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Abstract: This research aims to investigate the behaviour of thermoelastic vibrations in a solid 

cylinder with voids using the Moore-Gibson-Thompson heat conduction equation, which is a newly 

developed method for studying heat transfer in elastic materials. The Moore-Gibson-Thompson heat 

conduction model allows for a more accurate understanding of the thermoelastic vibrations in solid 

cylinders with voids. The results of this study can provide valuable insights for designing structures 

with better thermal stability and vibration resistance. The Laplace transform method is used. The 

numerical results show that the size of the voids has a clear physical effect on the studied variables. 

In fact, the presence of a large number of small pores reduces the variable values. Additionally, the 

variation of waves is slightly smaller in the case of an elastic cylinder for the investigated model. 
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1. Introduction 

Thermoelasticity involves the study of materials that experience elastic deformation in response 

to temperature variations. As a material is heated or cooled, it expands or contracts, leading to the 

development of thermal stresses. In thermoelastic materials, it is essential to account for the coupling 

between mechanical deformation and temperature distribution, as these interactions play a critical role 

in determining the material's overall response to thermal and mechanical loads. 

The significance of thermoelasticity has been widely recognized in various engineering and 
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materials science fields. Thermoelasticity is crucial for understanding the behaviour of materials 

under thermal and mechanical loads, enabling the design and analysis of structures that can 

effectively withstand these conditions. Thermoelasticity combines concepts from thermodynamics, 

solid mechanics, and materials science to study the effects of temperature on the mechanical 

properties of materials. Additionally, the study of thermoelasticity contributes to advancements in 

nanotechnology, where the behaviour of materials at the nanoscale, under varying temperatures and 

mechanical loads, is crucial. 

Furthermore, integrating thermoelasticity with computational methods and numerical modeling 

has led to significant developments. Thermoelasticity is of key importance in the development of 

advanced materials and the design of high-performance engineering structures, particularly in 

industries such as aerospace, automotive, and civil engineering. Thermoelastic analysis provides 

critical insights into how materials respond to temperature changes and mechanical stresses, which is 

essential for ensuring the safety and reliability of engineering components and systems. Many studies 

have dealt with this topic [1], including but not limited to the phenomenon of infinite speed of heat 

transfer, which is inherent in the theory of thermoelasticity and was addressed by modified 

generalized theories [2–4] developed during the past five decades. Green-Naghdi models (Type II 

and III) [5–7] are alternative models of thermoelasticity with or without energy dissipation. The Type 

II model does not allow power dissipation and is a particular case of the Type III model, which does. 

The Moore-Gibson-Thompson equation has garnered significant research interest in recent years, 

with numerous studies analyzing and investigating its properties [8–10]. According to the MGT 

thermoelastic model, Abouelregal et al. [11] examined the thermoelastic behavior of an isotropic 

solid sphere subjected to non-uniform heat flow. The abstract quasi-group approach has been applied 

to the third-order Moore-Gibson-Thompson partial differential equation [12]. The decay rates of the 

Moore-Gibson-Thompson equation that arise in high-intensity ultrasound are discussed [13], as well 

as the optimal standard products within the Moore-Gibson-Thompson equation [14]. 

Quintanilla [15–17] analized the Moore-Gibson-Thompson thermoelastic problem and introduced a 

new heat conduction model described by the Moore-Gibson-Thompson equation by adding a 

relaxation parameter to the GN-III model and employing the modified heat and energy equations. 

In [18–20] the Moore-Gibson-Thompson equation is solved in an unbounded medium with a 

cylindrical orifice. In addition, the effect of variable properties and rotation on an orthotropic viscous 

and thermally oriented annular cylinder is studied. Marin [21] Discussed the domain of influence in 

the Moore-Gibson-Thompson theory of dipolar bodies. Numerous scientific publications have 

appeared devoted to studying and interpreting the thermoelasticity under the MGT model [22–24], 

and thermoelasticity theory in general [25,26]. 

Voids are small empty spaces or pores within materials that exist either naturally (as in porous 

rocks and biological tissues) or through intentional engineering (as in foams and lightweight 

composites). These microscopic cavities modify the material's mechanical properties, specifically 

reducing stiffness and strength while altering thermal conductivity patterns. The presence of voids 

creates additional degrees of freedom in material response, generating volume changes and internal 

pressure variations. These effects require explicit consideration in mathematical models describing 

the material's mechanical and thermal behavior. 

Thermoelastic materials with voids constitute a category of materials where the interplay 

between thermal and mechanical fields is affected by the presence of voids or pores. These materials 

hold considerable importance in diverse engineering applications, including porous structures, 

composites, and foam-like materials, where the voids significantly impact the overall behavior of the 

material. The presence of voids introduces additional complexity into the mathematical modeling of 
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these materials, as they modify the thermal, mechanical, and thermoelastic properties, necessitating 

advanced approaches to accurately capture their behaviour under various conditions. 

In thermoelastic materials with voids, both the solid matrix and void structure govern the 

material's response. The void-matrix interactions create complex behaviours, including local stress 

concentrations, thermal gradients, and material deformation. The void structure facilitates damping 

and energy dissipation during mechanical and thermal loading, making these materials suitable for 

applications requiring vibration control and thermal management. 

Iesan [27] introduced the linear theory for thermoelastic materials with voids. It has applications 

in various fields, including geology and biology. He used the balance of energy and other tools to 

obtain the characteristic equations. He established fundamental theorems about uniqueness, the 

reciprocity theorem, and the variational description of the solution. Cowin and Nunziato [28,29] 

developed the theories of linear and nonlinear elastic materials with voids, which influenced the 

mechanical behaviour understanding of materials containing voids. Ciarletta and Scarpetta [30] 

conducted a comprehensive study on thermoelasticity operations, focusing on insulation materials 

with voids to enhance the comprehension of their behaviour under different conditions. Marin's [31,32] 

study delved into the intricacies of thermoelastic bodies with voids, exploring the concept of 

uniqueness and the sphere of influence. Cicco and Diaco [33] have studied and developed 

thermoelasticity theory with voids and without energy dispersion. Our study aims to extend their 

model by incorporating energy dispersion effects. Coin and Nunziato [34] investigated linear elastic 

materials with voids, emphasizing the importance of considering voids' volume to understand 

material behaviour. Othman and Abd-Elaziz [35] demonstrated the effectiveness of the DPL model in 

analysing thermal loading due to laser pulses in a generalized thermoelastic half-space with voids. 

Creating a theory of linear elastic materials with voids allows for a mathematical study of the 

mechanical behaviour of solids in the presence of empty spaces or voids. Sharma [36,37] 

investigated the free and three-dimensional vibrations of simply supported, homogeneous 

transversely isotropic thermoelastic cylindrical panels in the context of linear coupled 

thermoelasticity, whereas Ponnusamy [38] focused on wave propagation in a generalized 

thermoelastic solid cylinder with arbitrary sampling. [39,40] analysed the free vibrations of 

thermo-diffusive nonlocal elastic solids using LS and DPL models. In [41], the vibration of a 

thermoelastic spherical panel with voids in a three-dimensional model has been studied. Sharma and 

Prakash [42] discussed the vibrations of a nonlocal thermoelastic sphere with voids using a 

three-phase-lag model. In addition, [43] examined the vibration of a non-local isotropic thermoelastic 

cylinder with voids. 

Thermoelastic materials with voids serve critical functions across engineering, materials science, 

and biomedical applications. Void presence creates complex thermal conduction and mechanical 

deformation patterns, necessitating sophisticated mathematical modeling approaches. Modern 

analytical frameworks, including the Moore-Gibson-Thompson model, fractional derivatives, and 

nonlocal elasticity theory, capture these materials' intricate dynamics. The comprehensive analysis of 

void-thermal-mechanical field interactions enables the development of materials that combine 

lightweight properties with thermal stability and mechanical resilience. 

This paper introduces a novel mathematical model that analyzes the impact of void volume on 

variables related to generalized thermoelasticity in an isotropic solid cylinder undergoing free 

vibrations. By incorporating the Moore-Gibson-Thompson (MGT) thermoelasticity model with voids 

(MGT.V), this study presents a new approach to understanding how the presence of voids affects the 

behaviour of thermoelastic waves. The model employs Laplace transform techniques and a direct 

method to derive results in the Laplace transform domain. The findings are compared with existing 
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theories, and the results are illustrated graphically to highlight the influence of phase lags on physical 

phenomena. This research fills a significant gap in the field by extending the MGT model to account 

for voids, providing new insights into how void size affects the studied variables. The numerical 

results demonstrate that the presence of numerous small pores significantly reduces the values of the 

variables, while wave anisotropy in cylinders containing voids is shown to be minimal. This study's 

contributions include the first application of the MGT.V model to analyze void effects in 

thermoelastic systems, offering an enhanced understanding of wave propagation and material 

behaviour in porous structures. 

2. Basic governing equations and formulas 

The behaviour of a thermoelastic cylinder with voids is analysed using the governing equations 

obtained [44,45], variations in displacements and stresses along the cylinder's axis at the fixed end 

provide insights into the behaviour of a thermoelastic cylinder under different conditions. 

The constitutive equations 

𝜎𝑖𝑗 = 2𝜇𝑒𝑖𝑗 + 𝛿𝑖𝑗(𝜆𝑒𝑘𝑘 − 𝛽 𝜃 − 𝑏𝜙),       (1) 

where 

2𝑒𝑖𝑗 = 𝑢𝑗,𝑖 + 𝑢𝑖,𝑗 , 𝜃 = 𝑇 − 𝑇0 .         (2) 

The equation of motion 

𝜇𝑢𝑖,𝑗𝑗 + (𝜆 + 𝜇)𝑢𝑗,𝑖𝑗 − 𝛽 𝜃,𝑖 + 𝑏𝜙,𝑖 = 𝜌
𝜕2𝑢𝑖

𝜕𝑡2 .     (3) 

The equation of voids 

𝛼∇2𝜙 − 𝑏𝑢𝑘𝑘 − 𝜉𝜙 + 𝛽 𝜃 = 𝜌𝜒
𝜕2𝜙

𝜕𝑡2 ,       (4) 

where 𝜎𝑖𝑗  are the Cauchy stress tensor components, 𝑒𝑖𝑗  are the strain tensor components, 𝑢𝑖,𝑗 are the 

displacement components, 𝛿𝑖𝑗  is the Kronecker delta, 𝜆, 𝜇 are Lam's constants, 𝜃 = 𝑇– 𝑇0 is change 

in temperature with reference temperature 𝑇0  , 𝑇 is the absolute temperature, 𝜌 is the density of the 

medium, 𝛽 = (3𝜆 + 2𝜇 )𝛼𝑡 is coefficients of linear thermal, 𝛼𝑡 is thermal expansion coefficient, 𝜙 

is voids volume fraction field, 𝛼, 𝑏, 𝜉 are voids parameters, 𝜒 is equilibrated inertia. 

The conventional theory of heat conductivity, based on the Fourier Law, allows for the physical 

phenomenon of "infinite velocity of propagation". This is known as the thermal conduction paradox. 

Experimental evidence shows that thermal signals cannot propagate at infinite speed, which is 

physically impossible. To address the limitations of classical thermodynamic elasticity, non-classical 

models called generalized thermoelasticity models have been developed in recent decades. The most 

well-known of these is the Maxwell and Cattaneo theory, which modifies the Fourier law into a 

constitutive equation with a relaxation parameter. 

The Fourier’s law of heat conduction 

𝒒(𝑟, 𝑡) = −𝐾∇2𝜃(𝑟, 𝑡),          (5) 
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(1 + 𝜏0
𝜕

𝜕𝑡
) 𝒒(𝑟, 𝑡) = −𝐾∇ 𝜃(𝑟, 𝑡)       (6) 

Green and Naghdi [5–7] introduced a new concept in thermoelasticity theories and put forward 

three models known as GN-I, II and III. In the heat conduction law of type III proposed by Green and 

Naghdi, the Fourier law undergoes modification as follows: 

𝑞(𝒓, 𝑡) = −[𝐾 ∇𝜃(𝑟, 𝑡) + 𝐾 ∗∇𝜗(𝑟, 𝑡)],       (7) 

where 𝐾 is the thermal displacement, 𝐾∗ is the thermal conductivity rate 𝑞 is heat flux vector, 𝑡 is 

the time, 𝜏0is the relaxation time and 𝜗 is the thermal displacement [7] verifying 
𝜕𝜗

𝜕𝑡
= 𝜃. Fourier's 

laws governing the thermoelastic cylinder with voids have been reformulated to include additional 

phase lags for vectors, yielding more comprehensive formulas. These laws are characterized by 

(1 + 𝜏0
𝜕

𝜕𝑡
) 𝑞(𝒓, 𝑡) = −[𝐾 ∇𝜃(𝑟, 𝑡) + 𝐾∗∇𝜗 (𝑟, 𝑡)].     (8) 

Using Eq (8), we can derive a Moore-Gibson-Thompson heat equation model for a thermoelastic 

cylinder with voids 

(1 + 𝜏0
𝜕

𝜕𝑡
) [𝜌𝐶𝑒

𝜕2𝜃

𝜕𝑡2 + 𝛽𝑇0
𝜕2

𝜕𝑡2
(div 𝒖) + 𝑀𝑇0𝜙 −

𝜕𝑄

𝜕𝑡
] = 𝛿1𝐾 ∇2�̇� + 𝐾∗∇2𝜃,   (9) 

where 𝛿1 is a real parameter with two possible values: either one or zero, 𝐶𝑒is specific heat, 𝑄 is heat 

source and 𝑀 is thermos-void coupling parameter. 

The Moore-Gibson-Thompson (MGT) equation of thermoelasticity theory, which corresponds to 

the case 𝛿1 = 1,  serves as an expansion of both the Lord-Shulman (LS) theory [1] and the 

Green-Naghdi type III (GN-III) thermoelasticity theory [5–7]. The Moore-Gibson-Thompson 

thermo-voids model (MGT.V) includes constitutive Eqs (1) and (5), along with thermal conduction Eq (9), 

and the ensuing equation of motion. 

𝜇𝑢𝑖,𝑗𝑗 + (𝜆 + 𝜇)𝑢𝑗,𝑖𝑗 − 𝛽 𝜃,𝑖 + 𝑏𝜙,𝑖 + 𝐹𝑖 = 𝜌�̈�𝑖.     (10) 

The equation of motion (3) in this theory remains consistent with thermoelasticity theory [46–48], 

as the density is assumed constant. However, the governing equations and thermal conductivity 

equation differ from thermoelastic theory due to the inclusion of a voids volume. 

The generalized thermoelastic problem can be considered a specific case of a thermoelastic solid 

cylinder with voids with radius 𝑎. We will apply this modified MGT heat conduction model to an 

infinitely long solid cylinder. Due to the cylindrical symmetry, the displacement components in the 

cylindrical coordinate system are taken as 𝑢𝑟 = 𝑢(𝑟, 𝑡), 𝑢𝜃 = 0, 𝑢𝑧 = 0. The cylinder is assumed to 

be in an undisturbed state with a uniform initial temperature of 𝑇0 . Consequently, the strain 

components are expressed as follows: 

𝑒𝑟𝑟 =
𝜕𝑢

𝜕𝑟
, 𝑒𝜃𝜃 =

𝑢

𝑟
, 𝑒𝑟𝜃 = 𝑒𝜃𝑧 = 𝑒𝑟𝑧 = 𝑒𝑧𝑧 = 0.     (11) 

The cubic dilatation 𝑒 is thus given by 

𝑒 =
𝜕𝑢

𝜕𝑟
+

𝑢

𝑟
=

𝜕(𝑟𝑢)

𝜕𝑟
.          (12) 
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The stress-strain relations may be considered as follow 

𝜎𝑟𝑟 = (𝜆 + 2𝜇)
𝜕𝑢

𝜕𝑟
+ 𝜆 

𝑢

𝑟
+ (𝑏𝜙 − 𝛽 𝜃)

𝜎𝜃𝜃 = 𝜆 
𝜕𝑢

𝜕𝑟
+ (𝜆 + 2𝜇)

𝑢

𝑟
+ (𝑏𝜙 − 𝛽 𝜃)

 

.      (13) 

The motion Eq (3) becomes 

𝜎𝑟𝑟,𝑟 +
1

𝑟
{𝜎𝑟𝑟 − 𝜎𝜃𝜃 } = 𝜌

𝜕2𝑢

𝜕𝑡2 .        (14) 

Thus from (13) and (14), we obtain 

(𝜆 + 2𝜇) (
𝜕2𝑢

𝜕𝑟2 +
1

𝑟

𝜕𝑢

𝜕𝑟
−

𝑢

𝑟2) + (𝑏
𝜕𝜙

𝜕𝑟
− 𝛽

𝜕𝜃

𝜕𝑟
) = 𝜌

𝜕2𝑢

𝜕𝑡2.    (15) 

If we take the divergence of Eq (15), we get 

(𝜆 + 2𝜇)∇2𝑒 + (𝑏∇2𝜙 − 𝛽∇2𝜃) = 𝜌
𝜕2𝑒

𝜕𝑡2,      (16) 

where ∇2=
𝜕2

𝜕𝑟2 +
1

𝑟

𝜕

𝜕𝑟
. 

The equation of voids (4) becomes 

𝛼∇2𝜙 − 𝑏𝑒 − 𝜉𝜙 + 𝑀𝜃 = 𝜌𝜒
𝜕2𝜙

𝜕𝑡2 .      (17) 

The generalized equation of heat conduction (9) reduces to  

(𝛿1𝐾
𝜕

𝜕𝑡
+ 𝐾 ∗) ∇2𝜃 = (1 + 𝜏0

𝜕

𝜕𝑡
) [𝜌𝐶𝐸

𝜕𝜃

𝜕𝑡
+ 𝛽 𝑇0

𝜕𝑒

𝜕𝑡
+ 𝑀𝑇0𝜙].   (18) 

Now we introduce the following non-dimensional variables: 

{𝑟′ , 𝑢′} =
ω 

∗

𝑐1
{𝑟, 𝑢}, 𝜃′ =

𝛽

𝜌𝐶1
2 𝜃, {𝜎′𝑟𝑟 , 𝜎′𝜃𝜃} =

1

𝜌𝐶1
2 {𝜎𝑟𝑟 , 𝜎𝜃𝜃},

{𝑡′, 𝜏′0} = ω 
∗{𝑡, 𝜏0}, 𝜙′ =

𝑏

𝜌𝐶1
2 𝜙, ω 

∗ =
𝜌𝐶𝐸 𝑐1

2

𝐾
, 𝑐1

2 =
𝜆 +2𝜇 

𝜌
.

    (19) 

In terms of these non-dimensional variables, Eqs (16)–(18) take the following forms, for 

simplicity, this dash can be ignored. 

∇2𝑒 + ∇2𝜙 − ∇2𝜃 =
𝜕2𝑒

𝜕𝑡2,        (20) 

𝛼1∇2𝜙 − 𝑏𝑒 − 𝛼2𝜙 + 𝛼3𝜃 = 𝛼4
𝜕2𝜙

𝜕𝑡2 ,       (21) 

(𝛿1𝐾
𝜕

𝜕𝑡
+ 𝐾∗) ∇2𝜃 = (1 + 𝜏0

𝜕

𝜕𝑡
) [

𝜕𝜃

𝜕𝑡
+ 𝜀

𝜕𝑒

𝜕𝑡
+ 𝜀𝛼5𝜙],    (22) 
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where 𝛼1 =
𝛼ω 

∗2
𝜌

𝑏
, 𝛼2 =

𝜉𝜌𝐶1
2

𝑏
, 𝛼3 =

𝑀𝜌𝐶1
2

𝛽
, 𝛼4 =

𝜌2𝐶1
2𝜒ω 

∗2

𝑏
, 𝛼5 =

𝐾𝑀

𝑏𝛽𝐶𝐸
, 𝜀 =

𝑇0𝛽 
2

𝜌  2𝐶𝐸 𝑐1
2 . 

The constitutive Eq (13) is reduced to non-dimensional forms as 

𝜎𝑟𝑟 =
𝜕𝑢

𝜕𝑟
+ 𝛿 

2 𝑢

𝑟
+ (𝜙 − 𝜃),

𝜎𝜃𝜃 = 𝛿 
2

 

𝜕𝑢

𝜕𝑟
+

𝑢

𝑟
+ (𝜙 − 𝜃),

 

       (23) 

where 𝛿 
2 =

𝜆 

𝜆 +2𝜇 
. 

We initially assume that the surface of the solid cylinder (𝑟 = 𝑎) is subjected to thermal shock, is 

traction-free, and does not contain voids within the olume fraction field. 

In this scenario, the boundary conditions on the surface of the cylinder can be expressed as: 

𝜃(𝑎, 𝑡) = 𝜃0𝐻(𝑡), 𝜙(𝑎, 𝑡) = 0, 𝜎𝑟𝑟(𝑎, 𝑡) = 0,     (24) 

where 𝐻(𝑡) is the Heaviside function, 𝜃0 is a constant. 

The isotropic thermoelastic hollow cylinder with voids is assumed to be in an undisturbed state 

and at rest initially, both thermally and mechanically, resulting in the following initial conditions: 

𝑢(𝑟, 0) =
𝜕𝑢(𝑟, 0)

𝜕𝑡
= 0, 𝜃(𝑟, 0) =

𝜕𝜃(𝑟, 0)

𝜕𝑡
= 0,

𝜙(𝑟, 0) =
𝜕𝜙(𝑟, 0)

𝜕𝑡
= 0, 𝜎𝑖𝑗

 (𝑟, 0) = 0,

 

3. Solution in the Laplace transform domain 

The Laplace transform is defined by 

𝑓̅(𝑟, 𝑠) = £(𝑓(𝑟, 𝑡)) = ∫ 𝑓(𝑟, 𝑡)𝑒−𝑠𝑡∞

 0
𝑑𝑡, ℜ𝑒(𝑠) > 0, 0 < 𝑟 ≤ 𝑎,  (25) 

then Eqs (20)–(23) take the form 

(𝑠2 − ∇2)�̅� = ∇2�̅� − ∇2�̅�,        (26) 

𝑏�̅� = (𝛼1∇2 − 𝑠2𝛼4 − 𝛼2)�̅� + 𝛼3�̅�,      (27) 

∇2�̅� = 𝐿(𝑠�̅� + 𝜀𝑠�̅� + 𝜀𝛼5�̅�),        (28) 

𝜎𝑟𝑟 =
𝜕�̅�

𝜕𝑟
+ 𝛿 

2 �̅�

𝑟
+ (�̅� − �̅�)

𝜎𝜃𝜃 = 𝛿 
2

 

𝜕�̅�

𝜕𝑟
+ �̅� + (�̅� − �̅�)
 

.        (29) 

Eliminating any one of the variables �̅�, �̅�, or �̅� from Eqs (20)–(22) yields the following differential 

equation: 

(𝛻6 − 𝑎1𝛻4 + 𝑎2𝛻2 − 𝑎3)(�̅�, �̅�, �̅�) = 0,     (30) 
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where 

𝑎1 =
𝑏𝛾2−𝛼1𝛾8+𝛾4𝛾6

𝛼1𝑏
,

𝑎2 =
𝑏𝛾3−𝛾2𝛾8+𝛾5𝛾6−𝛾4𝛾7

𝛼1𝑏

𝑎3 =
𝛾3𝛾8+𝛾5𝛾7

𝛼1𝑏
,

,        (31) 

where 

𝛾1 = 𝜀𝑠𝐿, 𝛾2 = (𝑏 − 𝛼1𝑠2 − 𝛼4𝑠2 − 𝛼2), 𝛾3 = 𝑠2(𝛼4𝑠2 + 𝛼2), 

𝛾5 = 𝛼3𝑠2, 𝛾4 = (𝑏 − 𝛼3), 𝛾6 = 𝛼1𝛾1, 𝛾7 = 𝛾1(𝛼4𝑠2 − 𝛼2) + 𝛼5𝜀𝑏𝐿, 

𝛾8 = (𝛼3𝛾1 + 𝑠𝑏𝐿), 𝐿 =
𝑠(1 + 𝜏0𝑠)

(𝛿1𝑠 + 𝐾𝑠)
. 

Equation (30) can be factorized as 

(∇2 − 𝑚1
2)(∇2 − 𝑚2

2)(∇2 − 𝑚3
2)(�̅�, �̅�, �̅�) = 0,     (32) 

where 𝑚1
 , 𝑚2

 , and 𝑚3
  are the roots with positive real parts of the equation 

𝑚 
6 − 𝑎1𝑚 

4 + 𝑎2𝑚 
2 − 𝑎3 = 0.       (33) 

The solution of (33), which is bounded as 𝑟 → 0, is given by 

θ̅ = ∑ 𝐴𝑖(𝑠)𝐼0(𝑚𝑖
 𝑟)3

𝑖=1 ,         (34) 

 
�̅� = ∑ 𝐴𝑖

′𝐼0(𝑚𝑖
 𝑟),3

𝑖=1

�̅� = ∑ 𝐴𝑖
′′𝐼0(𝑚𝑖

 𝑟),3
𝑖=1

          (35) 

where the unknown functions 𝐴𝑖
 , 𝐴𝑖

′  and  𝐴𝑖
′′ are to be determined below by using the boundary 

conditions (24). The modified Bessel function of the first kind of order zero is denoted by 𝐼0(. ). 

Substituting Eqs (34) and (35) into (20) and (21), we get the following relations: 

𝐴𝑖
′ =

𝜀𝐿[𝑚𝑖
2(𝑠−𝛼5)+𝛼5𝑠2]

𝑚𝑖
2[(𝑚𝑖

2−𝑠𝐿)−𝛼5𝜀𝐿]
𝐴𝑖

 = Ω𝑖𝐴𝑖 ,

𝐴𝑖
′′ =

𝑚𝑖
2[𝑠2+𝑠(𝜀+1)−𝑚𝑖

2]−𝑠3𝐿

𝑚𝑖
2[(𝑚𝑖

2−𝑠𝐿)−𝛼5𝜀𝐿]
𝐴𝑖

 = Γ𝑖𝐴𝑖 .
 

      (36) 

We thus have 

 
�̅� = ∑ Ω𝑖𝐴𝑖𝐼0(𝑚𝑖

 𝑟)3
𝑖=1 ,

�̅� = ∑ Γ𝑖𝐴𝑖𝐼0(𝑚𝑖
 𝑟)3

𝑖=1 ,
        (37) 

�̅� = ∑
Ω𝑖𝐴𝑖 𝐼1(𝑚𝑖

 𝑟)

𝑚𝑖
 

3
𝑖=1 .         (38) 

Thus, by the use of (36)–(38), Eq (29) becomes 
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𝜎𝑟𝑟 = ∑ ([𝛺𝑖 + 𝛤𝑖 − 1]𝐼0(𝑚𝑖
 𝑟) +

𝛿 
2𝛺𝑖

𝑚𝑖
 𝑟

𝐼1(𝑚𝑖
 𝑟)) 𝐴𝑖

 3
𝑖=1 (𝑠),

𝜎𝜃𝜃 = ∑ ([𝛿 
2𝛺𝑖 + 𝛤𝑖 − 1]𝐼0(𝑚𝑖

 𝑟) +
𝛺𝑖

𝑚𝑖
 𝑟

𝐼1(𝑚𝑖
 𝑟)) 𝐴𝑖

 (𝑠).3
𝑖=1

 

    (39) 

In order to evaluate the unknown parameters 𝐴𝑖 , (𝑖 = 1,2,3), we will use the Laplace transform of 

the boundary condition (24) to become 

�̅�(𝑎, 𝑠) =
�̅�0

𝑠
= 𝐻(𝑠), �̅�(𝑎, 𝑠) = 0, 𝜎𝑟𝑟(𝑎, 𝑠) = 0.     (40) 

Applying these terms in Eqs (34), (35) and (39), we get the following set of linear equations: 

�̅� = ∑ 𝐴𝑖 =
�̅�0

𝑠

3
𝑖=1 ,

�̅� = ∑
𝜀𝐿[𝑚𝑖

2(𝑠−𝛼5)+𝛼5𝑠2]

𝑚𝑖
2[(𝑚𝑖

2−𝑠𝐿)−𝛼5𝜀𝐿]
𝐴𝑖

 3
𝑖=1 = 0,

�̅� = ∑
𝑚𝑖

2[𝑠2+𝑠(𝜀+1)−𝑚𝑖
2]−𝑠3𝐿

𝑚𝑖
2[(𝑚𝑖

2−𝑠𝐿)−𝛼5𝜀𝐿]
𝐴𝑖

 = 0,3
𝑖=1

       (41) 

𝜎𝑟𝑟 = ∑ ([𝛺𝑖 + 𝛤𝑖 − 1]𝐼0(𝑚𝑖
 𝑟) +

𝛿 
2𝛺𝑖

𝑚𝑖
 𝑟

𝐼1(𝑚𝑖
 𝑟)) 𝐴𝑖

 3
𝑖=1 = 0,

𝜎𝜃𝜃 = ∑ ([𝛿 
2𝛺𝑖 + 𝛤𝑖 − 1]𝐼0(𝑚𝑖

 𝑟) +
𝛺𝑖

𝑚𝑖
 𝑟

𝐼1(𝑚𝑖
 𝑟)) 𝐴𝑖

 = 0.3
𝑖=1

 

   (42) 

4. Special cases of thermoelasticity and thermoelasticity with voids models 

Several situations can be deduced from the modified thermoelastic model incorporating voids, 

utilizing the Moore-Gibson-Thompson equation. 

4.1. Thermoelasticity without void 

Neglecting the effects of voids (𝑏 = 𝜙 = 𝑀 = 0), we get: 

• The classical thermoelasticity theory (CTE) is given when 𝛿1 = 𝜏0 = 𝐾 = 𝐾∗ = 0. 

• Lord-Shulman theory of thermoelasticity (LS) [1] is obtained when 𝛿1 = 𝐾 = 𝐾∗ = 0 𝜏0 > 0. 

• The modified heat equation proposed by Green-Naghdi theory of type II (GN-II) when 𝛿1 =

1, 𝜏0 = 0. 

• The heat equation of Green-Naghdi theory of type III (GN-III) when 𝛿1 = 1 and 𝜏0 = 0. 

• The generalized theory based on Moore-Gibson-Thompson thermoelasticity (MGTE) by 

taking 𝛿1 = 1, 𝐾, 𝐾∗ > 0 and 𝜏0 > 0. 

4.2. Thermoelasticity with voids 

In case of voids interactions is taken into account, we obtain: 

• The coupled theory of thermal void (CTE.V) is obtained when 𝑀, 𝑏, 𝜙, 𝛽 > 0, 𝛿1 = 1 and 
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𝜏0 = 𝐾 = 𝐾∗ = 0. 

• The theory of thermal void introduced by Lord-Shulman (LS.V) 𝐾 ∗ = 0, 𝛿1 = 1, 𝜏0 > 0. 

• The modified heat equation proposed by Green-Naghdi theory of type II (GN-II.V) when 𝛿1 =
0, 𝜏0 = 0, 𝐾∗ > 0. 

• The heat equation of Green-Naghdi theory of type III (GN-III.V) when 𝛿1 = 1, 𝐾, 𝐾∗ > 0 

and 𝜏0 = 0. 

• The generalized theory based on Moore-Gibson-Thompson voids equation (MGT.V) is 

accessible by taking 𝛿1 = 1, 𝐾, 𝐾 ∗ > 0 and 𝜏0 > 0. 

5. Transformation and numerical results 

In this part, the solution to the problem in the physical realm is obtained using the numerical 

inversion method, and we use the Riemann-sum approximation to obtain the numerical results for the 

generalized thermoelastic cylinder with voids using Moore-Gibson-Thompson model (MGT.V) 

5.1. Inversion of the transforms 

According to Honig and Hirdes [49], the Laplace transformed function can be inverted in the 

following manner: 

𝑓(𝑟, 𝑡) = £−1 (𝑓̅(𝑟, 𝑠)) =
1

2𝜋𝑖
∫ 𝑒𝑠𝑡𝑓̅(𝑟, 𝑠)

𝑣+𝑖∞

 𝑣−𝑖∞
𝑑𝑠.    (43) 

Let 𝑠 = 𝑣 + 𝑖𝑤(𝑣, 𝑤 ∈ ℝ), the above formulation can be written as 

𝑓(𝑟, 𝑡) =
𝑒 𝑣𝑡

2𝜋
∫ 𝑒 𝑖𝑤𝑡𝑓̅(𝑟, 𝑣 = 𝑖𝑤)

∞

 −∞
𝑑𝑤.     (44) 

The following approximation formula is obtained by expanding the function ℎ(𝑟, 𝑡) = 𝑒−𝑣𝑡𝑓(𝑟, 𝑡) 

in a Fourier series in the interval [0, 2𝑡1] in accordance with [50,51]. 

𝑓(𝑟, 𝑡) =
𝑒 𝑣𝑡

ℒ
[−

1

2
ℜ𝑒{𝑓̅(𝑟, 𝑣)} + ∑ ℜ𝑒 [𝑓̅ (𝑟, 𝑣 + 𝑖

𝑗𝜋

𝑡1
) cos (

𝑗𝜋

𝑡1
𝑡)]∞

𝑗=0

− ∑ ℑ𝑚 [𝑓̅ (𝑟, 𝑣 + 𝑖
𝑗𝜋

𝑡1
) sin (

𝑗𝜋

𝑡1
𝑡)]∞

𝑗=0 ] − 𝐹1(𝑟, 𝑣, 𝑡, 𝑡1)
,    (45) 

where 𝐹1(𝑟, 𝑣, 𝑡, 𝑡1) is the discretization error. It can be made arbitrarily mini if the free parameter 

𝑣𝑡1 is large. The parameter 𝑡1 controls the frequency discretization in the Fourier series expansion. 

A larger value of t1increases the accuracy of the approximation by reducing the discretization error. 

The values of 𝑣 and 𝑡1 are chosen according to the criteria outlined in [52,53]. 

5.2. Numerical results 

This section compares the Moore-Gibson-Thompson model (MGT.V) and the CTE.V, LS.V, 

GN-II.V and GN-III.V models under the thermoelastic cylinders with voids. For this aim, we take 

𝑟 = 𝑎 = 5, 𝑡 = 0.1, 𝜏0 = 0.03, 𝐾𝑠 = 0.001. The material parameters are given as [44,45]: 

𝑇0 = 298𝐾, 𝜌 = 2 × 103 𝑘𝑔 𝑚−3, 𝛼 = 8 × 108 𝑁, 𝜒 = 1.753 × 10−15 𝑚2, 

𝑘 = 386 𝑊𝑚−1𝐾−1, 𝛼𝑡 = 8 × 109  𝑁, 𝐶𝑒 = 1.04 × 103 𝐽 𝑘𝑔−1 𝑑𝑒𝑔−1, 

𝜇 = 7.5 × 109  𝑁𝑚−2, 𝜆 = 1.5 × 1010 𝑁 𝑚−2, 𝑏 = 1.13849 × 1010 𝑁𝑚−2, 
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𝐾0 = 1.7 × 102 𝑊𝑚−1 𝑑𝑒𝑔−1, 𝜉1 = 1.2 × 1010 𝑁𝑚−2, 

𝑀 = 2 × 106  𝑁𝑚−2 𝑑𝑒𝑔−1, 𝛽 = 2.68 × 106  𝑁𝑚−2 𝑑𝑒𝑔−1, 𝛼 = 1. 

Figure 1 depicts the temperature distribution variations for classical thermal voids (CTE.V), 

Lord-Shulman thermal voids model (LS.V), Green-Naghdi models (GN-II.V and GN-III.V), as well 

as the Moore-Gibson-Thompson model of thermoelasticity with voids (MGT.V). Primarily, these 

models exhibit differences in their magnitudes. It is evident that the initial temperature values are 

higher, gradually decreasing over time intervals across all models, with MGT.V and LS.V. showing 

lower temperatures near the cylinder's surface where boundary conditions are dominant. Furthermore, 

the models CTE.V, LS.V, GN-II.V, GN-III.V, and MGT.V exhibit similar distributions before 

converging to zero within the cylinder interval. This suggests a significant impact of 

temperature-dependent properties on physical quantity distributions. As such properties increase or 

decrease in relation to the cylinder's temperature-dependent nature, they move coherently with 

findings from Abouelregal et al. [18,19] and Florea [20], substantiating the validity of the MGT.V 

model. 

 

Figure 1. The variation of the temperature 𝜃 against radial distance 𝑟. 

Per Figure 2, the displacement 𝑢 versus the radial distance 𝑟 is plotted to compare the different 

models (CTE.V, LS.V, GN-II.V, GN-III.V, and MGT.V). 

• The graphic makes it clear that as the radius decreases, the displacement values are increasing. 

• The displacement curves in the period (3.5 < 𝑟 < 5) show higher values in the GN-III.V and 

classical theory case than in the other generalised models. 

• Additionally, we see that when the five models (CTE.V, LS.V, GN-II.V, GN-III.V, and 

MGT.V) approach zero in the period (0.0 < 𝑟 < 1.0), they converge with one another. This 

indicates, in agreement with Abouelregal et al. [19,48], that the displacement exhibits 

oscillatory behaviour for thermoelasticity with voids. The accuracy of the MGT.V model is 

therefore confirmed. 
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Figure 2. The variation of the displacement against the radial distance 𝑟. 

Figure 3 shows the distribution of thermoelastic vibration with voids 𝜙 for different models 

(CTE.V, LST.V, GN-II.V, GN-III.V, MGT.V). 

• It is noted that the spatial distribution in the five models starts from zero, where the boundary 

conditions predominate, and then takes a decreasing oscillatory behaviour, this is in line with 

Sharma [36] and Kumar [44]. 

• We find that the distribution of thermoelastic with voids for GN-III.V, CT.V and GN-II.V is 

greater than the distribution of (MGT.V). 

• All the models attain their largest value at point 4.5 and reach their lowest values at 𝑟 = 2.50. 

We also note that the five models (CTE.V, LST.V, GN-II.V, GN-III.V and MGT.V) present 

similar curves and very close values but gradually fade inside the solid cylinder until they settle 

at zero in the period (0.0 < 𝑟 < 0.5). 

 

Figure 3. The variation of the voids 𝜙 against radial distance 𝑟. 

Figures 4 and 5 depict the thermoelastic stress distribution with voids along the radial direction 

for various classical thermo-voids theories  (CTE.V),  Lord-Shulman thermo-voids (LS.V),  

Green-Naghdi models  (GN-II.V and GN-III.V)  as well as the Moore-Gibson-Thompson model 

(MGT.V) of thermoelasticity with voids. 

• The curves clearly demonstrate significant differences in results near the surface, while 
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showing convergence inside the cylinder. 

• It is observed that pressures are minimal initially, gradually increasing and fluctuating over 

periods before eventually vanishing to zero. 

• Additionally, radial stress initiates from zero at the surface, meeting mechanical boundary 

conditions as described by Quintanilla et al. [16], Abouelregal et al. [20], and Sharma et al. [43]. 

 

Figure 4. The variation of the thermal stresses 𝜎𝑟𝑟  against radial distance 𝑟. 

 

Figure 5. The variation of the thermal stresses 𝜎𝜃𝜃 against radial distance 𝑟. 

6. Conclusions 

• A homogeneous thermoelastic cylinder with voids in the radial direction has been studied in 

reference to the Moore-Gibson-Thompson model (MGTE.V) of generalized thermoelasticity. 

• In this work, we observed from the graphical results that the effect of the void modulus in the 

context of different models, such as classical thermoelasticity (CTE.V), Lord-Shulman (LS.V), 

Greene-Naghdi (GN-II.V and GN-III.V), and Moore-Gibson-Thomson (MGT.V) model, 

played an important role in the field of thermoelasticity. 

• Moore-Gibson-Thompson can be used to describe the porous effect on the resulting quantities 

and their physical characteristics. 

• The presence of a large number of small pores decreases the value of thermal conductivity. 
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• Moore-Gibson-Thompson thermoelasticity with voids (MGT.V) describes the behaviour of the 

particles of the elastic body more realistically than the different models of thermoelasticity that 

have been studied. 

• Several researchers in the field of generalized thermoelasticity have applied the 

Moore-Gibson-Thompson model (MGT.V) to thermoelasticity problems in general form, but 

very few of them have successfully applied it to the voids thermoelaticity problem. 

• In this paper, we conclude that the magnitude of all physical quantities in the (MGT.V) model 

is smaller than the (Coupled Theory and (GN-II.V and GN-III.V)) models. 

• Moore–Gibson–Thompson can be used to describe the porous effect on the resulting quantities 

and their physical characteristics. 

• It is clear, from the presented study and the discussions above, that the proposed model and 

numerical results presented in this research are very important to scientists, engineers and 

researchers, especially those working in the fields of thermodynamics, solid mechanics, and 

thermoelasticity. 
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