Research article Special Issues

Investigation of fractional-order pantograph delay differential equations using Sumudu decomposition method

  • Received: 15 October 2024 Revised: 29 November 2024 Accepted: 05 December 2024 Published: 25 December 2024
  • MSC : 26A33, 39A60, 65Q20

  • This paper combines the Sumudu transform with the Adomian decomposition method to address Caputo-type fractional-order pantograph delay differential equations. It features numerical evaluations that confirm the effectiveness of the proposed methods. The study introduces a powerful computational technique for solving these equations, providing results that establish its efficiency and relevance through comparisons with existing methods. The findings underscore both the efficiency and accuracy of the proposed algorithm.

    Citation: Asrar Saleh Alsulami, Mariam Al-Mazmumy, Maryam Ahmed Alyami, Mona Alsulami. Investigation of fractional-order pantograph delay differential equations using Sumudu decomposition method[J]. AIMS Mathematics, 2024, 9(12): 35910-35930. doi: 10.3934/math.20241702

    Related Papers:

  • This paper combines the Sumudu transform with the Adomian decomposition method to address Caputo-type fractional-order pantograph delay differential equations. It features numerical evaluations that confirm the effectiveness of the proposed methods. The study introduces a powerful computational technique for solving these equations, providing results that establish its efficiency and relevance through comparisons with existing methods. The findings underscore both the efficiency and accuracy of the proposed algorithm.



    加载中


    [1] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993.
    [2] I. Podlubny, Fractional differential equations, Academic Press, 1999.
    [3] J. T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 1140–1153. https://doi.org/10.1016/j.cnsns.2010.05.027 doi: 10.1016/j.cnsns.2010.05.027
    [4] R. T. Baillie, Long memory processes and fractional integration in econometrics, J. Econom., 73 (1996), 5–59. https://doi.org/10.1016/0304-4076(95)01732-1 doi: 10.1016/0304-4076(95)01732-1
    [5] G. C. Wu, Z. G. Deng, D. Baleanu, D. Q. Zeng, New variable-order fractional chaotic systems for fast image encryption, Chaos, 29 (2019), 083103. https://doi.org/10.1063/1.5096645 doi: 10.1063/1.5096645
    [6] A. Bonfanti, J. L. Kaplan, G. Charras, A. Kabla, Fractional viscoelastic models for power-law materials, Soft Matter, 16 (2020), 6002–6020. https://doi.org/10.1039/D0SM00354A doi: 10.1039/D0SM00354A
    [7] J. F. Gomez-Aguilar, J. E. Escalante-Martinez, C. Calderon-Ramon, L. J. Morales-Mendoza, M. Benavidez-Cruz, M. Gonzalez-Lee, Equivalent circuits applied in electrochemical impedance spectroscopy and fractional derivatives with and without singular kernel, Adv. Math. Phys., 2016 (2016), 9720181. https://doi.org/10.1155/2016/9720181 doi: 10.1155/2016/9720181
    [8] N. Singh, K. Kumar, P. Goswami, H. Jafari, Analytical method to solve the local fractional vehicular traffic flow model, Math. Methods Appl. Sci., 45 (2022), 3983–4001. https://doi.org/10.1002/mma.8027 doi: 10.1002/mma.8027
    [9] H. Bulut, T. A. Sulaiman, H. M. Baskonus, H. Rezazadeh, M. Eslami, M. Mirzazadeh, Optical solitons and other solutions to the conformable space-time fractional Fokas-Lenells equation, Optik, 172 (2018), 20–27. https://doi.org/10.1016/j.ijleo.2018.06.108 doi: 10.1016/j.ijleo.2018.06.108
    [10] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
    [11] I. T. Huseynov, N. I. Mahmudov, A class of Langevin time-delay differential equations with general fractional orders and their applications to vibration theory, J. King Saud Univ. Sci., 33 (2021), 101596. https://doi.org/10.1016/j.jksus.2021.101596 doi: 10.1016/j.jksus.2021.101596
    [12] S. Mashayekhi, S. Sedaghat, Fractional model of stem cell population dynamics, Chaos Solitons Fract., 146 (2021), 110919. https://doi.org/10.1016/j.chaos.2021.110919 doi: 10.1016/j.chaos.2021.110919
    [13] I. T. Huseynov, N. I. Mahmudov, Delayed analogue of three-parameter Mittag-Leffler functions and their applications to Caputo-type fractional time delay differential equations, Math. Methods Appl. Sci., 47 (2024), 11019–11043. https://doi.org/10.1002/mma.6761 doi: 10.1002/mma.6761
    [14] I. T. Huseynov, N. I. Mahmudov, Analysis of positive fractional-order neutral time-delay systems, J. Franklin Inst., 359 (2022), 294–330. https://doi.org/10.1016/j.jfranklin.2021.07.001 doi: 10.1016/j.jfranklin.2021.07.001
    [15] M. Bohner, O. Tunc, C. Tunc, Qualitative analysis of Caputo fractional integro-differential equations with constant delays, Comput. Appl. Math., 40 (2021), 214. https://doi.org/10.1007/s40314-021-01595-3 doi: 10.1007/s40314-021-01595-3
    [16] J. R. Ockendon, A. B. Tayler, The dynamics of a current collection system for an electric locomotive, Proc. R. Soc. Lond. A, 322 (1971), 447–468. https://doi.org/10.1098/rspa.1971.0078 doi: 10.1098/rspa.1971.0078
    [17] S. S. Ezz-Eldien, On solving systems of multi-pantograph equations via spectral tau method, Appl. Math. Comput., 321 (2018), 63–73. https://doi.org/10.1016/j.amc.2017.10.014 doi: 10.1016/j.amc.2017.10.014
    [18] A. Isah, C. Phang, P. Phang, Collocation method based on Genocchi operational matrix for solving generalized fractional pantograph equations, Int. J. Differ. Equ., 2017 (2017), 2097317. https://doi.org/10.1155/2017/2097317 doi: 10.1155/2017/2097317
    [19] L. Shi, X. H. Ding, Z. Chen, Q. Ma, A new class of operational matrices method for solving fractional neutral pantograph differential equations, Adv. Differ. Equ., 2018 (2018), 1–17. https://doi.org/10.1186/s13662-018-1536-8 doi: 10.1186/s13662-018-1536-8
    [20] M. T. Kajani, Numerical solution of fractional pantograph equations via Müntz-Legendre polynomials, Math. Sci., 18 (2024), 387–395. https://doi.org/10.1007/s40096-022-00507-8 doi: 10.1007/s40096-022-00507-8
    [21] G. Adomian, Nonlinear stochastic system theory and applications to physics, Dordrecht: Kluwer Academic Publishers, 1989.
    [22] A. Abdelrazec, D. Pelinovsky, Convergence of the Adomian decomposition method for initial-value problems, Numer. Methods Partial Differ. Equ., 27 (2011), 749–766. https://doi.org/10.1002/num.20549 doi: 10.1002/num.20549
    [23] V. Daftardar-Gejji, H. Jafari, Adomian decomposition: a tool for solving a system of fractional differential equations, J. Math. Anal. Appl., 301 (2005), 508–518. https://doi.org/10.1016/j.jmaa.2004.07.039 doi: 10.1016/j.jmaa.2004.07.039
    [24] S. O. Adesanya, Linear stability analysis of a plane-Poiseuille hydromagnetic flow using Adomian decomposition method, U.P.B. Sci. Bull. Series A, 75 (2013), 99–106.
    [25] H. Thabet, S. Kendre, New modification of Adomian decomposition method for solving a system of nonlinear fractional partial differential equations, Int. J. Adv. Appl. Math. Mech., 6 (2019), 1–13.
    [26] M. D. Johansyah, A. K. Supriatna, E. Rusyaman, J. Saputra, Bernoulli fractional differential equation solution using Adomian decomposition method, IOP Conf. Ser. Mater. Sci. Eng., 1115 (2021), 012015. https://doi.org/10.1088/1757-899X/1115/1/012015 doi: 10.1088/1757-899X/1115/1/012015
    [27] R. I. Nuruddeen, J. F. Gómez-Aguilar, J. R. Razo-Hernández, Fractionalizing, coupling and methods for the coupled system of two-dimensional heat diffusion models, AIMS Math., 8 (2023), 11180–11201. https://doi.org/10.3934/math.2023566 doi: 10.3934/math.2023566
    [28] S. Masood, Hajira, H. Khan, R. Shah, S. Mustafa, Q. Khan, et al., A new modified technique of Adomian decomposition method for fractional diffusion equations with initial-boundary conditions, J. Funct. Spaces, 2022 (2022), 6890517. https://doi.org/10.1155/2022/6890517 doi: 10.1155/2022/6890517
    [29] M. Al-Mazmumy, M. A. Alyami, M. Alsulami, A. S. Alsulami, Efficient modified Adomian decomposition method for solving nonlinear fractional differential equations, Int. J. Anal. Appl., 22 (2024), 76. https://doi.org/10.28924/2291-8639-22-2024-76 doi: 10.28924/2291-8639-22-2024-76
    [30] Y. F. Zhang, L. Z. Wang, Application of Laplace Adomian decomposition method for fractional Fokker-Planck equation and time fractional coupled Boussinesq-Burger equations, Eng. Comput., 2024. https://doi.org/10.1108/ec-06-2023-0275
    [31] A. Khalouta, A. Kadem, Fractional natural decomposition method for solving a certain class of nonlinear time-fractional wave-like equations with variable coefficients, Acta Univ. Sapientiae Math., 11 (2019), 99–116. https://doi.org/10.2478/ausm-2019-0009 doi: 10.2478/ausm-2019-0009
    [32] O. E. Ige, R. A. Oderinu, T. M. Elzaki, Numerical simulation of the nonlinear coupled Jaulent-Miodek equation by Elzaki transform-Adomian polynomial method, Adv. Math. Sci. J., 9 (2020), 10335–10355. https://doi.org/10.37418/amsj.9.12.25 doi: 10.37418/amsj.9.12.25
    [33] G. K. Watugala, Sumudu transform: a new integral transform to solve differential equations and control engineering problems, Int. J. Math. Ed. Sci. Technol., 24 (1993), 35–43. https://doi.org/10.1080/0020739930240105 doi: 10.1080/0020739930240105
    [34] F. B. M. Belgacem, A. A. Karaballi, Sumudu transform fundamental properties investigations and applications, Int. J. Stoch. Anal., 2006 (2006), 091083. https://doi.org/10.1155/JAMSA/2006/91083 doi: 10.1155/JAMSA/2006/91083
    [35] M. A. Asiru, Further properties of the Sumudu transform and its applications, Int. J. Math. Ed. Sci. Technol., 33 (2002), 441–449. https://doi.org/10.1080/002073902760047940 doi: 10.1080/002073902760047940
    [36] S. A. Ahmed, M. Elbadri, Solution of Newell-Whitehead-Segal equation of fractional order by using Sumudu decomposition method, Math. Statist., 8 (2020), 631–636. https://doi.org/10.13189/ms.2020.080602 doi: 10.13189/ms.2020.080602
    [37] T. Patel, R. Meher, Adomian decomposition Sumudu transform method for solving a solid and porous fin with temperature-dependent internal heat generation, SpringerPlus, 5 (2016), 1–18. https://doi.org/10.1186/s40064-016-2106-8 doi: 10.1186/s40064-016-2106-8
    [38] M. Caputo, Linear models of dissipation whose $Q $ is almost frequency independent–Ⅱ, Geophys. J. Int., 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x doi: 10.1111/j.1365-246X.1967.tb02303.x
    [39] A. M. Wazwaz, A reliable technique for solving linear and nonlinear Schrödinger equations by Adomian decomposition method, Bull. Inst. Math. Acad. Sin., 29 (2001), 125–134.
    [40] M. Ghasemi, M. Fardi, R. K. Ghaziani, Numerical solution of nonlinear delay differential equations of fractional order in reproducing kernel Hilbert space, Appl. Math. Comput., 268 (2015), 815–831. https://doi.org/10.1016/j.amc.2015.06.012 doi: 10.1016/j.amc.2015.06.012
    [41] Z. Chen, Q. Q. Gou, Piecewise Picard iteration method for solving nonlinear fractional differential equation with proportional delays, Appl. Math. Comput., 348 (2019), 465–478. https://doi.org/10.1016/j.amc.2018.10.058 doi: 10.1016/j.amc.2018.10.058
    [42] X. Y. Cui, Y. Q. Feng, J. Jiang, Generalized Legendre polynomial configuration method for solving numerical solutions of fractional pantograph delay differential equations, J. Adv. Appl. Comput. Math., 10 (2023), 88–101. https://doi.org/10.15377/2409-5761.2023.10.9 doi: 10.15377/2409-5761.2023.10.9
    [43] C. Q. Yang, J. H. Hou, X. G. Lv, Jacobi spectral collocation method for solving fractional pantograph delay differential equations, Eng. Comput., 38 (2022), 1985–1994. https://doi.org/10.1007/s00366-020-01193-7 doi: 10.1007/s00366-020-01193-7
    [44] U. Saeed, M. ur Rehman, M. A. Iqbal, Modified Chebyshev wavelet methods for fractional delay-type equations, Appl. Math. Comput., 264 (2015), 431–442. https://doi.org/10.1016/j.amc.2015.04.113 doi: 10.1016/j.amc.2015.04.113
    [45] N. A. Elkot, E. H. Doha, I. G. Ameen, A. S. Hendy, M. A. Zaky, A re-scaling spectral collocation method for the nonlinear fractional pantograph delay differential equations with non-smooth solutions, Commun. Nonlinear Sci. Numer. Simul., 118 (2023), 107017. https://doi.org/10.1016/j.cnsns.2022.107017 doi: 10.1016/j.cnsns.2022.107017
    [46] C. Q. Yang, X. G. Lv, Generalized Jacobi spectral Galerkin method for fractional pantograph differential equation, Math. Methods Appl. Sci., 44 (2021), 153–165. https://doi.org/10.1002/mma.6718 doi: 10.1002/mma.6718
    [47] A. H. Bhrawy, A. A. Al-Zahrani, Y. A. Alhamed, D. Baleanu, A new generalized Laguerre-Gauss collocation scheme for numerical solution of generalized fractional pantograph equations, Rom. J. Phys., 59 (2014), 646–657.
    [48] A. El-Ajou, M. N. Oqielat, Z. Al-Zhour, S. Momani, Analytical numerical solutions of the fractional multi-pantograph system: two attractive methods and comparisons, Results Phys., 14 (2019), 102500. https://doi.org/10.1016/j.rinp.2019.102500 doi: 10.1016/j.rinp.2019.102500
    [49] S. Widatalla, M. A. Koroma, Approximation algorithm for a system of pantograph equations, J. Appl. Math., 2012 (2012), 714681. https://doi.org/10.1155/2012/714681 doi: 10.1155/2012/714681
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(166) PDF downloads(16) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog