Research article Special Issues

Fractional derivative boundary control in coupled Euler-Bernoulli beams: stability and discrete energy decay

  • Received: 06 September 2024 Revised: 30 October 2024 Accepted: 30 October 2024 Published: 12 November 2024
  • MSC : 26A33, 35L55, 74D05, 93D15, 93D20

  • This paper analyzes an Euler-Bernoulli beam equation in a bounded domain with a boundary control condition involving a fractional derivative. By utilizing the semigroup theory of linear operators and building on the results of Borichev and Tomilov, the stability properties of the system are examined. Additionally, a numerical scheme is developed to reproduce various decay rate behaviors. The numerical simulations confirm the theoretical stability results regarding the energy decay rate and demonstrate exponential decay for specific configurations of initial data.

    Citation: Boumediene Boukhari, Foued Mtiri, Ahmed Bchatnia, Abderrahmane Beniani. Fractional derivative boundary control in coupled Euler-Bernoulli beams: stability and discrete energy decay[J]. AIMS Mathematics, 2024, 9(11): 32102-32123. doi: 10.3934/math.20241541

    Related Papers:

  • This paper analyzes an Euler-Bernoulli beam equation in a bounded domain with a boundary control condition involving a fractional derivative. By utilizing the semigroup theory of linear operators and building on the results of Borichev and Tomilov, the stability properties of the system are examined. Additionally, a numerical scheme is developed to reproduce various decay rate behaviors. The numerical simulations confirm the theoretical stability results regarding the energy decay rate and demonstrate exponential decay for specific configurations of initial data.



    加载中


    [1] M. H. Akrami, A. Poya, M. A. Zirak, Exact analytical solution of tempered fractional Heat-like (diffusion) equations by the modified variational iteration method, J. Mahani Math. Res., 13 (2024), 571–593.
    [2] S. Saifullah, A. Ali, A. Khan, K. Shah, T. Abdeljawad, A novel tempered fractional transform: theory, properties and applications to differential equations, Fractals, 31 (2023), 2340045. https://doi.org/10.1142/S0218348X23400455 doi: 10.1142/S0218348X23400455
    [3] A. Liemert, A. Kienle, Fundamental solution of the tempered fractional diffusion equation, J. Math. Phys., 56 (2015), 113504. https://doi.org/10.1063/1.4935475 doi: 10.1063/1.4935475
    [4] B. Mbodje, Wave energy decay under fractional derivative controls, IMA J. Math. Control Inform., 23 (2006), 237–257. https://doi.org/10.1093/imamci/dni056 doi: 10.1093/imamci/dni056
    [5] U. J. Choi, R. C. Maccamy, Fractional order Volterra equations with applications to elasticity, J. Math. Anal. Appl., 139 (1989), 448–464. https://doi.org/10.1016/0022-247X(89)90120-0 doi: 10.1016/0022-247X(89)90120-0
    [6] M. Caputo, Linear models of dissipation whose $Q$ is almost frequency independent–Ⅱ, Geophys. J. Int., 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x doi: 10.1111/j.1365-246X.1967.tb02303.x
    [7] Z. Achouri, N. E. Amroun, A. Benaissa, The Euler-Bernoulli beam equation with boundary dissipation of fractional derivative type, Math. Methods Appl. Sci., 40 (2017), 3837–3854. https://doi.org/10.1002/mma.4267 doi: 10.1002/mma.4267
    [8] M. Akil, A. Wehbe, Stabilization of multidimensional wave equation with locally boundary fractional dissipation law under geometric conditions, Math. Control Relat. Fields, 9 (2019), 97–116. https://doi.org/10.3934/mcrf.2019005 doi: 10.3934/mcrf.2019005
    [9] A. Beniani, N. Bahri, R. Alharbi, K. Bouhali, K. Zennir, Stability for weakly coupled wave equations with a general internal control of diffusive type, Axioms, 12 (2023), 1–17. https://doi.org/10.3390/axioms12010048 doi: 10.3390/axioms12010048
    [10] T. Blaszczyk, K. Bekus, K. Szajek, W. Sumelka, Approximation and application of the Riesz-Caputo fractional derivative of variable order with fixed memory, Meccanica, 57 (2022), 861–870. https://doi.org/10.1007/s11012-021-01364-w doi: 10.1007/s11012-021-01364-w
    [11] S. Sidhardh, S. Patnaik, F. Semperlotti, Fractional-order structural stability: formulation and application to the critical load of nonlocal slender structures, Int. J. Mech. Sci., 201 (2021), 106443. https://doi.org/10.1016/j.ijmecsci.2021.106443 doi: 10.1016/j.ijmecsci.2021.106443
    [12] B. Mbodje, G. Montseny, Boundary fractional derivative control of the wave equation, IEEE Trans. Automat. Control, 40 (1995), 378–382. https://doi.org/10.1109/9.341815 doi: 10.1109/9.341815
    [13] D. Matignon, J. Audounet, G. Montseny, Energy decay for wave equations with damping of fractional order, In: Fourth International Conference on Mathematical and Numerical Aspects of Wave Propagation Phenomena, 1998,638–640.
    [14] W. Arendt, C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc., 306 (1988), 837–852. https://doi.org/10.1090/S0002-9947-1988-0933321-3 doi: 10.1090/S0002-9947-1988-0933321-3
    [15] Y. Lyubich, P. Vũ, Asymptotic stability of linear differential equations in Banach spaces, Stud. Math., 88 (1988), 37–42.
    [16] M. R. Alaimia, N. E. Tatar, Blow up for the wave equation with a fractional damping, J. Appl. Anal., 11 (2005), 133–144. https://doi.org/10.1515/JAA.2005.133 doi: 10.1515/JAA.2005.133
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(107) PDF downloads(23) Cited by(0)

Article outline

Figures and Tables

Figures(10)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog