Research article Special Issues

On a two-dimensional nonlinear system of difference equations close to the bilinear system

  • Received: 27 April 2023 Revised: 06 June 2023 Accepted: 09 June 2023 Published: 26 June 2023
  • MSC : 39A20

  • We consider the two-dimensional nonlinear system of difference equations

    $ x_n = x_{n-k}\frac{ay_{n-l}+by_{n-(k+l)}}{cy_{n-l}+dy_{n-(k+l)}},\quad y_n = y_{n-k}\frac{{\alpha} x_{n-l}+{\beta} x_{n-(k+l)}}{{\gamma} x_{n-l}+{\delta} x_{n-(k+l)}}, $

    for $ n\in{\mathbb N}_0, $ where the delays $ k $ and $ l $ are two natural numbers, and the initial values $ x_{-j}, y_{-j} $, $ 1\le j\le k+l $, and the parameters $ a, b, c, d, {\alpha}, {\beta}, {\gamma}, {\delta} $ are real numbers. We show that the system of difference equations is solvable by presenting a method for finding its general solution in detail. Bearing in mind that the system of equations is a natural generalization of the corresponding one-dimensional difference equation, whose special cases appear in the literature from time to time, our main result presented here also generalizes many results therein.

    Citation: Stevo Stević, Durhasan Turgut Tollu. On a two-dimensional nonlinear system of difference equations close to the bilinear system[J]. AIMS Mathematics, 2023, 8(9): 20561-20575. doi: 10.3934/math.20231048

    Related Papers:

  • We consider the two-dimensional nonlinear system of difference equations

    $ x_n = x_{n-k}\frac{ay_{n-l}+by_{n-(k+l)}}{cy_{n-l}+dy_{n-(k+l)}},\quad y_n = y_{n-k}\frac{{\alpha} x_{n-l}+{\beta} x_{n-(k+l)}}{{\gamma} x_{n-l}+{\delta} x_{n-(k+l)}}, $

    for $ n\in{\mathbb N}_0, $ where the delays $ k $ and $ l $ are two natural numbers, and the initial values $ x_{-j}, y_{-j} $, $ 1\le j\le k+l $, and the parameters $ a, b, c, d, {\alpha}, {\beta}, {\gamma}, {\delta} $ are real numbers. We show that the system of difference equations is solvable by presenting a method for finding its general solution in detail. Bearing in mind that the system of equations is a natural generalization of the corresponding one-dimensional difference equation, whose special cases appear in the literature from time to time, our main result presented here also generalizes many results therein.



    加载中


    [1] D. Adamović, Solution to problem 194, Mat. Vesnik, 23 (1971), 236–242.
    [2] M. Bataille, Problem 11559, Amer. Math. Monthly, 118 (2011), 275.
    [3] K. S. Berenhaut, S. Stević, The behaviour of the positive solutions of the difference equation $x_n = A+(x_{n-2}/x_{n-1})^p$, J. Differ. Equ. Appl., 12 (2006), 909–918. https://doi.org/10.1080/10236190600836377 doi: 10.1080/10236190600836377
    [4] L. Berg, S. Stević, On the asymptotics of the difference equation $y_n(1+y_{n-1}\cdots y_{n-k+1}) = y_{n-k}$, J. Differ. Equ. Appl., 17 (2011), 577–586. https://doi.org/10.1080/10236190903203820 doi: 10.1080/10236190903203820
    [5] D. Bernoulli, Observationes de seriebus quae formantur ex additione vel substractione quacunque terminorum se mutuo consequentium, ubi praesertim earundem insignis usus pro inveniendis radicum omnium aequationum algebraicarum ostenditur (in Latin), Commentarii Acad. Petropol. Ⅲ, 1728 (1732), 85–100.
    [6] G. Boole, A treatise on the calculus of finite differences, 3 Eds., Macmillan and Co., London, 1880.
    [7] L. Brand, A sequence defined by a difference equation, Am. Math. Mon., 62 (1955), 489–492. https://doi.org/10.2307/2307362 doi: 10.2307/2307362
    [8] A. de Moivre, Miscellanea analytica de seriebus et quadraturis (in Latin), J. Tonson & J. Watts, Londini, 1730.
    [9] L. Euler, Introductio in analysin infinitorum, tomus primus (in Latin), Lausannae, 1748.
    [10] C. Jordan, Calculus of finite differences, New York: Chelsea Publishing Company, 1965.
    [11] B. Iričanin, S. Stević, On some rational difference equations, Ars Comb., 92 (2009), 67–72.
    [12] M. Kara, Y. Yazlik, D. T. Tollu, Solvability of a system of higher order nonlinear difference equations, Hacet. J. Math. Stat., 49 (2020), 1566–1593. https://doi.org/10.15672/hujms.474649 doi: 10.15672/hujms.474649
    [13] G. Karakostas, Asymptotic 2-periodic difference equations with diagonally self-invertible responces, J. Differ. Equ. Appl., 6 (2000), 329–335. https://doi.org/10.1080/10236190008808232 doi: 10.1080/10236190008808232
    [14] G. L. Karakostas, Asymptotic behavior of the solutions of the difference equation $x_{n+1} = x_n^2f(x_{n-1})$, J. Differ. Equ. Appl., 9 (2003), 599–602. https://doi.org/10.1080/1023619021000056329 doi: 10.1080/1023619021000056329
    [15] S. F. Lacroix, Traité des differénces et des séries (in French), J. B. M. Duprat, Paris, 1800.
    [16] V. A. Krechmar, A problem book in algebra, Mir Publishers, Moscow, 1974.
    [17] J. L. Lagrange, Sur l'intégration d'une équation différentielle à différences finies, qui contient la théorie des suites récurrentes (in French), Miscellanea Taurinensia, 1759, 33–42.
    [18] P. S. Laplace, Recherches sur l'intégration des équations différentielles aux différences finies et sur leur usage dans la théorie des hasards (in French), Mém. Acad. R. Sci. Paris, VII (1776).
    [19] H. Levy, F. Lessman, Finite difference equations, New York: Macmillan, 1961.
    [20] A. A. Markoff, Differenzenrechnung (in German), Teubner, Leipzig, 1896.
    [21] G. Papaschinopoulos, C. J. Schinas, On a system of two nonlinear difference equations, J. Math. Anal. Appl., 219 (1998), 415–426. https://doi.org/10.1006/jmaa.1997.5829 doi: 10.1006/jmaa.1997.5829
    [22] G. Papaschinopoulos, C. J. Schinas, Invariants for systems of two nonlinear difference equations, Differ. Equ. Dyn. Syst., 7 (1999), 181–196.
    [23] G. Papaschinopoulos, C. J. Schinas, Stability of a class of nonlinear difference equations, J. Math. Anal. Appl., 230 (1999), 211–222. https://doi.org/10.1006/jmaa.1998.6194 doi: 10.1006/jmaa.1998.6194
    [24] G. Papaschinopoulos, C. J. Schinas, Invariants and oscillation for systems of two nonlinear difference equations, Nonlinear Anal.: Theory Methods Appl., 7 (2001), 967–978.
    [25] G. Papaschinopoulos, C. J. Schinas, Oscillation and asymptotic stability of two systems of difference equations of rational form, J. Differ. Equ. Appl., 7 (2001), 601–617. https://doi.org/10.1080/10236190108808290 doi: 10.1080/10236190108808290
    [26] G. Papaschinopoulos, C. J. Schinas, On the system of two difference equations $x_{n+1} = \sum_{i = 0}^{k} A_i/y_{n-i}^{p_i}, $ $ y_{n+1} = \sum_{i = 0}^{k} B_i/x_{n-i}^{q_i}$, J. Math. Anal. Appl., 273 (2002), 294–309. https://doi.org/10.1016/S0022-247X(02)00223-8 doi: 10.1016/S0022-247X(02)00223-8
    [27] G. Papaschinopoulos, C. J. Schinas, G. Stefanidou, On a $k$-order system of Lyness-type difference equations, Adv. Differ. Equ., 2007 (2007), 1–13.
    [28] G. Papaschinopoulos, G. Stefanidou, Asymptotic behavior of the solutions of a class of rational difference equations, Int. J. Differ. Equ., 5 (2010), 233–249.
    [29] Y. N. Raffoul, Qualitative theory of Volterra difference equations, Springer, 2018.
    [30] J. Riordan, Combinatorial identities, John Wiley & Sons Inc., New York-London-Sydney, 1968.
    [31] C. J. Schinas, Invariants for difference equations and systems of difference equations of rational form, J. Math. Anal. Appl., 216 (1997), 164–179. https://doi.org/10.1006/jmaa.1997.5667 doi: 10.1006/jmaa.1997.5667
    [32] C. J. Schinas, Invariants for some difference equations, J. Math. Anal. Appl., 212 (1997), 281–291. https://doi.org/10.1006/jmaa.1997.5499 doi: 10.1006/jmaa.1997.5499
    [33] S. Stević, A global convergence results with applications to periodic solutions, Indian J. Pure Appl. Math., 33 (2002), 45–53.
    [34] S. Stević, On the recursive sequence $x_{n+1} = A/\prod_{i = 0}^k x_{n-i}+1/\prod_{j = k+2}^{2(k+1)}x_{n-j}, $ Taiwan. J. Math., 7 (2003), 249–259.
    [35] S. Stević, On the recursive sequence $x_{n+1} = {\alpha}_n+(x_{n-1}/x_n)$ Ⅱ, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 10 (2003), 911–916.
    [36] S. Stević, Boundedness character of a class of difference equations, Nonlinear Anal.: Theory Methods Appl., 70 (2009), 839–848. https://doi.org/10.1016/j.na.2008.01.014 doi: 10.1016/j.na.2008.01.014
    [37] S. Stević, Global stability of a difference equation with maximum, Appl. Math. Comput., 210 (2009), 525–529. https://doi.org/10.1016/j.amc.2009.01.050 doi: 10.1016/j.amc.2009.01.050
    [38] S. Stević, On some periodic systems of max-type difference equations, Appl. Math. Comput., 218 (2012), 11483–11487. https://doi.org/10.1016/j.amc.2012.04.077 doi: 10.1016/j.amc.2012.04.077
    [39] S. Stević, Solutions of a max-type system of difference equations, Appl. Math. Comput., 218 (2012), 9825–9830. https://doi.org/10.1016/j.amc.2012.03.057 doi: 10.1016/j.amc.2012.03.057
    [40] S. Stević, On the system of difference equations $x_n = c_ny_{n-3}/(a_n+b_ny_{n-1}x_{n-2}y_{n-3})$, $y_n = {\gamma}_n x_{n-3}/({\alpha}_n+{\beta}_n x_{n-1}y_{n-2}x_{n-3})$, Appl. Math. Comput., 219 (2013), 4755–4764. https://doi.org/10.1016/j.amc.2012.10.092 doi: 10.1016/j.amc.2012.10.092
    [41] S. Stević, Representations of solutions to linear and bilinear difference equations and systems of bilinear difference equations, Adv. Differ. Equ., 2018 (2018), 1–21. https://doi.org/10.1186/s13662-018-1930-2 doi: 10.1186/s13662-018-1930-2
    [42] S. Stević, J. Diblik, B. Iričanin, Z. Šmarda, On a solvable system of rational difference equations, J. Differ. Equ. Appl., 20 (2014), 811–825. https://doi.org/10.1080/10236198.2013.817573 doi: 10.1080/10236198.2013.817573
    [43] S. Stević, J. Diblik, B. Iričanin, Z. Šmarda, Solvability of nonlinear difference equations of fourth order, Electron. J. Differ. Equ., 2014 (2014), 1–14.
    [44] S. Stević, B. Iričanin, W. Kosmala, Z. Šmarda, Note on the bilinear difference equation with a delay, Math. Methods Appl. Sci., 41 (2018), 9349–9360. https://doi.org/10.1002/mma.5293 doi: 10.1002/mma.5293
    [45] S. Stević, B. Iričanin, W. Kosmala, Z. Šmarda, On a solvable class of nonlinear difference equations of fourth order, Electron. J. Qual. Theory Differ. Equ., 2022 (2022), 1–17.
    [46] S. Stević, B. Iričanin, Z. Šmarda, On a product-type system of difference equations of second order solvable in closed form, J. Inequal. Appl., 2015 (2015), 1–15. https://doi.org/10.1186/s13660-015-0835-9 doi: 10.1186/s13660-015-0835-9
    [47] S. Stević, B. Iričanin, Z. Šmarda, On a symmetric bilinear system of difference equations, Appl. Math. Lett., 89 (2019), 15–21. https://doi.org/10.1016/j.aml.2018.09.006 doi: 10.1016/j.aml.2018.09.006
    [48] N. Taskara, D. T. Tollu, N. Touafek, Y. Yazlik, A solvable system of difference equations, Commun. Korean Math. Soc., 35 (2020), 301–319.
    [49] D. T. Tollu, Y. Yazlik, N. Taskara, On a solvable nonlinear difference equation of higher order, Turk. J. Math., 42 (2018), 1765–1778. https://doi.org/10.3906/mat-1705-33 doi: 10.3906/mat-1705-33
    [50] Western Maryland College Problems Group, Problem 1572, Math. Mag., 72 (1999), 149. https://doi.org/10.2307/2690603 doi: 10.2307/2690603
    [51] Y. Yazlik, D. T. Tollu, N. Taskara, On the solutions of a three-dimensional system of difference equations, Kuwait J. Sci., 43 (2016), 95–111.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1173) PDF downloads(92) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog