This paper analyzes an Euler-Bernoulli beam equation in a bounded domain with a boundary control condition involving a fractional derivative. By utilizing the semigroup theory of linear operators and building on the results of Borichev and Tomilov, the stability properties of the system are examined. Additionally, a numerical scheme is developed to reproduce various decay rate behaviors. The numerical simulations confirm the theoretical stability results regarding the energy decay rate and demonstrate exponential decay for specific configurations of initial data.
Citation: Boumediene Boukhari, Foued Mtiri, Ahmed Bchatnia, Abderrahmane Beniani. Fractional derivative boundary control in coupled Euler-Bernoulli beams: stability and discrete energy decay[J]. AIMS Mathematics, 2024, 9(11): 32102-32123. doi: 10.3934/math.20241541
This paper analyzes an Euler-Bernoulli beam equation in a bounded domain with a boundary control condition involving a fractional derivative. By utilizing the semigroup theory of linear operators and building on the results of Borichev and Tomilov, the stability properties of the system are examined. Additionally, a numerical scheme is developed to reproduce various decay rate behaviors. The numerical simulations confirm the theoretical stability results regarding the energy decay rate and demonstrate exponential decay for specific configurations of initial data.
[1] | M. H. Akrami, A. Poya, M. A. Zirak, Exact analytical solution of tempered fractional Heat-like (diffusion) equations by the modified variational iteration method, J. Mahani Math. Res., 13 (2024), 571–593. |
[2] | S. Saifullah, A. Ali, A. Khan, K. Shah, T. Abdeljawad, A novel tempered fractional transform: theory, properties and applications to differential equations, Fractals, 31 (2023), 2340045. https://doi.org/10.1142/S0218348X23400455 doi: 10.1142/S0218348X23400455 |
[3] | A. Liemert, A. Kienle, Fundamental solution of the tempered fractional diffusion equation, J. Math. Phys., 56 (2015), 113504. https://doi.org/10.1063/1.4935475 doi: 10.1063/1.4935475 |
[4] | B. Mbodje, Wave energy decay under fractional derivative controls, IMA J. Math. Control Inform., 23 (2006), 237–257. https://doi.org/10.1093/imamci/dni056 doi: 10.1093/imamci/dni056 |
[5] | U. J. Choi, R. C. Maccamy, Fractional order Volterra equations with applications to elasticity, J. Math. Anal. Appl., 139 (1989), 448–464. https://doi.org/10.1016/0022-247X(89)90120-0 doi: 10.1016/0022-247X(89)90120-0 |
[6] | M. Caputo, Linear models of dissipation whose $Q$ is almost frequency independent–Ⅱ, Geophys. J. Int., 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x doi: 10.1111/j.1365-246X.1967.tb02303.x |
[7] | Z. Achouri, N. E. Amroun, A. Benaissa, The Euler-Bernoulli beam equation with boundary dissipation of fractional derivative type, Math. Methods Appl. Sci., 40 (2017), 3837–3854. https://doi.org/10.1002/mma.4267 doi: 10.1002/mma.4267 |
[8] | M. Akil, A. Wehbe, Stabilization of multidimensional wave equation with locally boundary fractional dissipation law under geometric conditions, Math. Control Relat. Fields, 9 (2019), 97–116. https://doi.org/10.3934/mcrf.2019005 doi: 10.3934/mcrf.2019005 |
[9] | A. Beniani, N. Bahri, R. Alharbi, K. Bouhali, K. Zennir, Stability for weakly coupled wave equations with a general internal control of diffusive type, Axioms, 12 (2023), 1–17. https://doi.org/10.3390/axioms12010048 doi: 10.3390/axioms12010048 |
[10] | T. Blaszczyk, K. Bekus, K. Szajek, W. Sumelka, Approximation and application of the Riesz-Caputo fractional derivative of variable order with fixed memory, Meccanica, 57 (2022), 861–870. https://doi.org/10.1007/s11012-021-01364-w doi: 10.1007/s11012-021-01364-w |
[11] | S. Sidhardh, S. Patnaik, F. Semperlotti, Fractional-order structural stability: formulation and application to the critical load of nonlocal slender structures, Int. J. Mech. Sci., 201 (2021), 106443. https://doi.org/10.1016/j.ijmecsci.2021.106443 doi: 10.1016/j.ijmecsci.2021.106443 |
[12] | B. Mbodje, G. Montseny, Boundary fractional derivative control of the wave equation, IEEE Trans. Automat. Control, 40 (1995), 378–382. https://doi.org/10.1109/9.341815 doi: 10.1109/9.341815 |
[13] | D. Matignon, J. Audounet, G. Montseny, Energy decay for wave equations with damping of fractional order, In: Fourth International Conference on Mathematical and Numerical Aspects of Wave Propagation Phenomena, 1998,638–640. |
[14] | W. Arendt, C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc., 306 (1988), 837–852. https://doi.org/10.1090/S0002-9947-1988-0933321-3 doi: 10.1090/S0002-9947-1988-0933321-3 |
[15] | Y. Lyubich, P. Vũ, Asymptotic stability of linear differential equations in Banach spaces, Stud. Math., 88 (1988), 37–42. |
[16] | M. R. Alaimia, N. E. Tatar, Blow up for the wave equation with a fractional damping, J. Appl. Anal., 11 (2005), 133–144. https://doi.org/10.1515/JAA.2005.133 doi: 10.1515/JAA.2005.133 |