This research aims to investigate the behaviour of thermoelastic vibrations in a solid cylinder with voids using the Moore-Gibson-Thompson heat conduction equation, which is a newly developed method for studying heat transfer in elastic materials. The Moore-Gibson-Thompson heat conduction model allows for a more accurate understanding of the thermoelastic vibrations in solid cylinders with voids. The results of this study can provide valuable insights for designing structures with better thermal stability and vibration resistance. The Laplace transform method is used. The numerical results show that the size of the voids has a clear physical effect on the studied variables. In fact, the presence of a large number of small pores reduces the variable values. Additionally, the variation of waves is slightly smaller in the case of an elastic cylinder for the investigated model.
Citation: Ahmed Yahya M.H, Anouar Saidi, Ahmed E. Abouelregal, Adam Zakria, Ibrahim-Elkhalil Ahmed, F. A. Mohammed. Thermoelastic vibrations for solid cylinder with voids, using Moore-Gibson-Thompson heat conduction model[J]. AIMS Mathematics, 2024, 9(12): 34588-34605. doi: 10.3934/math.20241647
This research aims to investigate the behaviour of thermoelastic vibrations in a solid cylinder with voids using the Moore-Gibson-Thompson heat conduction equation, which is a newly developed method for studying heat transfer in elastic materials. The Moore-Gibson-Thompson heat conduction model allows for a more accurate understanding of the thermoelastic vibrations in solid cylinders with voids. The results of this study can provide valuable insights for designing structures with better thermal stability and vibration resistance. The Laplace transform method is used. The numerical results show that the size of the voids has a clear physical effect on the studied variables. In fact, the presence of a large number of small pores reduces the variable values. Additionally, the variation of waves is slightly smaller in the case of an elastic cylinder for the investigated model.
[1] | H. W. Lord, Y. Shulman, A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solids, 15 (1967), 299–309. https://doi.org/10.1016/0022-5096(67)90024-5 doi: 10.1016/0022-5096(67)90024-5 |
[2] | A. E. Green, K. A. Lindsay, Thermoelasticity, J. Elasticity, 2 (1972), 1–7. https://doi.org/10.1007/BF00045689 doi: 10.1007/BF00045689 |
[3] | D. Y. Tzou, Experimental support for the lagging behaviour in heat propagation, J. Thermophys. Heat Transf., 9 (1995), 686–693. https://doi.org/10.2514/3.725 doi: 10.2514/3.725 |
[4] | D. Y. Tzou, A unified approach for heat conduction from macro to microscale, J. Heat Transf., 117 (1995), 8–16. https://doi.org/10.1115/1.2822329 doi: 10.1115/1.2822329 |
[5] | A. E. Green, P. M. Naghdi, A re-examination of the basic postulates of thermomechanics, Proc. R. Soc. A: Math. Phys. Eng. Sci., 432 (1991), 171–194. https://doi.org/10.1098/rspa.1991.0012 doi: 10.1098/rspa.1991.0012 |
[6] | A. E. Green, P. M. Naghdi, On undamped heat waves in an elastic solid, J. Ther. Stresses, 15 (1992), 253–264. https://doi.org/10.1080/01495739208946136 doi: 10.1080/01495739208946136 |
[7] | A. E. Green, P. M. Naghdi, Thermoelasticity without energy dissipation, J. Elasticity, 31 (1993), 189–208. https://doi.org/10.1007/BF00044969 doi: 10.1007/BF00044969 |
[8] | I. Lasiecka, X. Wang, Moore-Gibson-Thompson equation with memory, part Ⅱ: general decay of energy, J. Differ. Equations, 259 (2015), 7610–7635. https://doi.org/10.1016/j.jde.2015.08.052 doi: 10.1016/j.jde.2015.08.052 |
[9] | J. A. Conejero, C. Lizama, F. Rodenas, Chaotic behaviour of the solutions of the Moore-Gibson-Thompson equation, Appl. Math. Inf. Sci., 9 (2005), 2233–2238. |
[10] | B. Kaltenbacher, I. Lasiecka, R. Marchand, Wellposedness and exponential decay rates for the Moore-Gibson-Thompson equation arising in high intensity ultrasound, Control Cybern., 40 (2011), 971–988. |
[11] | A. E. Abouelregal, A. Saidi, H. Mohammad-Sedighi, A. H. Shirazi, A. H. Sofiyev, Thermoelastic behaviour of an isotropic solid sphere under a non-uniform heat flow according to the MGT thermoelastic model, J. Therm. Stresses, 45 (2022), 12–29. https://doi.org/10.1080/01495739.2021.2005497 doi: 10.1080/01495739.2021.2005497 |
[12] | R. Marchand, T. McDevitt, R. Triggiani, An abstract semigroup approach to the third order Moore-Gibson-Thompson partial differential equation arising in high-intensity ultrasound: structural decomposition, spectral analysis, exponential stability, Math. Meth. Appl. Sci., 35 (2012), 1896–1929. https://doi.org/10.1002/mma.1576 doi: 10.1002/mma.1576 |
[13] | M. Pellicer, B. Said-Houari, Wellposedness and decay rates for the Cauchy problem of the Moore-Gibson-Thompsonequation arising in high intensity ultrasound, Appl. Math. Optim., 80 (2017), 447–478. https://doi.org/10.1007/s00245-017-9471-8 doi: 10.1007/s00245-017-9471-8 |
[14] | M. Pellicer, J. Sola-Morales, Optimal scalar products in the Moore-Gibson-Thompson equation, Evol. Equ. Control The., 8 (2019), 203–220. https://doi.org/10.3934/eect.2019011 doi: 10.3934/eect.2019011 |
[15] | R. Quintanilla, Moore-Gibson-Thompson thermoelasticity, Math. Mech. Solids, 24 (2019), 4020–4031. https://doi.org/10.1177/1081286519862007 doi: 10.1177/1081286519862007 |
[16] | R. Quintanilla, Moore-Gibson-Thompson thermoelasticity with two temperatures, Appl. Eng. Sci., 1 (2020), 100006. https://doi.org/10.1016/j.apples.2020.100006 doi: 10.1016/j.apples.2020.100006 |
[17] | N. Bazarra, J. R. Fernández, R. Quintanilla, Analysis of a Moore-Gibson-Thompson thermoelastic problem, J. Comput. Appl. Math., 382 (2021), 113058. https://doi.org/10.1016/j.cam.2020.113058 doi: 10.1016/j.cam.2020.113058 |
[18] | A. E. Abouelregal, H. Ahmad, T. A. Nofal, H. Abu-Zinadah, Moore-Gibson-Thompson thermoelasticity model with temperature dependent properties for thermo-viscoelastic orthotropic solid cylinder of infinite length under a temperature pulse, Phys. Scr., 96 (2021), 105201. https://doi.org/10.1088/1402-4896/abfd63 doi: 10.1088/1402-4896/abfd63 |
[19] | A. E. Aboueregal, H. M. Sedighi, The effect of variable properties and rotation in a visco-thermoelastic orthotropic annular cylinder under the Moore Gibson Thompson heat conduction model, Proc. Inst. Mech. Eng. Part L: J. Mater. Des. Appl., 235 (2021), 1004–1020. https://doi.org/10.1177/1464420720985899 doi: 10.1177/1464420720985899 |
[20] | A. E. Abouelregal, H. Ersoy, Ö. Civalek, Solution of Moore-Gibson-Thompson equation of an unbounded medium with a cylindrical hole, Mathematics, 9 (2021), 1536. https://doi.org/10.3390/math9131536 doi: 10.3390/math9131536 |
[21] | M. Marin, M. I. A. Othman, A. R. Seadawy, C. Carstea, A domain of influence in the Moore-Gibson-Thompson theory of dipolar bodies, J. Taibah Univ. Sci., 14 (2020), 653–660. https://doi.org/10.1080/16583655.2020.1763664 doi: 10.1080/16583655.2020.1763664 |
[22] | K. Jangid, M. Gupta, S. Mukhopadhyay, On propagation of harmonic plane waves under the Moore-Gibson-Thompson thermoelasticity theory, Waves Random Complex Media, 34 (2021), 1976–1999. https://doi.org/10.1080/17455030.2021.1949071 doi: 10.1080/17455030.2021.1949071 |
[23] | O. A. Florea, A. Bobe, Moore-Gibson-Thompson thermoelasticity in the context of double porous materials, Continuum Mech. Thermodyn., 33 (2021), 2243–2252. https://doi.org/10.1007/s00161-021-01025-z doi: 10.1007/s00161-021-01025-z |
[24] | B. Kaltenbacher, I. Lasiecka, R. Marchand, Wellposedness and exponential decay rates for the Moore-Gibson-Thompson equation arising in high intensity ultrasound, Control Cybern., 40 (2011), 971–988. |
[25] | L. Sun, Q. Zhang, Z. Chen, X. Wei, A singular boundary method for transient coupled dynamic thermoelastic analysis, Comput. Math. Appl., 158 (2024), 259–274. https://doi.org/10.1016/j.camwa.2024.02.017 doi: 10.1016/j.camwa.2024.02.017 |
[26] | Z. Chen, L. Sun, A boundary meshless method for dynamic coupled thermoelasticity problems, Appl. Math. Lett., 134 (2022), 108305. https://doi.org/10.1016/j.aml.2022.108305 doi: 10.1016/j.aml.2022.108305 |
[27] | D. Iesan, A theory of thermoelastic materials with voids, Acta Mech., 60 (1986), 67–89. https://doi.org/10.1007/BF01302942 doi: 10.1007/BF01302942 |
[28] | S. C. Cowin, J. W. Nunziato, Linear elastic materials with voids, J. Elasticity, 13 (1983), 125–147. https://doi.org/10.1007/BF00041230 doi: 10.1007/BF00041230 |
[29] | J. W. Nunziato, S. C. Cowin, A nonlinear theory of elastic materials with voids, Arch. Rational Mech. Anal., 72 (1979), 175–201. https://doi.org/10.1007/BF00249363v doi: 10.1007/BF00249363v |
[30] | M. Ciarletta, E. Scarpetta, Some results on thermoelasticity for dielectric materials with voids, J. Appl. Math. Mech., 75 (1995), 707–714. https://doi.org/10.1002/zamm.19950750912 doi: 10.1002/zamm.19950750912 |
[31] | M. Marin, An uniqueness result for body with voids in linear thermoelasticity, Rend. Mat. Appl., 17 (1997), 103–113. |
[32] | M. Marin, On the domain of influence in thermoelasticity of bodies with voids, Arch. Math., 33 (1997), 301–308. |
[33] | S. D. Cicco, M. Diaco, A theory of thermoelastic materials with voids without energy dissipation, J. Therm. Stresses, 25 (2002), 493–503. https://doi.org/10.1080/01495730252890203 doi: 10.1080/01495730252890203 |
[34] | S. C. Cowin, J. W. Nunziato, Linear elastic materials with voids, J. Elasticity, 13 (1983), 125–147. https://doi.org/10.1007/BF00041230 doi: 10.1007/BF00041230 |
[35] | M. I. A. Othman, E. M. Abd-Elaziz, The effect of thermal loading due to laser pulse in generalized thermoelastic medium with voids in the dual-phase lag model, J. Therm. Stresses, 38 (2015), 1068–1082. https://doi.org/10.1080/01495739.2015.1073492 doi: 10.1080/01495739.2015.1073492 |
[36] | J. N. Sharma, Three-dimensional vibration analysis of a homogeneous transversely isotropic thermoelastic cylindrical panel, J. Acoust. Soc. Am., 110 (2001), 254–259. https://doi.org/10.1121/1.1378350 doi: 10.1121/1.1378350 |
[37] | J. N. Sharma, P. K. Sharma, Free vibration analysis of homogeneous transversely isotropic thermoelastic cylindrical panel, J. Therm. Stresses, 25 (2002), 169–182. https://doi.org/10.1080/014957302753384405 doi: 10.1080/014957302753384405 |
[38] | P. Ponnusamy, Wave propagation in a generalized thermoelastic solid cylinder of arbitrary cross-section, Int. J. Solids Struct., 44 (2007), 5336–5348. https://doi.org/10.1016/j.ijsolstr.2007.01.003 doi: 10.1016/j.ijsolstr.2007.01.003 |
[39] | D. K. Sharma, D. Thakur, V. Walia, N. Sarkar, Free vibration analysis of a nonlocal thermoelastic hollow cylinder with diffusion, J. Therm. Stresses, 43 (2020), 981–997. https://doi.org/10.1080/01495739.2020.1764425 doi: 10.1080/01495739.2020.1764425 |
[40] | D. S. Chandrasekharaiah, Effects of surface stresses and voids on Rayleigh waves in an elastic solid, Int. J. Eng. Sci., 25 (1987), 205–211. https://doi.org/10.1016/0020-7225(87)90006-1 doi: 10.1016/0020-7225(87)90006-1 |
[41] | P. K. Sharma, D. Kaur, J. N. Sharma, Three-dimensional vibration analysis of a thermoelastic cylindrical panel with voids, Int. J. Solids Struct., 45 (2008), 5049–5058. https://doi.org/10.1016/j.ijsolstr.2008.05.004 doi: 10.1016/j.ijsolstr.2008.05.004 |
[42] | D. K. Sharma, D. Thakur, Vibrations of nonlocal thermoelastic voids sphere with three-phase-lag model, Mater. Today: Proc., 42 (2021), 356–361. https://doi.org/10.1016/j.matpr.2020.09.549 doi: 10.1016/j.matpr.2020.09.549 |
[43] | S. R. Sharma, J. C. Mehalwal, N. Sarkar, D. K. Sharma, Vibration analysis of electro-magneto transversely isotropic non-local thermoelastic cylinder with voids material, Eur. J. Mech./A Solids, 92 (2022) 104455. https://doi.org/10.1016/j.euromechsol.2021.104455 doi: 10.1016/j.euromechsol.2021.104455 |
[44] | D. Kumar, S. Prakash, C. Thakur, N. Sarkar, M. Bachher, Vibrations of a nonlocal thermoelastic cylinder with void, Acta Mech., 231 (2020), 2931–2945. https://doi.org/10.1007/s00707-020-02681-z doi: 10.1007/s00707-020-02681-z |
[45] | B. Singh, R. Pal, Surface wave propagation in a generalized thermoelastic material with voids, Appl. Math., 2 (2011), 521–526. https://doi.org/10.4236/am.2011.25068 doi: 10.4236/am.2011.25068 |
[46] | S. M. Abo-Dahab, A. M. Abd-Alla, A. A. Kilany, Effects of rotation and gravity on an electro-magneto thermoelastic medium with diffusion and voids by using the Lord Shulman and dual-phase-lag models, Appl. Math. Mech., 40 (2019), 1135–1154. https://doi.org/10.1007/s10483-019-2504-6 doi: 10.1007/s10483-019-2504-6 |
[47] | R. Kumar, T. Kansal, Propagation of plane waves and fundamental solution in the theories of thermoelastic diffusive materials with voids, Int. J. Appl. Math. Mech., 8 (2012), 84–103. |
[48] | A. E. Abouelregal, H. M. Sedighi, A new insight into the interaction of thermoelasticity with mass diffusion for a half-space in the context of Moore-Gibson-Thompson thermodiffusion theory, Appl. Phys., 127 (2021), 582. https://doi.org/10.1007/s00339-021-04725-0 doi: 10.1007/s00339-021-04725-0 |
[49] | G. Honig, U. Hirdes, A method for the numerical inversion of the Laplace transform, J. Comp. Appl. Math., 10 (1984), 113–132. |
[50] | Y. J. Yu, Z. C. Deng, Fractional order theory of Cattaneo-type thermoelasticity using new fractional derivatives, Appl. Math. Model., 87 (2020), 731–751. https://doi.org/10.1016/j.apm.2020.06.023 doi: 10.1016/j.apm.2020.06.023 |
[51] | Y. J. Yu, Z. C. Deng, Fractional order thermoelasticity for piezoelectric materials, Fractals, 29 (2021), 2150082. https://doi.org/10.1142/S0218348X21500821 doi: 10.1142/S0218348X21500821 |
[52] | A. E. Abouelregal, M. A. Elhagary, A. Soleiman, K. M. Khalil, Generalized thermoelastic diffusion model with higher-order fractional time-derivatives and four-phase-lags, Mech. Based Des. Struct. Mach., 50 (2020), 897–914. https://doi.org/10.1080/15397734.2020.1730189 doi: 10.1080/15397734.2020.1730189 |
[53] | Y. J. Yu, L. J. Zhao, Fractional thermoelasticity revisited with new definitions of fractional derivative, Eur. J. Mech.-A/Solids, 84 (2020), 104043. https://doi.org/10.1016/j.euromechsol.2020.104043 doi: 10.1016/j.euromechsol.2020.104043 |