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1. Introduction

Fractional calculus is a branch of mathematics that generalizes integration and differentiation to
arbitrary orders, leading to the study of fractional differential equations (FDEs), which have gained
prominence in recent times. Its origins trace back to the early conjectures of Leibniz in 1695
and in 1730. The literature offers numerous definitions of fractional derivatives, such as Riemann-
Liouville, Caputo, Grunwald-Letnikov, Weyl, Marchaud, and Prabhakar, among others (see [1–3]
for a historical overview). Fractional calculus finds practical applications across various fields,
including economics [4], chaotic systems [5], dynamics of viscoelastic materials [6], electrochemical
processes [7], traffic models in fluid dynamics [8], and optics [9]. Fractional derivatives are particularly
useful for describing the historical profiles and genetic characteristics of diverse processes. The
significance of FDEs has prompted numerous investigations into the existence and uniqueness of
valid solutions [2, 10]. Traditional mathematical modeling often assumes that a system’s current
state is sufficient for description; however, this assumption can be inadequate. In many cases,
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especially for dynamical systems exhibiting delays common in fields like economics, control systems,
thermoelasticity, hydraulic networks, and biology, it becomes necessary to incorporate past states
for its accurate modeling. These time-delay systems can be represented by delay differential
equations (DDEs), a specific class of differential equations that relate the derivative of a function at a
given time to its values at earlier times. DDEs encompass hereditary systems, systems with dead time,
and equations with different arguments. They are particularly useful for modeling time-dependent
processes, as they integrate past information into ordinary differential equations. Fractional delay
differential equations (FDDEs), which incorporate delay terms within the framework of fractional
calculus, offer greater flexibility in modeling than standard DDEs. Recently, FDDEs have attracted
significant attention from researchers, as even minor delays can substantially impact system behavior.
These equations find applications in diverse scientific fields, including control theory, chemistry,
economics, finance, and vibration theory [11, 12]. For mathematical insights into FDDEs, we
recommend [13] for information on existence and uniqueness and [14, 15] for findings related to the
stability of solutions.

Pantograph equations are a specific type of DDEs that incorporate proportional delay terms and
are widely used to model various real-life phenomena. The term “pantograph” originates from a
device first used in constructing electric locomotives in 1851. The mathematical modeling of this
device was established in 1971 [16]. These equations frequently arise in diverse scientific fields,
including population dynamics, electrodynamics, dynamical systems, number theory, and quantum
mechanics. Both analytical and numerical techniques have been employed historically and currently
to derive closed-form and approximate solutions for fractional pantograph equations. For instance,
multi-pantograph systems were addressed using the spectral Tau method in [17], while the Genocchi
operational matrix in the collocation method was utilized in [18]. Additionally, the classical operational
matrix method [19] and Montez-Legendre polynomials [20] have been applied to computationally
tackle pantograph equations with fractional-order derivatives.

In the mid-1980s, George Adomian Introduced a valuable technique known as the Adomian
decomposition method (ADM) [21], which effectively provides both closed-form and approximate
solutions for linear and nonlinear functional equations. The ADM has gained increasing attention for
its convergence properties and the stability of its solutions. Numerous studies have explored these
aspects, emphasizing the method’s robustness without reiterating the same findings (see [22–25]).
The ADM has become widely recognized as a powerful tool for solving various FDEs. Applications
include the analysis of fractional Bernoulli’s equations [26] and the study of heat transfer processes
with fractional components [27]. To enhance its accuracy and efficiency, the ADM has undergone
several modifications designed to enhance convergence speed and reduce computational time. These
advancements have led to significant progress, showing faster convergence of series solutions
compared to the standard ADM. The modified ADM has proven to be computationally efficient across
various models, making it invaluable for researchers in applied science. Recently, Masood et al. [28]
proposed effective modifications to the ADM in addressing initial-boundary value problems for
diffusion equations with fractional-order derivatives. Additionally, another efficient modification was
applied by [29] to solve nonlinear FDEs. Furthermore, researchers have integrated the ADM with
various integral transformations, such as Laplace, Sumudu, Natural, and Elzaki, which have proven to
be robust for solving different FDE models [30–32].

In this context, Watugala [33] introduced the Sumudu integral transform as a modification of the
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well-known Laplace transform. This new approach offers several motivational advantages, including:

• It preserves units, facilitating problem-solving without the need for frequency domain conversion,
which is beneficial in physical sciences where dimensions are crucial.
• The Sumudu integral transform is a linear operator, and conserves linear functions; this means

that the units and dimensions remain unchanged.
• The Sumudu transform (in contrast with the Laplace transform) accurately handles initial

conditions with singularities in differential equations, typical in practical engineering models.
• Calculating the inverse using the Sumudu transform avoids the complexities of contour

integration, offering a simpler solution approach.

Furthermore, the authors in [34, 35] introduced several fundamental properties of the Sumudu
transformation, which are instrumental in constructing and solving mathematical models. Additionally,
the authors in [36, 37] discussed the combination of the Sumudu transform and the ADM to tackle
various models of FDEs.

However, this study aims to utilize the coupling of the ADM and the Sumudu transform, referred to
as the Sumudu decomposition method (SDM), to find approximate closed-form solutions for FPDDEs.
The proposed method effectively addresses the complexity of these problems while maintaining ease
of use. Error comparisons demonstrate that the devised SDM is exceptionally precise.

The structure of the manuscript is as follows: Section 2 provides definitions related to fractional
calculus and the Sumudu transform. Section 3 discusses the solution method, while Section 4 applies
the SDM to various numerical problems, determining approximate solutions for different FPDDEs.
Finally, Section 5 presents the conclusions of the study.

2. Main concepts and theorems

This section presents key definitions and properties of fractional calculus. Additionally, it discusses
fundamental features of the Sumudu transform (ST).

2.1. Some basic definitions and properties of the fractional calculus

Definition 2.1. Let y(x) ∈ C([a, b]) and a < x < b. The Riemann-Liouville fractional integral operator
of the fractional-order α > 0 is given by [1, 2, 10]

Iαa y(x) =
1
Γ(α)

∫ x

a
y(t)(x − t)α−1dt. (2.1)

For α = 0, this reduces to the identity operator, i.e., I0
ay(x) = y(x). Moreover, when α ∈ N, Iαa y(x)

coincides with the classical integral operator.

Definition 2.2. Let y(x) ∈ C([a, b]). The Caputo fractional derivative of the fractional-order α > 0 is
defined as [1, 2, 10]

Dα∗y(x) =

Im−αy(m)(x), m − 1 < α < m,
dm

dxm y(x), α = m,
(2.2)

where m = ⌈α⌉ and m ∈ N.
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Additionally, several crucial properties of the fractional differential and integral operators based on
the previously mentioned definitions are outlined as follows [1, 2, 10]:

(1)
Iαa Iβay(x) = Iα+βa y(x), α, β ≥ 0; (2.3)

(2)

Iαa Dα∗y(x) = y(x) −
m−1∑
k=0

y(k)(0+)
xk

Γ(k + 1)
, where m − 1 < α ≤ m; (2.4)

(3)

Iαa xn =
Γ(n + 1)
Γ(α + n + 1)

xn+α, where x > 0, m − 1 < α ≤ m, n > −1; (2.5)

(4)
Dα∗C = 0, where C is a real constant; (2.6)

(5)

Dα∗ xn =

0, n < m − 1,
Γ(n+1)
Γ(n+1−α) xn−α, n ≥ m − 1.

(2.7)

Moreover, since this study focuses on solving Caputo-type FPDDEs, the Caputo fractional
derivative is chosen. This derivative allows for the specification of additional initial conditions,
ensuring a unique and precise solution for the FDEs. It is widely recognized for its capacity to define
initial conditions based on the integer-order derivatives of the functions involved in the models under
consideration. Additionally, it is worth noting that numerous studies have thoroughly explored the
geometric interpretation of fractional derivatives [38].

2.2. Some basic definitions and properties of the Sumudu transform

Definition 2.3. The ST over the following set [33, 34]:

A = {y(x) | ∃ M, ν1, ν2 > 0, |y(x)| < Me|x|/νi , if x ∈ (−1)i × [0,∞)}, (2.8)

of functions is defined by

S[y(x)] =
∫ ∞

0
y(ux)e−xdx = G(u), u ∈ (−ν1, ν2), (2.9)

where u is a ST parameter, real or complex, and independent of x. In addition, the formula for inverting
the ST is expressed as follows:

S−1[G(u)] =
1

2πi

∫ λ+i∞

λ−i∞

eux

u
G

(
1
u

)
du = y(x). (2.10)

Definition 2.4. The ST of the Caputo derivative is expressed as [33, 34]

S[Dαy(x)] = u−αS[y(x)] −
m−1∑
k=0

u−α+ky(k)(0), m − 1 < α ≤ m. (2.11)
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Furthermore, to illustrate how the adopted integral transform operates, Table 1 presents the Sumudu
transform of several elementary functions [33, 34]. Additionally, the authors in [34] demonstrate the
equivalence of the Laplace and Sumudu transformations. However, one may prove more convenient
for computations than the other, particularly when addressing FDEs. Consequently, this study selects
the Sumudu transform for solving the FPDDEs.

Table 1. ST of some functions.

y(x) S{y(x)} = Y(u)
1 1
eax 1

1−au
xn−1

Γ(n) un−1 for n > 0
cos ax 1

1+a2u2

sin ax au
1+a2u2

3. Treatment of fractional pantograph delay differential equations via Sumudu decomposition
method

To give the outline of the deployed SDM on the class of FPDDEs, the current section makes
consideration of the generalized initial-value problem for FDDE with delay terms q1 and q2 as follows:

Dα∗y(x) = F(xα, y(x), y(q1x), y(q2x)) + g(x), (3.1)

yi(0) = yi, i = 1, . . . ,m − 1, (3.2)

where x ∈ I = [0,T ], m − 1 < α ≤ m, 0 < q1, q2 < 1, F is an arbitrary continuous nonlinear function,
g(x) is the given source function, yi ∈ R, while Dα∗ is the Caputo fractional derivative of order α.

To solve the problem expressed in (3.1) and (3.2) via the deployed method, SDM starts by operating
the ST on both sides of the governing equation to obtain the following:

S[Dα∗y(x)] = S[F(xα, y(x), y(q1x), y(q2x))] + S[g(x)]. (3.3)

Further, on using (2.11) together with the prescribed initial conditions, one obtains

u−αS[y(x)] −
m−1∑
i=1

ui−αy(i)(0) = S[F(xα, y(x), y(q1x), y(q2x))] + S[g(x)], (3.4)

or alternatively

S[y(x)] −
m−1∑
i=1

uiyi =
1

u−α
S[F(xα, y(x), y(q1x), y(q2x))] +

1
u−α
S[g(x)]. (3.5)

Next, upon applying the inverse ST on both sides of the latter equation, one then obtains

y(x) − S−1
[ m−1∑

i=1

uiyi

]
= S−1

[ 1
u−α
S
[
F(xα, y(x), y(q1x), y(q2x))

]]
+ S−1

[ 1
u−α
S
[
g(x)

]]
. (3.6)
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Further, the standard ADM procedure proceeds by expressing the solution y(x) by the following
infinite series:

y(x) =
∞∑

n=0

yn(x), (3.7)

while the nonlinear term F(xα, y(x), y(q1x), y(q2x)) is expressed through the summation series of
Adomian polynomials An as follows:

F(xα, y(x), y(q1x), y(q2x)) =
∞∑

n=0

An, (3.8)

where An are the Adomian polynomials, unequivocally expressed as follows:

An =
1
n!

dn

dλn

[
N(

∞∑
i=0

λiyi)
]
λ=0
, n = 0, 1, 2, . . . (3.9)

Therefore, with the above-decomposed series, Eq (3.6) is thus re-expressed as follows:

∞∑
n=0

yn(x) = S−1
[ m−1∑

i=1

uiyi

]
+ S−1

[ 1
u−α
S
[ ∞∑

n=0

An

]]
+ S−1

[ 1
u−α
S
[
g(x)

]]
, (3.10)

upon which the formal recursive relation is acquired from the standard ADM procedure as follows:
y0(x) = S−1

[∑m−1
i=1 uiyi

]
+ S−1

[
1

u−αS
[
g(x)

]]
= p(x),

yn(x) = S−1
[

1
u−αS

[
An−1

]]
, n ≥ 1.

(3.11)

Notably, it is crucial to note that the standard ADM involves defining the zeroth component y0(x) based
on the function p(x) derived from the source term and the prescribed initial conditions. However, in
this context, Wazwaz [39] proposed an extension of the standard ADM by further decomposing the
zeroth component y0(x) into two components as follows:

y0(x) = p0(x) + p1(x),

where the first part is associated with the initial term, and the second part is attached to the subsequent
iterate. Thus, under this assumption, the new modified recursive algorithm from (3.11) takes the
following form: 

y0(x) = p0(x),

y1(x) = S−1
[

1
u−αS

[
A0

]]
+ p1(x),

yn(x) = S−1
[

1
u−αS

[
An−1

]]
, n ≥ 2.

(3.12)

Certainly, the closed-form solution determined in Eq (3.12) (of course after taking the net sum of the
components, y(x) =

∑∞
n=0 yn(x)) converges more rapidly than the standard ADM, as shown in [39]. In

addition, the modified scheme by Wazwaz heavily relies on the selection of the right p0(x) and p1(x)
functions; this dependency will be demonstrated in the next application section. In Algorithm 1, we
systematically outline our method for solving FPDDSs.
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Algorithm 1. Solution procedure for FPDDEs using SDM
Input: Define the FPDDE with given fractional derivative, nonlinear terms, delay terms, and initial
conditions.
Step 1: Apply the Sumudu transform (ST) to the given equation, incorporating the initial
conditions.
Step 2: Use the inverse ST to reformulate the problem, expressing the solution in terms of a series
and Adomian polynomials.
Step 3: Decompose the solution and nonlinear terms into infinite series. Represent the nonlinear
terms using Adomian polynomials.
Step 4: Derive recursive relations for the solution components using inverse ST.
Step 5: For Wazwaz’s modified approach, decompose the initial component into two parts for
improved convergence.
Step 6: Iteratively compute the solution components until convergence is achieved.
Output: Construct the approximate solution as the sum of all computed components.

4. Applications

This section presents a numerical demonstration of the derived Sumudu decomposition
method (SDM) on several initial-value problems (IVPs) for fractional pantograph delay differential
equations (FPDDEs). Additionally, graphical illustrations will be provided to compare the obtained
approximate solutions with available exact solutions. Furthermore, comparison tables will be included
to evaluate the effectiveness of the deployed SDM against other methods found in the literature. All
calculations are performed, and the plots are generated by using Maple 22 with 8 digits precision.

Example 4.1. Consider the IVP for FPDDE as follows [40–42]:D1/2
∗ y(x) = −y(x) + y( x

2 ) + 7
8 x3 + 16

5Γ( 1
2 )

x
5
2 ,

y(0) = 0.
(4.1)

To solve (4.1) by SDM, we apply ST on both sides of the equation, which when using (2.11) gives

S[y(x)] =
1

u−1/2S[−y(x)] +
1

u−1/2S
[
y(

x
2

)
]
+

1
u−1/2S

[7
8

x3 +
16

5Γ(1
2 )

x
5
2

]
. (4.2)

Now, applying the inverse ST on both sides of the above equation, one gets

y(x) = S−1
[ 1
u−1/2S[−y(x)]

]
+ S−1

[ 1
u−1/2S

[
y(

x
2

)
]]
+ S−1

[ 1
u−1/2S

[7
8

x3 +
16

5Γ( 1
2 )

x
5
2

]]
, (4.3)

or equally expressed after deploying the standard ADM procedure on the latter equation as follows:

∞∑
n=0

yn(x) = S−1
[ 1
u−1/2S

[
−

∞∑
n=0

yn(x)
]]
+ S−1

[ 1
u−1/2S

[ ∞∑
n=0

yn(
x
2

)
]]
+ S−1

[ 1
u−1/2S

[7
8

x3 +
16

5Γ( 1
2 )

x
5
2

]]
. (4.4)
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Moreover, the formal recursive relationship for the governing fractional IVP is obtained as follows:
y0(x) = S−1

[
1

u−1/2S
[

7
8 x3 + 16

5Γ( 1
2 )

x
5
2

]]
= x3 + 4

5
√
π
x

7
2 ,

yn(x) = S−1
[

1
u−1/2S

[
− yn−1(x)

]]
+ S−1

[
1

u−1/2S
[
yn−1( x

2 )
]]
, n ≥ 1.

(4.5)

In addition, upon using the modified recursive algorithm by Wazwaz in (3.12), the governing model
via the modified SDM yields the following recursive algorithm as follows:

y0(x) = x3,

y1(x) = S−1
[

1
u−1/2S

[
− x3

]]
+ S−1

[
1

u−1/2S
[

x3

8

]
+ 4

5
√
π
x

7
2

= − 4
5
√
π
x

7
2 + 4

5
√
π
x

7
2

= 0,
yn(x) = 0, n ≥ 2,

(4.6)

upon which the exact solution is arrived at after taking the net sum of the above solution components
as follows:

y(x) = x3. (4.7)

In this context, the authors in [40–42] employed various methods to tackle the same model in (4.1),
using the regenerative kernel method (RKM), the piecewise Picard iteration method (PPIM), and the
generalized Legendre polynomial configuration method (GLPCM), respectively. Each of these authors
obtained approximate solutions by calculating nine terms, while our algorithm achieves an exact
solution using only two terms. This advantage leads to more effective convergence to the exact solution
compared to numerical methods, significantly reducing computational complexity. Additionally, the
study compares the resulting errors from these methods with those produced by the devised SDM, as
detailed in Table 2.

Table 2. Comparison of absolute errors at various xi values for the fractional IVP (4.1).

x RKM [40] PPIM [41] GLPCM [42] Present method (SDM)
0.1 1.475 × 10−7 1.303 × 10−13 6.328 × 10−15 0
0.2 4.492 × 10−6 3.731 × 10−11 6.212 × 10−15 0
0.3 2.361 × 10−5 1.171 × 10−9 5.648 × 10−15 0
0.4 8.239 × 10−5 1.351 × 10−8 2.914 × 10−15 0
0.5 2.107 × 10−4 2.107 × 10−4 5.065 × 10−15 0
0.6 4.403 × 10−4 4.403 × 10−4 4.219 × 10−15 0
0.7 8.037 × 10−4 8.037 × 10−4 4.163 × 10−15 0
0.8 1.333 × 10−3 1.333 × 10−3 3.220 × 10−15 0
0.9 2.064 × 10−3 2.064 × 10−3 2.665 × 10−15 0
1 1.303 × 10−3 1.303 × 10−3 2.331 × 10−15 0

Example 4.2. Consider the nonlinear IVP for FPDDE as follows [42–45]:Dα∗y(x) = 1 − 2y2
(

x
2

)
, 0 < α ≤ 1,

y(0) = 0.
(4.8)
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To solve (4.8) by SDM, we apply ST on both sides of the equation to accordingly obtain

S[y(x)] =
1

u−α
S[1] −

1
u−α
S
[
2y2

( x
2

)]
. (4.9)

Next, upon applying the inverse ST on the latter equation, one obtains

y(x) = S−1
[ 1
u−α
S[1]

]
− S−1

[ 1
u−α
S
[
2y2

( x
2

)]]
, (4.10)

such that when the ADM is deployed reveals
∞∑

n=0

yn(x) = S−1
[ 1
u−α
S[1]

]
− S−1

[ 1
u−α
S
[
2
∞∑

n=0

An

( x
2

)]]
, (4.11)

where An are the Adomian polynomials corresponding to the nonlinear terms y2( x
2 ) defined as follows:

A0 = y0

( x
2

)2
,

A1 = 2y0

( x
2

)
y1

( x
2

)
,

A2 = y1

( x
2

)2
+ 2y0

( x
2

)
y2

( x
2

)
,

...

(4.12)

Moreover, the formal recursive relationship for the governing fractional IVP is obtained as follows:
y0(x) = S−1

[
1

u−αS[1]
]
,

yn(x) = −S−1
[

1
u−αS

[
2An−1

(
x
2

)]]
, n ≥ 1.

(4.13)

Accordingly, the recursive scheme is expressed more plainly as follows:

y0(x) =
1

Γ(α + 1)
xα,

y1(x) = −S−1
[ 1
u−α
S
[
2A0

( x
2

)]]
= −S−1

[ 1
u−α
S
[
2

x2α

4αΓ2(α + 1)

]]
= −

2Γ(2α + 1)
4αΓ2(α + 1)Γ(3α + 1)

x3α,

y2(x) =
23Γ(2α + 1)Γ(4α + 1)

43αΓ3(α + 1)Γ(3α + 1)Γ(5α + 1)
x5α,

...

(4.14)

Hence, on taking the net sum of the latter solution components, one acquires

y(x) =
xα

Γ(α + 1)
−

2Γ(2α + 1)
4αΓ2(α + 1)Γ(3α + 1)

x3α +
23Γ(2α + 1)Γ(4α + 1)

43αΓ3(α + 1)Γ(3α + 1)Γ(5α + 1)
x5α + . . . (4.15)
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Remarkably, when the fractional-order α takes unity in the above series solution, that is, α = 1, one
obtains the following compacted closed-form solution:

y(x) = x −
1
3!

x3 + · · · =

∞∑
n=0

(−1)nx2n+1

(2n + 1)!
= sin(x). (4.16)

Similarly, the authors in [42–45] addressed the governing model in (4.8) using the Chebyshev
wavelet method (CWM), the Jacobi spectral configuration method (JSCM), the rescaled spectral
configuration method (RSCM), and the generalized Legendre polynomial configuration method
(GLPCM), respectively. These authors obtained approximate solutions by calculating nine terms, while
our algorithm provides an exact solution for the model at α = 1. For error analysis, refer to Table 3,
which compares the proposed SDM with other competing approaches. Additionally, Figure 1 presents
a graphical depiction of the approximate SDM solution and the absolute errors for the governing
nonlinear initial-value problem (IVP) for FPDDE (4.8).

Table 3. Comparison of absolute errors at various xi values for the fractional IVP (4.8).

x JSCM [43] CWM [44] RSCM [45] GLPCM [42] Present method (SDM)
0.125 2.05 × 10−12 1.71 × 10−12 1.81 × 10−13 1.61 × 10−13 0
0.250 1.61 × 10−12 2.47 × 10−12 1.34 × 10−13 3.14 × 10−14 0
0.375 3.48 × 10−11 9.36 × 10−11 1.50 × 10−13 5.29 × 10−14 0
0.500 5.31 × 10−11 1.78 × 10−11 1.61 × 10−13 2.38 × 10−14 0
0.625 2.07 × 10−11 1.88 × 10−11 1.69 × 10−13 5.35 × 10−14 0
0.750 2.47 × 10−11 3.04 × 10−12 1.30 × 10−13 6.05 × 10−14 0
0.875 1.59 × 10−11 1.64 × 10−12 1.38 × 10−13 1.61 × 10−14 0
1 3.85 × 10−10 4.51 × 10−10 8.98 × 10−13 3.11 × 10−15 0

Example 4.3. Consider the nonhomogeneous nonlinear IVP for FPDDE as follows [42, 43, 46]:D1/2
∗ y(x) = y( x

3 ) + 3y2(x) + g(x),
y(0) = 0,

(4.17)

where

g(x) =
8

3
√
π

x
3
2 −

2
√
π

x
1
2 − x4 + 2x3 −

10
9

x2 +
1
3

x.

Thus, without much delay, the formal recursive relationship for the governing fractional model is
obtained as follows:

y0(x) = S−1
[

1
u−1/2S

[
g(x)

]]
= x2 − x − 256

315
√
π
x

9
2 + 64

35
√
π
x

7
2 − 32

27
√
π
x

5
2 + 4

9
√
π
x

3
2 = p(x),

yn(x) = S−1
[

1
u−1/2S

[
yn−1( 1

3 x)
]]
+ S−1

[
1

u−1/2S
[
3An−1

]]
, n ≥ 1,

(4.18)

where the Adomian polynomials An in the above scheme for the nonlinear term y2(x), take the
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following forms:

A0 = y0(x)2 ,

A1 = 2y0(x) y1(x) ,
A2 = y1(x)2 + 2y0(x) y2(x) ,
...

(4.19)

Accordingly, when considering the Wazwaz’s modification for ADM (3.12) by choosing the functions
p0(x) and p1(x) as follows:

p0(x) = x2 − x,

p1(x) = −
256

315
√
π

x
9
2 +

64
35
√
π

x
7
2 −

32
27
√
π

x
5
2 +

4
9
√
π

x
3
2 ,

(4.20)

the modified SDM algorithm then yields the following scheme:

y0(x) = p0(x) = x2 − x,

y1(x) = S−1
[

1
u−1/2S

[
y0(x)

]]
+ S−1

[
1

u−1/2S
[
3A0(x)

]]
+ p1(x)

= S−1
[

1
u−1/2S

[
x2 − x

]]
+ S−1

[
1

u−1/2S
[
3(x2 − x)2

]]
− 256

315
√
π
x

9
2 + 64

35
√
π
x

7
2 − 32

27
√
π
x

5
2 + 4

9
√
π
x

3
2

= 256
315
√
π
x

9
2 − 64

35
√
π
x

7
2 + 32

27
√
π
x

5
2 − 4

9
√
π
x

3
2 − 256

315
√
π
x

9
2 + 64

35
√
π
x

7
2 − 32

27
√
π
x

5
2 + 4

9
√
π
x

3
2

= 0,
yn(x) = 0, n ≥ 2,

(4.21)
which then sums to yield the resulting exact solution as follows:

y(x) = x2 − x. (4.22)

Consequently, the references [42, 43, 46] also addressed the governing model in (4.17) using the
Jacobi spectral configuration method (JSCM), the Jacobi spectral Galerkin method (JSGM), and the
generalized Legendre polynomial spectral method (GLPSM), respectively. These authors obtained
approximate solutions by calculating varying numbers of terms, while our algorithm provides an exact
solution using only two terms. This advantage leads to more effective convergence to the exact solution
compared to numerical methods, significantly reducing computational complexity. For a comparative
analysis of the aforementioned methods with respect to different error norms, see Table 4.

Table 4. Comparison of maximum errors for different methods for the fractional IVP (4.17).

Maximum Error n = 6 n = 8 n = 10
JSCM [43] (L2) 3.6822 × 10−6 1.20720 × 10−8 1.3049 × 10−11

JSCM [43] (L∞) 1.0832 × 10−5 2.7460 × 10−8 3.9471 × 10−11

JSGM [46] (L2) 2.3632 × 10−6 1.0032 × 10−8 1.1006 × 10−11

JSGM [46] (L∞) 1.2851 × 10−5 1.4350 × 10−8 2.9356 × 10−11

GLPCM [42] 4.5103 × 10−16 4.7184 × 10−16 5.3429 × 10−16
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(a) Comparison of the approximate and exact solutions (b) Absolute error curve for SDM solution, α = 1

(c) SDM solutions for various values of α (d) Absolute error curve for various values of α

Figure 1. SDM solutions and error curves for the fractional IVP (4.8).

Example 4.4. Consider the IVP for FPDDE of the following form:Dα∗y(x) = 1 + 2y( x
2 ) − y(x),

y(0) = 0,
(4.23)

where the fractional-order α assumes a general value over the interval 0 < α ≤ 1.

Subsequently, upon applying the ST on the fractional IVP in via (2.11), one obtains

S[y(x)] =
1

u−α
+

1
u−α
S
[
2y(

x
2

)
]
−

1
u−α
S
[
y(x)

]
. (4.24)
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Now, on applying the inverse ST on the latter equation, one obtains

y(x) = S−1
[ 1
u−α

]
+ S−1

[ 1
u−α
S
[
2y(

x
2

)
]]
− S−1

[ 1
u−α
S
[
y(x)

]]
, (4.25)

such that when the ADM is deployed, one obtains

∞∑
n=0

yn(x) = S−1
[ 1
u−α

]
+ S−1

[ 1
u−α
S
[
2
∞∑

n=0

yn(
x
2

)
]]
− S−1

[ 1
u−α
S
[ ∞∑

n=0

yn(x)
]]
. (4.26)

Accordingly, the formal recursive relation for the governing fractional IVP is obtained as follows:
y0(x) = S−1

[
1

u−α

]
,

yn(x) = S−1
[

1
u−αS

[
2yn−1( x

2 )
]]
− S−1

[
1

u−αS
[
yn−1(x)

]]
, n ≥ 1,

(4.27)

or more openly from the above recursive relation as follows:

y0(x) = S−1
[ 1
u−α

]
=

xα

Γ(α + 1)
,

y1(x) = S−1
[ 1
u−α
S
[
2y0(

x
2

)
]]
− S−1

[ 1
u−α
S
[
y0(x)

]]
=

x2α

Γ(2α + 1)

( 1
2α−1 − 1

)
,

y2(x) = S−1
[ 1
u−α
S
[
2y1(

x
2

)
]]
− S−1

[ 1
u−α
S
[
y1(x)

]]
=

x3α

Γ(3α + 1)

( 1
2α−1 − 1

)( 1
2α−1 − 1

)
,

y3(x) =
x4α

Γ(4α + 1)

( 1
2α−1 − 1

)( 1
2α−1 − 1

)( 1
2α−1 − 1

)
,

...

(4.28)

Hence, on taking the net sum of the above solution components, one obtains

y(x) =
xα

Γ(α + 1)
+

∞∑
i=1

( i∏
l=1

1
2lα−1 − 1

) x(i+1)α

Γ((i + 1)α + 1)
. (4.29)

Additionally, when the fractional-order α assumes full integer-order, that is, when α = 1, the second
term in the above series solution vanishes, which then leads to the acquisition of the exact solution of
the integer-order model as follows:

y(x) = x. (4.30)

Moreover, see Figure 2 for the pictorial representation of the approximate SDM solution, together with
the resulting absolute error for various values of the fractional-order α for the governing IVP in (4.23).
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(a) SDM solution for various values of α =

1, 0.99, 0.89, 0.79, respectively.
(b) Absolute error for various values of α =

0.99, 0.89, 0.79, respectively.

Figure 2. SDM solution and absolute error of the fractional IVP (4.23) for various values
of α.

Example 4.5. Consider the inhomogeneous IVP for FPDDE [18, 47]D5/2
∗ y(x) = −y(x) − y(x − 0.5) + g(x), x ∈ [0, 1],

y(0) = y′(0) = y′′(0) = 0,
(4.31)

where
g(x) =

Γ(4)
Γ(3/2)

x1/2 + x3 + (x − 0.5)3.

Accordingly, upon applying the ST and its subsequent inverse transform on (4.31) as previously
highlighted, one thus obtains

y(x) = S−1
[ 1
u−5/2S[−y(x)]

]
− S−1

[ 1
u−5/2S

[
y(x − 0.5)

]]
+ S−1

[ 1
u−5/2S

[
g(x)

]]
, (4.32)

such that the standard ADM reveals the resulting recurrent scheme as follows:
y0(x) = S−1

[
1

u−5/2S[g(x)]
]
= p(x),

yn(x) = −S−1
[

1
u−5/2S

[
yn−1(x)

]]
− S−1

[
1

u−5/2S
[
yn−1(x − 0.5)

]]
, n ≥ 1.

(4.33)

In the same fashion, when considering the Wazwaz’s modification for ADM (3.12) by choosing the
functions p0(x) and p1(x) as follows:

p0(x) = x3,

p1(x) =
Γ(4)
Γ(13/2)

x11/2 + S−1
[
u5/2(u − 0.5)3Γ(4)

]
,

(4.34)
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the modified SDM scheme is then expressed as follows:

y0(x) = p0(x) = x3,

y1(x) = −S−1
[ 1
u−5/2S

[
y0(x)

]]
− S−1

[ 1
u−5/2S

[
y0(x − 0.5)

]]
+ p1(x),

= −S−1
[ 1
u−5/2S

[
x3

]]
− S−1

[ 1
u−5/2S

[
(x − 0.5)3

]]
+
Γ(4)
Γ(13/2)

x11/2

+ S−1
[
u5/2(u − 0.5)3Γ(4)

]
,

= −
Γ(4)
Γ(13/2)

x11/2 − S−1
[
u5/2(u − 0.5)3Γ(4)

]
+
Γ(4)
Γ(13/2)

x11/2

+ S−1
[
u5/2(u − 0.5)3Γ(4)

]
,

= 0,
yn(x) = 0, n ≥ 2,

(4.35)

such that the closed-form solution of the governing IVP is attained by summing the above solution
components as follows:

y(x) = x3. (4.36)

Moreover, upon simulating the derived SDM scheme for the examining model, together with some
contending computational methods, Table 5 then provides the absolute error contrast between the
deployed SDM (with only a few terms, N = 2), the results reported in [47], where N = 22 using
different Laguerre’s parameters β through the application of the Laguerre-Gauss collocation scheme (L-
GCS), and the approximate solution in [18] using the operational matrix via the Genocchi polynomials
collocation method (GPCM), where N = 4. Certainly, the results show that the proposed SDM method
provides an almost exact solution over the contending approaches.

Table 5. Comparison of the absolute errors at various xi values for the fractional IVP (4.31).

L-GCS [47]
x N = 22 GPCM [18] Present method (SDM)

β = 2 β = 3 β = 5 N = 4 N = 2
0.1 1.030 × 10−4 1.019 × 10−5 6.273 × 10−6 6.17040 × 10−9 0
0.2 6.510 × 10−4 6.051 × 10−5 3.892 × 10−5 4.93630 × 10−8 0
0.3 1.740 × 10−3 1.495 × 10−4 1.023 × 10−4 1.66600 × 10−7 0
0.4 3.283 × 10−3 2.559 × 10−4 1.901 × 10−4 3.94910 × 10−7 0
0.5 5.138 × 10−3 3.546 × 10−4 2.944 × 10−4 7.71300 × 10−7 0
0.6 7.175 × 10−3 4.261 × 10−4 4.088 × 10−4 1.33280 × 10−6 0
0.7 9.303 × 10−3 4.592 × 10−4 5.306 × 10−4 2.11640 × 10−6 0
0.8 1.147 × 10−2 4.510 × 10−4 6.597 × 10−4 3.15920 × 10−6 0
0.9 1.367 × 10−2 4.055 × 10−4 7.977 × 10−4 4.49820 × 10−6 0
1.0 1.589 × 10−2 3.311 × 10−4 9.468 × 10−4 6.17040 × 10−6 0
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Example 4.6. Consider the coupled system of nonhomogeneous IVP for FPDDE as follows [48]:Dα∗y1(x) = e−xα − e
xα
2 + y1( x

2 ) + y1(x) − y2(x), y1(0) = 1,
Dα∗y2(x) = exα + e

xα
2 − y2( x

2 ) − y1(x) − y2(x), y2(0) = 1.
(4.37)

Accordingly, the deployed SDM posses the recursive scheme for the governing coupled fractional
model as follows: 

y1,0(x) = 1 + S−1
[

1
u−αS[e

−xα − e
xα
2 ]

]
,

y2,0(x) = 1 + S−1
[

1
u−αS[e

xα + e
xα
2 ]

]
,

(4.38)

and ∀ n ≥ 1 as follows:
y1,n(x) = S−1

[
1

u−αS[y1,n−1( x
2 ) + y1,n−1(x) − y2,n−1(x)]

]
,

y2,n(x) = −S−1
[

1
u−αS[y2,n−1( x

2 ) + y1,n−1(x) + y2,n−1(x)]
]
.

(4.39)

Certainly, the current coupled system of fractional IVP extends the corresponding integer-order model
examined in [49]. Thus, upon considering the integer-order version in [49], where the fractional-order
takes unity, that is, when α = 1, the model admits the following exact solution y1(x) = ex, y2(x) = e−x.
What is more, upon simplifying the derived scheme further, one replaces the exponential terms in (4.38)
with the first seven terms of their Taylor series expansions to eventually obtain as follows:

y1,0(x) = 1 + S−1
[

1
u−αS

[
3xα

2 −
3x2α

8 +
3x3α

16 −
5x4α

128 +
11x5α

1280 −
7x6α

5120

]]
,

y2,0(x) = 1 − S−1
[

1
u−αS

[
2 + xα

2 +
5x2α

8 +
7x3α

48 +
17x4α

384 +
31x5α

3840 +
13x6α

9216

]]
,

(4.40)

that is,

y1,0(x) = 1 +
3x2αΓ(1 + α)
2Γ(1 + 2α)

−
3x3αΓ(1 + α)
8Γ(1 + 3α)

+
3x4αΓ(1 + 3α)
16Γ(1 + 4α)

−
5x4αΓ(1 + α)

128Γ(1 + 128α)

+
11x6αΓ(1 + 5α)
1280Γ(1 + 6α)

−
7x7αΓ(1 + 6α)
5120Γ(1 + 7α)

,

y2,0(x) = 1 −
2xα

Γ(1 + α)
−

x2αΓ(1 + α)
2Γ(1 + 2α)

−
5x3αΓ(1 + 2α)

8Γ(1 + 3α)
−

7x4αΓ(1 + 3α)
48Γ(1 + 4α)

−
17x5αΓ(1 + 4α)
384Γ(1 + 5α)

−
31x6αΓ(1 + 5α)
3840Γ(1 + 6α)

−
13x7αΓ(1 + 6α)
9216Γ(1 + 7α)

,

y1,1(x) =
xα

Γ(1 + α)
−

2x2α

Γ(1 + 2α)
+

2αx2α

Γ(1 + 2α)
+ · · · −

x8αΓ(1 + 6α)
23040Γ(1 + 8α)

+
x8αΓ(1 + 6α)

727α+10 × 5Γ(1 + 8α)
,

y2,1(x) =
xα

Γ(1 + α)
−

2αx2α

Γ(1 + 2α)
−

x2αΓ(1 + α)
2Γ(1 + 2α)

− · · · −
x8αΓ(1 + 6α)
360Γ(1 + 8α)

−
x8αΓ(1 + 6α)

1327α+10 × 9Γ(1 + 8α)
,

...

In addition, Figure 3 depicts the pictorial view of the obtained SDM solution for the fractional-order
system (4.37). Furthermore, with the consideration of the corresponding integer-order case, that is,
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when α = 1, the first 6 terms of the solution components by SDM sum to yield the following series
solution: y1(x) = 1 + x + 1

2 x2 + 1
6 x3 + 1

24 x4 + 1
120 x5 + · · · ≈ ex,

y2(x) = 1 − x + 1
2 x2 − 1

6 x3 + 1
24 x4 − 1

120 x5 + · · · ≈ e−x.
(4.41)

(a) Exact and SDM solutions of y1(x) for various
values of α.

(b) Exact and SDM solutions of y2(x) for various
values α.

Figure 3. Exact and SDM solutions of the coupled fractional IVP (4.37) for various values α.

5. Conclusions

The current manuscript introduces a novel computational approach for solving the class of
FPDDEs by combining the Sumudu transform with the reliable ADM. This approach enables the
derivation of approximate or exact solutions through straightforward iterative calculations that are
easily implementable in computer programs. The numerical results confirm the precision of the
proposed method. Furthermore, the study successfully achieves its goal by obtaining numerical
solutions in the form of rapidly converging series with easily calculable components. To validate
the accuracy and efficiency of the algorithms adopted via the SDM, we present several important and
interesting problems, comparing the obtained solutions both numerically and graphically. The results
demonstrate that our method is highly effective, straightforward, and yields approximate solutions that
closely match the exact solutions. Additionally, the paper recommends applying this technique to more
complex neutral pantograph equations involving fractional derivatives on the right-hand side, utilizing
various fractional operators.
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