0098.3375 |
[44] | M. Berkal, R. Abo-Zeid, On a rational $(p+1)$th order difference equation with quadratic term, Uni. J. Math. Appl., 5 (2022), 136–144. https://doi.org/10.32323/ujma.1198471 doi: 10.32323/ujma.1198471 |
[45] | E. M. Elsayed, J. G. Al-Juaid, H. Malaikah, On the dynamical behaviors of a quadratic difference equation of order three, Eur. J. Appl. Math., 3 (2023), 1–12. https://doi.org/10.28919/ejma.2023.3.1 doi: 10.28919/ejma.2023.3.1 |
[46] | E. M. Elsayed, B. S. Aloufi, O. Moaaz, The behavior and structures of solution of fifth-order rational recursive sequence, Symmetry, 14 (2022), 641. https://doi.org/10.3390/sym14040641 doi: 10.3390/sym14040641 |
[47] | E. M. Elsayed, F. Alzahrani, H. S. Alayachi, Global attractivity and the periodic nature of third order rational difference equation, J. Comput. Anal. Appl., 237 (2017), 1230–1241. |
[48] | A. Ghezal, I. Zemmouri, Global stability of a multi-dimensional system of rational difference equations of higher-order with Pell-coeffcients, Bol. Soc. Paran. Mat., unpublished work. |
[49] | T. F. Ibrahim, Asymptotic behavior of a difference equation model in exponential form, Math. Methods Appl. Sci., 45 (2022), 10736–10748. https://doi.org/10.1002/mma.8415 doi: 10.1002/mma.8415 |
[50] | B. Oğul, D. Simşek, Dynamical behavior of one rational fifth-order difference equation, Carpathian Math. Publ., 15 (2023), 43–51. https://doi.org/10.15330/cmp.15.1.43-51 doi: 10.15330/cmp.15.1.43-51 |
[51] | T. Sun, G. Su, B. Qin, C. Han, Global behavior of a max-type system of difference equations of the second order with four variables and period-two parameters, AIMS Math., 8 (2023), 23941–23952. https://doi.org/10.3934/math.20231220 doi: 10.3934/math.20231220 |
[52] | D. Adamović, Solution to problem 194, Mat. Vesnik, 23 (1971), 236–242. |
[53] | L. Brand, A sequence defined by a difference equation, Amer. Math. Mon., 62 (1955), 489–492. https://doi.org/10.2307/2307362 doi: 10.2307/2307362 |
[54] | D. S. Mitrinović, J. D. Kečkić, Methods for calculating finite sums, Beograd: Naučna Knjiga, 1984. |
[55] | E. M. Elabbasy, H. A. El-Metwally, E. M. Elsayed, Global behavior of the solutions of some difference equations, Adv. Differ. Equ., 2011 (2011), 28. https://doi.org/10.1186/1687-1847-2011-28 doi: 10.1186/1687-1847-2011-28 |
[56] | E. M. Elsayed, F. Alzahrani, I. Abbas, N. H. Alotaibi, Dynamical behavior and solution of nonlinear difference equation via Fibonacci sequence, J. Appl. Anal. Comput., 10 (2019), 282–296. https://doi.org/10.11948/20190143 doi: 10.11948/20190143 |
[57] | E. M. Elsayed, Solution and attractivity for a rational recursive sequence, Discrete Dyn. Nat. Soc., 2011 (2011), 982309. https://doi.org/10.1155/2011/982309 doi: 10.1155/2011/982309 |
[58] | M. Kara, Y. Yazlik, Representation of solutions of eight systems of difference equations via generalized Padovan sequences, Int. J. Nonlinear Anal. Appl., 12 (2021), 447–471. https://doi.org/10.22075/ijnaa.2021.22477.2368 doi: 10.22075/ijnaa.2021.22477.2368 |
[59] | N. Taskara, D. T. Tollu, Y. Yazlik, Solutions of rational difference system of order three in terms of Padovan numbers, J. Adv. Res. Appl. Math., 7 (2015), 18–29. |
[60] | D. T. Tollu, Y. Yazlik, N. Taskara, On the solutions of two special types of Riccati difference equation via Fibonacci numbers, Adv. Differ. Equ., 2013 (2013), 174. https://doi.org/10.1186/1687-1847-2013-174 doi: 10.1186/1687-1847-2013-174 |
[61] | Y. Yazlik, D. T. Tollu, N. Taskara, On the solutions of difference equation systems with Padovan numbers, Appl. Math., 4 (2013), 15–20. https://doi.org/10.4236/am.2013.412A1002 doi: 10.4236/am.2013.412A1002 |
[62] | G. B. Djordjević, Mixed convolutions of the Jacobsthal type, Appl. Math. Comput., 186 (2007), 646–651. https://doi.org/10.1016/j.amc.2006.08.009 doi: 10.1016/j.amc.2006.08.009 |
[63] | D. D. Frey, J. A. Sellers, Jacobsthal numbers and alternating sign matrices, J. Integer Seq., 3 (2000), 1–15. |
[64] | A. F. Horadam, Jacobsthal representation numbers, Fib. Quart., 34 (1996), 40–54. |
[65] | T. Koshy, Fibonacci and Lucas numbers with applications, John Wiley & Sons, Inc., 2001. https://doi.org/10.1002/9781118033067 |