In this study, we introduce a new double series space $ \left\vert F_{a, b}^{u, \theta }\right\vert _{k} $ using the four dimensional factorable matrix $ F $ and absolute summability method for $ k\geq 1 $. Also, examining some algebraic and topological properties of $ \left\vert F_{a, b}^{u, \theta }\right\vert _{k} $, we show that it is norm isomorphic to the well-known double sequence space $ \mathcal{L}_{k} $ for $ 1\leq k < \infty. $ Furthermore, we determine the $ \alpha $-, $ \beta \left(bp\right) $- and $ \gamma $-duals of the spaces $ \left\vert F_{a, b}^{u, \theta }\right\vert _{k} $ for $ k\geq 1. $ Additionally, we characterize some new four dimensional matrix transformation classes on double series space $ \left\vert F_{a, b}^{u, \theta }\right\vert _{k} $. Hence, we extend some important results concerned on Riesz and Cesàro matrix methods to double sequences owing to four dimensional factorable matrix.
Citation: Aslıhan ILIKKAN CEYLAN, Canan HAZAR GÜLEÇ. A new double series space derived by factorable matrix and four-dimensional matrix transformations[J]. AIMS Mathematics, 2024, 9(11): 30922-30938. doi: 10.3934/math.20241492
In this study, we introduce a new double series space $ \left\vert F_{a, b}^{u, \theta }\right\vert _{k} $ using the four dimensional factorable matrix $ F $ and absolute summability method for $ k\geq 1 $. Also, examining some algebraic and topological properties of $ \left\vert F_{a, b}^{u, \theta }\right\vert _{k} $, we show that it is norm isomorphic to the well-known double sequence space $ \mathcal{L}_{k} $ for $ 1\leq k < \infty. $ Furthermore, we determine the $ \alpha $-, $ \beta \left(bp\right) $- and $ \gamma $-duals of the spaces $ \left\vert F_{a, b}^{u, \theta }\right\vert _{k} $ for $ k\geq 1. $ Additionally, we characterize some new four dimensional matrix transformation classes on double series space $ \left\vert F_{a, b}^{u, \theta }\right\vert _{k} $. Hence, we extend some important results concerned on Riesz and Cesàro matrix methods to double sequences owing to four dimensional factorable matrix.
[1] | M. A. Sarıgöl, Matrix transformations on fields of absolute weighted mean summability, Stud. Sci. Math. Hung., 48 (2011), 331–341. https://doi.org/10.1556/sscmath.48.2011.3.1175 doi: 10.1556/sscmath.48.2011.3.1175 |
[2] | G. C. H. Güleç, M. A. Sarigöl, Matrix mappings and norms on the absolute Cesàro and weighted spaces, Quaest. Math., 43 (2020), 117–130. https://doi.org/10.2989/16073606.2019.1623932 doi: 10.2989/16073606.2019.1623932 |
[3] | G. C. Hazar, M. A. Sarigöl, Absolute Cesàro series spaces and matrix operators, Acta Appl. Math., 154 (2018), 153–165. https://doi.org/10.1007/s10440-017-0138-x doi: 10.1007/s10440-017-0138-x |
[4] | G. C. H. Güleç, Characterization of some classes of compact and matrix operators on the sequence spaces of Cesàro means, Oper. Matrices, 13 (2019), 809–822. https://doi.org/10.7153/oam-2019-13-57 doi: 10.7153/oam-2019-13-57 |
[5] | G. C. H. Güleç, Compact matrix operators on absolute Cesàro spaces, Numer. Func. Anal. Opt., 41 (2020), 1–15. https://doi.org/10.1080/01630563.2019.1633665 doi: 10.1080/01630563.2019.1633665 |
[6] | M. Ilkhan, E. E. Kara, A new Banach space defined by Euler totient matrix operator, Oper. Matrices, 13 (2019), 527–544. https://dx.doi.org/10.7153/oam-2019-13-40 doi: 10.7153/oam-2019-13-40 |
[7] | S. Demiriz, M. Ilkhan, E. E. Kara, Almost convergence and Euler totient matrix, Ann. Funct. Anal., 11 (2020), 604–616. https://doi.org/10.1007/s43034-019-00041-0 doi: 10.1007/s43034-019-00041-0 |
[8] | G. C. Hazar, M. A. Sarıgöl, On absolute Nörlund spaces and matrix operators, Acta Math. Sin., 34 (2018), 812–826. https://doi.org/10.1007/s10114-017-7190-3 doi: 10.1007/s10114-017-7190-3 |
[9] | F. Başar, H. Roopaei, On the factorable spaces of absolutely p-summable, null, convergent, and bounded sequences, Math. Slovaca, 76 (2021), 1375–1400. https://doi.org/10.1515/ms-2021-005 doi: 10.1515/ms-2021-005 |
[10] | T. J. Bromwich, An introduction to the theory of infinite series, New York: Macmillan, 1965. |
[11] | M. Zeltser, On conservative matrix methods for double sequence spaces, Acta Math. Hung., 95 (2002), 225–242. https://doi.org/10.1023/A:1015636905885 doi: 10.1023/A:1015636905885 |
[12] | A. Pringsheim, Zur theorie der zweifach unendlichen Zahlenfolgen, Math. Ann., 53 (1900), 289–321. https://doi.org/10.1007/BF01448977 doi: 10.1007/BF01448977 |
[13] | G. H. Hardy, On the convergence of certain multiple series, Proc. Camb. Phil. Soc., 19 (1917), 86–95. https://doi.org/10.1112/plms/s2-1.1.124 doi: 10.1112/plms/s2-1.1.124 |
[14] | F. Móricz, Extensions of the spaces $c$ and $c_{0}$ from single to double sequences, Acta Math. Hung., 57 (1991), 129–136. https://doi.org/10.1007/BF01903811 doi: 10.1007/BF01903811 |
[15] | M. Başarır, O. Sonalcan, On some double sequence spaces, Indian Acad. Math. J., 21 (1999), 193–200. |
[16] | S. Demiriz, O. Duyar, Domain of difference matrix of order one in some spaces of double sequences, Gulf J. Math., 3 (2015), 85–100. https://doi.org/10.56947/gjom.v3i3.150 doi: 10.56947/gjom.v3i3.150 |
[17] | S. Demiriz, S. Erdem, Domain of Euler-totient matrix operator in the space $\mathcal{L}_{p}$, Korean J. Math., 28 (2020), 361–378. https://doi.org/10.11568/kjm.2020.28.2.361 doi: 10.11568/kjm.2020.28.2.361 |
[18] | S. Erdem, S. Demiriz, A new RH-regular matrix derived by Jordan's function and its domains on some double sequence spaces, J. Funct. Space., 2021 (2021), 5594751. https://doi.org/10.1155/2021/5594751 doi: 10.1155/2021/5594751 |
[19] | L. Nayak, P. Baliarsingh, On difference double sequences and their applications, Current Trends in Mathematical Analysis and its Interdisciplinary Applications, Birkhäuser, Cham., 2019,809–829. https://doi.org/10.1007/978-3-030-15242-0_20 |
[20] | J. Boos, Classical and modern methods in summability, New York: Oxford University Press, 2000. |
[21] | F. Başar, Y. Sever, The space $\mathcal{L}_{k}$ of double sequences, Math. J. Okayama Univ., 51 (2009), 149–157. https://doi.org/10.18926/mjou/33223 doi: 10.18926/mjou/33223 |
[22] | M. Mursaleen, F. Başar, Domain of Cesàro mean of order one in some spaces of double sequences, Stud. Sci. Math. Hung., 51 (2014), 335–356. https://doi.org/10.1556/sscmath.51.2014.3.1287 doi: 10.1556/sscmath.51.2014.3.1287 |
[23] | O. Bodur, C. H. Güleç, Characterizations of some new classes of four-dimensional matrices on the double series spaces of first order Cesàro means, Math. Sci. Appl., 12 (2024), 196–206. https://doi.org/10.36753/mathenot.1471156 doi: 10.36753/mathenot.1471156 |
[24] | M. Yeşilkayagil, F. Başar, Domain of Riesz mean in some spaces of double sequences, Indagat. Math., 29 (2018), 1009–1029. https://doi.org/10.1016/j.indag.2018.03.006 doi: 10.1016/j.indag.2018.03.006 |
[25] | M. A. Sarıgöl, On equivalence of absolute double weighted mean methods, Quaest. Math., 44 (2021), 755–764. https://doi.org/10.2989/16073606.2020.1746706 doi: 10.2989/16073606.2020.1746706 |
[26] | F. Çalışır, Riesz mean of double sequences and double series spaces, MS thesis, Pamukkale Üniversitesi Fen Bilimleri Enstitüsü, 2021. |
[27] | M. Yeşilkayagil, F. Başar, On the domain of Riesz mean in the space $\mathcal{L}_{k}^{\ast }$, Filomat, 31 (2017), 925–940. https://doi.org/10.2298/FIL1704925Y doi: 10.2298/FIL1704925Y |
[28] | M. A. Sarıgöl, Four dimensional matrix mappings on double summable spaces, Filomat, 37 (2023), 1277–1290. https://doi.org/10.2298/FIL2304277S doi: 10.2298/FIL2304277S |