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Abstract: In this study, we introduce a new double series space
∣∣∣Fu,θ

a,b

∣∣∣
k

using the four dimensional
factorable matrix F and absolute summability method for k ≥ 1. Also, examining some algebraic and
topological properties of

∣∣∣Fu,θ
a,b

∣∣∣
k
, we show that it is norm isomorphic to the well-known double sequence

space Lk for 1 ≤ k < ∞. Furthermore, we determine the α-, β (bp)- and γ-duals of the spaces
∣∣∣Fu,θ

a,b

∣∣∣
k

for k ≥ 1. Additionally, we characterize some new four dimensional matrix transformation classes on
double series space

∣∣∣Fu,θ
a,b

∣∣∣
k
. Hence, we extend some important results concerned on Riesz and Cesàro

matrix methods to double sequences owing to four dimensional factorable matrix.
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1. Introduction

The investigation of the convergence of sequences and the generation of a new sequence space
occupy a significant position within the fields of mathematical analysis, Fourier analysis, and
approximation theory. A variety of novel single sequence spaces have been developed through the
utilisation of intriguing matrix summation techniques, including Riesz [1, 2], Cesàro [3–5], Euler
totient [6, 7], Nörlund [8], and factorable methods [9] in the literature. Nevertheless, research on
the generation of novel double sequences or series spaces remains limited, despite the existence of
significant studies on double sequences. Additionally, there has been a considerable amount of interest
recently in the generalizations of single sequence spaces to double sequence spaces. The initial works
on double sequences were done by Bromwich [10]. In her doctoral dissertation, Zeltser studied both
the theory of topological double sequence spaces and the summability of double sequences [11]. The
notion of convergence for double sequences has been the subject of work by Pringsheim in [12].
Hardy also introduced the notion of regular convergence for double sequences in the sense that a
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double sequence has a limit in Pringsheim’s sense and has one-sided limits [13]. Later, the theory of
double sequences was studied by Móricz [14], Başarır and Sonalcan [15], Demiriz and Duyar [16],
Demiriz and Erdem [17,18] and many others. Moreover, the theory of double sequences has numerous
applications in engineering and applied sciences. For example, Nayak and Baliarsingh [19] have
defined the notion of difference double sequence spaces based on fractional order, which have been
used to study the fractional derivatives of certain functions and their geometrical interpretations.

A double sequence x = (xrs) is a double infinite array of elements xrs for all r, s ∈ N. The set of all
complex valued double sequences is denoted as

Ω = {x = (xmn) : xmn ∈ C,∀m, n ∈ N} ,

which is a vector space with coordinatewise addition and scalar multiplication of double sequences,
whereC is the complex field andN = {0, 1, 2, ...} .Any vector subspace of Ω is called a double sequence
space. We denote the space of all bounded double sequences byMu, that is,

Mu =

{
x = (xmn) ∈ Ω : ‖x‖∞ = sup

m,n∈N
|xmn| < ∞

}
,

which is a Banach space with the norm ‖.‖∞ . A double sequence x = (xmn) ∈ Ω is called convergent
to the limit point L ∈ C in Pringsheim’s sense if for every given ε > 0 there exists n0 = n0 (ε) ∈ N
such that |xmn − L| < ε for all m, n > n0. Then, it is denoted by p − limm,n→∞ xmn = L, where L is
called the Pringsheim limit of x. Further, Cp shows the space of all convergent double sequences in
Pringsheim’s sense [12]. It is well known that every convergent single sequence is bounded, but this
may not be the case for double sequences in general. To put it clearly, there are such double sequences
that are convergent in Pringsheim’s sense but not bounded. Namely, the set Cp −Mu is not empty. In
fact, following Boos [20], consider the sequence x = (xmn) by

xmn :=


m; n = 0,m ∈ N,
n; m = 0, n ∈ N,

0; m, n ∈ N \ {0} ,

for all m, n ∈ N. Then, it is clearly seen that x ∈ Cp −Mu, since p − limm,n→∞ xmn = 0 but ‖x‖∞ = ∞.

Therefore, the set Cbp of double sequences denotes both convergent in Pringsheim’s sense and bounded,
i.e., Cbp = Cp ∩ Mu. Hardy [13] showed that a sequence in the space Cp is said to be regularly
convergent if it is a single convergent sequence with respect to each index, and Cr denotes the set of all
such double sequences.

Here and afterwards, we assume that υ denotes any of the symbols p, bp, or r, and also k′ denotes
the conjugate of k, that is, 1

k + 1
k′ = 1 for 1 < k < ∞, and 1

k′ = 0 for k = 1.
Let us consider a double sequence x = (xmn) and define the sequence s = (smn) via x by

smn =

m∑
i=0

n∑
j=0

xi j

for all m, n ∈ N. Then, the pair of (x, s) and the sequence s = (smn) are named as a double series and
the sequence of partial sums of the double series, respectively. For the sake of brevity, here and in what
follows we use the abbreviation

∑
i, j xi j in place of the summation

∑∞
i=0

∑∞
j=0 xi j.
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Let λ be a space of the double sequences converging with respect to some linear convergence rule
υ − lim : λ → C. If the double sequence (smn) is convergent in the υ-sense with respect to this rule,
then the double series

∑
i, j xi j is said to be convergent in the υ-sense and it is denoted that υ−

∑
i, j xi j =

υ − limm,n→∞ smn.

Quite recently, Başar and Sever have introduced the Banach space Lk of double sequences as

Lk =

x = (xmn) ∈ Ω :
∑
m,n

|xmn|
k < ∞

 ,
which corresponds to the well-known space `k of absolutely k-summable single sequences, and
examined some properties of the space Lk in [21]. Also, for the special case k = 1, the space Lk

is reduced to the space Lu, which was defined by Zeltser in [11].
The α-dual, β (υ)-dual, and γ-dual of the double sequence space λ ⊂ Ω are denoted by λα, λβ(υ), λγ

in regard to the υ-convergence for υ ∈ {p, bp, r} and are defined respectively by

λα :=

µ = (µkl) ∈ Ω :
∑
k,l

|µklxkl| < ∞, for all (xkl) ∈ λ

 ,
λβ(υ) :=

µ = (µkl) ∈ Ω : υ −
∑
k,l

µklxkl exists, for all (xkl) ∈ λ

 ,
and

λγ :=

µ = (µkl) ∈ Ω : sup
m,n∈N

∣∣∣∣∣∣∣
m,n∑

k,l=0

µklxkl

∣∣∣∣∣∣∣ < ∞, for all (xkl) ∈ λ

 .
Now, we shall deal with the four-dimensional transformations. Let X and Y be two double sequence
spaces that are converging with regard to the linear convergence rules υ1 − lim and υ2 − lim,
respectively, and A =

(
amni j

)
be any four-dimensional complex infinite matrix. Then, A defines a

matrix transformation from X into Y, if for every double sequence x =
(
xi j

)
∈ X, Ax = {(Ax)mn}m,n∈N ,

the A-transform of x, is in Y, where

(Ax)mn = υ −
∑

i, j

amni jxi j (1.1)

provided that the double series exists for each m, n ∈ N. By (X,Y) , we show the set of such all four-
dimensional matrix transformations from the space X into the space Y. Thus, A =

(
amni j

)
∈ (X,Y) if and

only if the double series on the right side of (1.1) is convergent with regard to the linear convergence
rule υ − lim for each m, n ∈ N and Ax ∈ Y for all x ∈ X.

The υ-summability domain λ(υ)
A of A =

(
amni j

)
in a space λ of double sequences is defined by

λ(υ)
A =

x =
(
xi j

)
∈ Ω : Ax =

υ −∑
i, j

amni jxi j


m,n∈N

exists and is in λ

 . (1.2)

We write throughout for simplicity in notation for all m, n, k, l ∈ N that

∆10xmn = xmn − xm+1,n,
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∆01xmn = xmn − xm,n+1,
∆11xmn = ∆01 (∆10xmn) = ∆10 (∆01xmn) ,

and

∆kl
10amnkl = amnkl − amn,k+1,l,

∆kl
01amnkl = amnkl − amnk,l+1,

∆kl
11amnkl = ∆kl

01

(
∆kl

10amnkl

)
= ∆kl

10

(
∆kl

01amnkl

)
.

2. The double factorable series spaces

In this section, we introduce the new
∣∣∣Fu,θ

a,b

∣∣∣
k

doubly summable sequence spaces using the four-
dimensional factorable matrix F and, absolute summability method for k ≥ 1. Also, we investigate
some algebraic and topological properties of

∣∣∣Fu,θ
a,b

∣∣∣
k
, and show that it is norm isomorphic to the well-

known double sequence space Lk for 1 ≤ k < ∞. Furthermore, we determine the α-, β (bp)-, and γ-
duals of the spaces

∣∣∣Fu,θ
a,b

∣∣∣
k

in regard to the bp-convergence for k ≥ 1.
Prior to introducing the factorable matrix, it is necessary to provide definitions of the well-known

four-dimensional matrices associated with the factorable matrix.
One of the fundamental four-dimensional matrices is the four-dimensional Cesàro matrix C =(

cmni j

)
of order one, which is defined by

cmni j =

{ 1
mn , 1 ≤ i ≤ m, 1 ≤ j ≤ n,

0, otherwise,

for all m, n, i, j ∈ N [22]. In a recent study, some topological properties of double series space
∣∣∣C1,1

∣∣∣
k

were investigated using this four dimensional matrix in [23].
Let p = (pk) and q = (qk) be two sequences of non-negative numbers that are not all zero, and

Pn =
∑n

k=0 pk, p0 > 0 and Qn =
∑n

k=0 qk, q0 > 0. The four-dimensional Riesz matrix Rpq =
(
rpq

mni j

)
is

defined by

rpq
mni j =


piq j

PmQn
, 0 ≤ i ≤ m, 0 ≤ j ≤ n,

0, otherwise,

for all m, n, i, j ∈ N [24]. Note that in the case pk = qk = 1 for all k ∈ N, the Riesz matrix Rpq is reduced
to the four-dimensional Cesàro matrix of order one.

Let s = (smn) be partial sums of the double series
∑

i, j xi j. Then, the double series
∑

i, j xi j is called
absolutely double weighted summable

∣∣∣N̄, pn, qn

∣∣∣
k
, k ≥ 1 [25], if

∞∑
m=0

∞∑
n=0

(
PmQn

pmqn

)k−1 ∣∣∣∆11Rpq
m−1,n−1 (s)

∣∣∣k < ∞,
where

Rpq
mn (s) =

1
PmQn

m∑
i=0

n∑
j=0

piq jsi j, (m, n ∈ N) ,
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and
∆11Rpq

−1,−1 = Rpq
0,0,

∆11

(
Rpq

m−1,−1

)
= Rpq

m0 − Rpq
m−1,0, (m ≥ 1) ,

∆11

(
Rpq
−1,n−1

)
= Rpq

0n − Rpq
0,n−1, (n ≥ 1) ,

∆11

(
Rpq

m−1,n−1

)
= Rpq

mn − Rpq
m−1,n − Rpq

m,n−1 + Rpq
m−1,n−1, (m, n ≥ 1) .

Furthermore, some topological properties of double series space
∣∣∣N̄p,q

∣∣∣
k

have been investigated and
also dual spaces of

∣∣∣N̄p,q

∣∣∣
k

are determined in [26].
This study aims to define a more general double series space

∣∣∣Fu,θ
a,b

∣∣∣
k

with the help of the four-
dimensional factorable matrix, which is more comprehensive and more widely used in mathematical
analysis. To do this, we first state the factorable matrix or, by another name, the generalized weighted
mean matrix F

(
a, b, â, b̂

)
=

(
fmni j

(
a, b, â, b̂

))
which gives these two fundamental matrices in special

cases and is used in many places in mathematical analysis and applied mathematics.
Let C denote the set of all sequences a = (ai) such that ai , 0 for all i ∈ N, and a = (ai) , b =

(
b j

)
,

â = (âm) , b̂ =
(
b̂n

)
∈ C. Then, the four-dimensional factorable matrix F

(
a, b, â, b̂

)
=

(
fmni j

(
a, b, â, b̂

))
is defined by

fmni j

(
a, b, â, b̂

)
=

{
aib jâmb̂n, 0 ≤ i ≤ m and 0 ≤ j ≤ n,

0, otherwise,

for all i, j,m, n ∈ N.
The four-dimensional factorable matrix F

(
a, b, â, b̂

)
=

(
fmni j

(
a, b, â, b̂

))
is invertible, and its inverse

F−1
(
a, b, â, b̂

)
=

(
f −1
mni j

(
a, b, â, b̂

))
is defined for all i, j,m, n ∈ N by

f −1
mni j

(
a, b, â, b̂

)
=


(−1)m+n−(i+ j)

ambnâib̂ j
, m − 1 ≤ i ≤ m and n − 1 ≤ j ≤ n,

0, otherwise.

Now, we introduce a new doubly summable sequence space
∣∣∣Fu,θ

a,b

∣∣∣
k

using the four-dimensional
factorable matrix F and, absolute summability method for k ≥ 1. Hence, we extend double weighted
series space

∣∣∣N̄p,q

∣∣∣
k

with the factorable matrix F to double generalized weighted series space, or namely
double factorable series space,

∣∣∣Fu,θ
a,b

∣∣∣
k

as follows: Consider θ = (θn) , u = (um) positive sequences. Then,
we can define a new double factorable series space by

∣∣∣Fu,θ
a,b

∣∣∣
k

=

x = (xmn) ∈ Ω :
∞∑

m=0

∞∑
n=0

(umθn)k−1

∣∣∣∣∣∣∣âmb̂n

m∑
i=0

n∑
j=0

aib jxi j

∣∣∣∣∣∣∣
k
 < ∞.

If we define Ψ (x) = (Ψmn (x)) transformation of the sequence x = (xmn) by

ymn = Ψmn (x) = (umθn)1/k
′

âmb̂n

m∑
i=0

n∑
j=0

aib jxi j; m, n ≥ 0, (2.1)

then
∣∣∣Fu,θ

a,b

∣∣∣
k

double series space can be rewritten by∣∣∣Fu,θ
a,b

∣∣∣
k

= (Lk)Ψ
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in view of relation (1.2). Throughout the paper, we will suppose that the terms of the double sequences
x = (xmn) and y = (ymn) are connected with the relation (2.1) .

Let us proceed with the following essential theorem, which gives us some algebraic and topological
properties of

∣∣∣Fu,θ
a,b

∣∣∣
k

.
Theorem 2.1. The set

∣∣∣Fu,θ
a,b

∣∣∣
k

becomes a linear space with the coordinatewise addition and scalar
multiplication for double sequences, and

∣∣∣Fu,θ
a,b

∣∣∣
k

is a Banach space with the norm

‖x‖∣∣∣∣Fu,θ
a,b

∣∣∣∣
k

=

 ∞∑
m=0

∞∑
n=0

∣∣∣∣∣∣∣(umθn)1/k
′

âmb̂n

m∑
i=0

n∑
j=0

aib jxi j

∣∣∣∣∣∣∣
k

1/k

< ∞, (2.2)

and it is norm isomorphic to the well-known double sequence space Lk for 1 ≤ k < ∞.
Proof. As the initial assertion is routine verification, it can be omitted.

To confirm the fact that
∣∣∣Fu,θ

a,b

∣∣∣
k

is norm isomorphic to the space Lk, we need to show the existence of
a linear and norm-preserving bijection transformation between the spaces

∣∣∣Fu,θ
a,b

∣∣∣
k

andLk for 1 ≤ k < ∞.
In order to achieve this, into account the transformation Ψ defined by

Ψ :
∣∣∣Fu,θ

a,b

∣∣∣
k
→ Lk, (2.3)

x→ y = Ψ (x) ,

where Ψ (x) = (Ψmn (x)) = (ymn) is the same as in (2.1) for m, n ≥ 0. The linearity of Ψ is clear. Also,
x = θ whenever Ψ (x) = θ, where θ denotes the zero vector. This gives us that Ψ is injective.

Let us consider y = (ymn) ∈ Lk and define the sequence x = (xmn) via y by

xmn =
1

ambn
∆11

 ym−1,n−1

âm−1b̂n−1 (um−1θn−1)1/k′

 , (2.4)

xm0 =
1

amb0
∆̄10

 ym0

(umθ0)1/k′ âmb̂0

 , (2.5)

x0n =
1

a0bn
∆̄01

 y0n

(u0θn)1/k′ â0b̂n

 (2.6)

for m, n ≥ 1, and

x00 =

 y00

(u0θ0)1/k′ â0b̂0a0b0

 , (2.7)

where ∆̄10 and ∆̄01 refer to the back difference notations, that is, ∆̄10 (xmn) = xm,n − xm−1,n, ∆̄01 (xmn) =

xm,n − xm,n−1 for all m, n ∈ N. In that case, it is seen that

‖x‖∣∣∣∣Fu,θ
a,b

∣∣∣∣
k

= ‖Ψ (x)‖Lk
=

∑
m,n

|Ψmn (x)|k


1/k

= ‖y‖Lk
< ∞,

where the double sequences x = (xmn) and y = (ymn) are connected with the relation (2.1) for 1 ≤ k < ∞.
This implies that Ψ is surjective and norm preserving. Consequently, Ψ is a linear and norm-preserving
bijection, which gives us that

∣∣∣Fu,θ
a,b

∣∣∣
k

and Lk are norm-isomorphic for 1 ≤ k < ∞, as desired.
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In the proof of the last part of the theorem, we show that
∣∣∣Fu,θ

a,b

∣∣∣
k

is a Banach space with the norm
defined by (2.2). To prove this, we can use the statement “Let (X, ρ) and (Y, σ) be semi-normed spaces
and Φ : (X, ρ) → (Y, σ) be an isometric isomorphism. Then, (X, ρ) is complete if and only if (Y, σ) is
complete. In particular, (X, ρ) is a Banach space if and only if (Y, σ) is a Banach space”, which can
be found section (b) of Corollary 6.3.41 in [20]. Since the transformation Ψ defined from

∣∣∣Fu,θ
a,b

∣∣∣
k

into
Lk by (2.3) is an isometric isomorphism and the double sequence space Lk is a Banach space from
Theorem 2.1 in [21], we obtain that the space

∣∣∣Fu,θ
a,b

∣∣∣
k

is a Banach space. This completes the proof.
Now we state the following significant lemmas giving some characterizations for any four-

dimensional infinite matrices, which will be used in order to calculate the α-, β (bp)-, and γ-duals
of the spaces

∣∣∣Fu,θ
a,b

∣∣∣
k

for k ≥ 1.

Lemma 2.2. [27] Let A =
(
amni j

)
be any four-dimensional infinite matrix. In that case, the following

statements hold:
(a) Let 0 < k ≤ 1. Then, A =

(
amni j

)
∈ (Lk,Mu) iff

M1 = sup
m,n,i, j∈N

∣∣∣amni j

∣∣∣ < ∞. (2.8)

(b) Let 1 < k < ∞. Then, A =
(
amni j

)
∈ (Lk,Mu) iff

M2 = sup
m,n∈N

∑
i, j

∣∣∣amni j

∣∣∣k′ < ∞. (2.9)

(c) Let 0 < k ≤ 1 and 1 ≤ k1 < ∞. Then, A =
(
amni j

)
∈

(
Lk,Lk1

)
iff

sup
i, j∈N

∑
m,n

∣∣∣amni j

∣∣∣k1
< ∞.

(d) Let 0 < k ≤ 1. Then, A =
(
amni j

)
∈

(
Lk,Cbp

)
iff the condition (2.8) holds and there exists a

(
λi j

)
∈ Ω

such that
bp − lim

m,n→∞
amni j = λi j. (2.10)

(e) Let 1 < k < ∞. Then, A =
(
amni j

)
∈

(
Lk,Cbp

)
iff (2.9) and (2.10) are satisfied.

Lemma 2.3. [28] Let 1 < k < ∞ and A =
(
amni j

)
be a four-dimensional infinite matrix of complex

numbers. Define Wk (A) and wk (A) by

Wk (A) =

∞∑
r,s=0

 ∞∑
m,n=0

|amnrs|


k

,

wk (A) = sup
M×N

∞∑
r,s=0

∣∣∣∣∣∣∣ ∑
(m,n)∈M×N

amnrs

∣∣∣∣∣∣∣
k

,

where the supremum is taken through all finite subsets M and N of the natural numbers. Then, the
following statements are equivalent:

i) Wk′ (A) < ∞, ii) A ∈ (Lk,Lu) ,

iii) At ∈
(
L∞,Lk′

)
< ∞, iv) wk′ (A) < ∞.
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Now, we prove the following theorems, which give the α- and β (bp)-, and γ-duals of the spaces∣∣∣Fu,θ
a,b

∣∣∣
k

for k ≥ 1. To shorten the theorems and their proofs, let us denote the sets Λk with k ∈ {1, 2, 3, 4, 5}
as follows:

Λ1 =

µ = (µmn) ∈ Ω : sup
i, j∈N

∑
m,n

∣∣∣∣g(1)
mni j

∣∣∣∣ < ∞ , (2.11)

Λ2 =

µ = (µmn) ∈ Ω :
∑

i, j

∑
m,n

∣∣∣∣g(k)
mni j

∣∣∣∣
k
′

< ∞

 , (2.12)

Λ3 =

{
µ = (µmn) ∈ Ω : bp − lim

m,n→∞
d(k)

mni j exists for all i, j ∈ N
}
, (2.13)

Λ4 =

{
µ = (µmn) ∈ Ω : sup

m,n,i, j∈N

∣∣∣∣d(1)
mni j

∣∣∣∣ < ∞}
, (2.14)

Λ5 =

µ = (µmn) ∈ Ω : sup
m,n∈N

∑
i, j

∣∣∣∣d(k)
mni j

∣∣∣∣k′ < ∞ , (2.15)

where the 4-dimensional matrices D(k) =
(
d(k)

mni j

)
and G(k) =

(
g(k)

mni j

)
are defined by

d(k)
mni j =



1

â0b̂0 (u0θ0)1/k′
∆

(i j)
11

(
µi j

aib j

)
, m = n = i = j = 0,

1

amâmb̂0 (umθ0)1/k′
∆

(i j)
01

(
µm j

b j

)
, i = m, j = n = 0,

1

bnâ0b̂n (u0θn)1/k′
∆

(i j)
10

(
µin

ai

)
, i = m = 0 , j = n,

1

âib̂0 (uiθ0)1/k′
∆

(i j)
11

(
µi j

aib j

)
, 1 ≤ i ≤ m − 1, j = n = 0,

1

â0b̂ j

(
u0θ j

)1/k′
∆

(i j)
11

(
µi j

aib j

)
, i = m = 0, 1 ≤ j ≤ n − 1,

1

âib̂ j

(
uiθ j

)1/k′
∆

(i j)
11

(
µi j

aib j

)
, 1 ≤ i ≤ m − 1, 1 ≤ j ≤ n − 1,

1

bnâib̂n (uiθn)1/k′
∆

(i j)
10

(
µi j

ai

)
, 1 ≤ i ≤ m − 1 , j = n,

1

amâmb̂ j

(
umθ j

)1/k′
∆

(i j)
01

(
µi j

b j

)
, 1 ≤ j ≤ n − 1, i = m,

µmn

ambnâmb̂n (umθn)1/k′
, i = m , j = n,

(2.16)
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and

g(k)
mni j =



µ00

(u0θ0)1/k′ a0b0â0b̂0

, m = n = 0,

(−1)n− j µ0n

(u0)1/k′ a0bnâ0

(
θ j

)1/k′

b̂ j

, m = 0, n − 1 ≤ j ≤ n,

(−1)m−i µm0

(θ0)1/k′ amb0âi (ui)1/k′ b̂0

, n = 0, m − 1 ≤ i ≤ m,

(−1)m+n−(i+ j) µmn(
uiθ j

)1/k′

ambnâib̂ j

, m − 1 ≤ i ≤ m, n − 1 ≤ j ≤ n,

(2.17)

respectively.
Theorem 2.4. Let the sets Λ1,Λ2 and the 4-dimensional matrix G(k) =

(
g(k)

mni j

)
be defined as in

(2.11) , (2.12), and (2.17), respectively. Then,
(∣∣∣Fa,b

∣∣∣
1

)α
= Λ1 and

(∣∣∣Fu,θ
a,b

∣∣∣
k

)α
= Λ2 for 1 < k < ∞.

Proof. Since the case of 1 < k < ∞ can be proved similarly using Lemma 2.3, we will prove the
theorem for k = 1. Let x = (xmn) ∈

∣∣∣Fa,b

∣∣∣
1
, µ = (µmn) ∈ Ω . Taking account of the relations (2.4)–(2.7)

for m, n ≥ 0, we can compute the following equalities:
For m = n = 0,

µ00x00 = µ00
y00

(u0θ0)1/k′ â0b̂0a0b0

= (Gy)00 ,

for m = 0, n ≥ 1

µ0nx0n = µ0n
1

a0bn

 y0n

(u0θn)1/k′ â0b̂n

−
y0,n−1

(u0θn−1)1/k′ â0b̂n−1


= µ0n

1

a0bnâ0 (u0)1/k′

n∑
j=n−1

(−1)n− j y0 j(
θ j

)1/k′

b̂ j

= (Gy)0n ,

for n = 0, m ≥ 1,

µm0xm0 = µm0
1

amb0

 ym0

(umθ0)1/k′ âmb̂0

−
ym−1,0

(um−1θ0)1/k′ âm−1b̂0


= µm0

1

amb0b̂0 (θ0)1/k′

m∑
i=m−1

(−1)m−i yi0

(ui)1/k′ âi

= (Gy)m0 ,

and for n,m ≥ 1,

µmnxmn = µmn
1

ambn
(

ymn

(umθn)1/k′ âmb̂n

−
ym,n−1

(umθn−1)1/k′ âmb̂n−1

−
ym−1,n

(um−1θn)1/k′ âm−1b̂n

+
ym−1,n−1

(um−1θn−1)1/k′ âm−1b̂n−1

)

= µmn
1

ambn

m∑
i=m−1

n∑
j=n−1

(−1)m+n−(i+ j) yi j(
uiθ j

)1/k′

âib̂ j

= (Gy)mn ,
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where the four-dimensional matrix G(k) =
(
g(k)

mni j

)
is defined by (2.17). In this situation, we see that

µx = (µmnxmn) ∈ Lu whenever x ∈
∣∣∣Fa,b

∣∣∣
1

if and only if G(k)y ∈ Lu whenever y ∈ Lu. This gives us that

µ = (µmn) ∈
(∣∣∣Fa,b

∣∣∣
1

)α
iff G(k) ∈ (Lu,Lu) . Thus, using (c) of Lemma 2.2 with k1 = k = 1, we obtain

sup
i, j∈N

∑
m,n

∣∣∣∣g(1)
mni j

∣∣∣∣ < ∞.
Hence, we deduce that

(∣∣∣Fa,b

∣∣∣
1

)α
= Λ1, as desired.

Theorem 2.5. Let the sets Λ3, Λ4, Λ5 and the 4-dimensional matrix D(k) =
(
d(k)

mni j

)
be given as in

(2.13)–(2.16) , respectively. Then, we have
(∣∣∣Fa,b

∣∣∣
1

)β(bp)
= Λ3 ∩ Λ4 and

(∣∣∣Fu,θ
a,b

∣∣∣
k

)β(bp)
= Λ3 ∩ Λ5 for

1 < k < ∞.
Proof. To avoid the repetition of similar statements, we prove the second part of the theorem for
1 < k < ∞. Let µ = (µmn) ∈ Ω and x = (xmn) ∈

∣∣∣Fu,θ
a,b

∣∣∣
k

be given. Then, using Theorem 2.1, we can say

that there exists a double sequence y =
(
yi j

)
∈ Lk. Therefore, taking account of relations (2.4)–(2.7) ,

we can calculate that

zmn =

m∑
i=0

n∑
j=0

µi jxi j

=

(
µ00

a0b0
−
µ10

a1b0
−
µ01

a0b1
+
µ11

a1b1

)
y00

â0b̂0 (u0θ0)1/k′

+

(
µm0

amb0
−
µm1

amb1

)
ym0

(umθ0)1/k′ âmb̂0

+

(
µ0n

a0bn
−
µ1n

a1bn

)
y0n

â0b̂n (u0θn)1/k′

+

m−1∑
i=1

(
µi0

aib0
−
µi+1,0

ai+1b0
−
µi1

aib1
+
µi+1,1

ai+1b1

)
yi0

âib̂0 (uiθ0)1/k′

+

n−1∑
j=1

(
µ0 j

a0b j
−
µ0, j+1

a0b j+1
−
µ1 j

a1b j
+
µ1, j+1

a1b j+1

)
y0 j

â0b̂ j

(
u0θ j

)1/k′

+

m−1∑
i=1

∆
(in)
10

(
µin

aibn

)
yin

âib̂n (uiθn)1/k′
+

n−1∑
j=1

∆
(m j)
01

(
µm j

amb j

)
ym j

âmb̂ j

(
umθ j

)1/k′

+

m−1,n−1∑
i, j=1

∆
(i j)
11

(
µi j

aib j

)
yi j

âib̂ j

(
uiθ j

)1/k′
+

µmnymn

ambnâmb̂n (umθn)1/k′

=

m∑
i=0

n∑
j=0

d(k)
mni jyi j =

(
D(k) (y)

)
mn
.

This implies that µx = (µmnxmn) ∈ CSbp whenever x = (xmn) ∈
∣∣∣Fu,θ

a,b

∣∣∣
k

if and only if z = (zmn) ∈ Cbp

whenever y =
(
yi j

)
∈ Lk. Thus, it is clear that µ = (µmn) ∈

(∣∣∣Fu,θ
a,b

∣∣∣
k

)β(bp)
if and only if D(k) ∈

(
Lk,Cbp

)
,

where the four-dimensional matrix D(k) =
(
d(k)

mni j

)
is defined in (2.16) for every m, n, i, j ∈ N. Hence, we

obtain that
(∣∣∣Fa,b

∣∣∣
1

)β(bp)
= Λ3 ∩ Λ4 and

(∣∣∣Fu,θ
a,b

∣∣∣
k

)β(bp)
= Λ3 ∩ Λ5 for 1 < k < ∞ using parts (d) and (e) of

Lemma 2.2, respectively.
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Theorem 2.6. Let the sets Λ4, Λ5 and the 4-dimensional matrix D(k) =
(
d(k)

mni j

)
be defined as in (2.14)–

(2.16), respectively. Then,
(∣∣∣Fa,b

∣∣∣
1

)γ
= Λ4 and

(∣∣∣Fu,θ
a,b

∣∣∣
k

)γ
= Λ5 for 1 < k < ∞.

Proof. The proof of this theorem can be obtained similar to the proof of Theorem 2.5 using parts (a)
and (b) of Lemma 2.2 in place of parts (d) and (e) of Lemma 2.2, respectively. To avoid the repetition
of similar statements, we omit the details.

3. Characterizations of some classes of four-dimensional matrices

In the present section, we characterize some 4-dimensional matrix transformations from the double
series spaces

∣∣∣Fa,b

∣∣∣
1

and
∣∣∣Fu,θ

a,b

∣∣∣
k

to the double sequence spacesMu, Cbp, and Lk for 1 ≤ k < ∞. Also,
we characterize the 4-dimensional matrix transformations from classical double sequence spaces Lu

and Lk to the double series spaces
∣∣∣Fu,θ

a,b

∣∣∣
k

and
∣∣∣Fa,b

∣∣∣
1
, respectively, for k ≥ 1. Although we prove

the theorem characterizing 4-dimensional matrix transformations from double series spaces
∣∣∣Fa,b

∣∣∣
1
and∣∣∣Fu,θ

a,b

∣∣∣
k

to the double sequence spaceMu, we give theorems characterizing other 4-dimensional matrix
transformations without proof since the proof techniques are similar.
Theorem 3.1. Assume that A =

(
amni j

)
be an arbitrary 4-dimensional infinite matrix. In that case, the

following statements hold:
(a) A =

(
amni j

)
∈

(∣∣∣Fa,b

∣∣∣
1
,Mu

)
if and only if

Amn ∈
(∣∣∣Fa,b

∣∣∣
1

)β(bp)
(3.1)

and

sup
m,n,i, j∈N

∣∣∣∣∣∣ 1

âib̂ j
∆

(i j)
11

(
amni j

aib j

)∣∣∣∣∣∣ < ∞. (3.2)

(b) Let 1 < k < ∞. Then, A =
(
amni j

)
∈

(∣∣∣Fu,θ
a,b

∣∣∣
k
,Mu

)
if and only if

Amn ∈
(∣∣∣Fu,θ

a,b

∣∣∣
k

)β(bp)
(3.3)

and

sup
m,n∈N

∑
i, j

∣∣∣∣∣∣∣∣∣
1

âib̂ j

(
uiθ j

)1/k′
∆

(i j)
11

(
amni j

aib j

)∣∣∣∣∣∣∣∣∣
k
′

< ∞. (3.4)

Proof. To avoid the repetition of similar statements, we give the proof only for 1 < k < ∞. Let
x =

(
xi j

)
∈

∣∣∣Fu,θ
a,b

∣∣∣
k
. Then, there exists a double sequence y = (ymn) ∈ Lk. By using the equalities

(2.4)–(2.7), for (s, t)th rectangular partial sum of the series
∑

i, j amni jxi j, we have

(Ax)[s,t]
mn =

s,t∑
i, j

amni jxi j

=

(
amn00

a0b0
−

amn10

a1b0
−

amn01

a0b1
+

amn11

a1b1

)
y00

â0b̂0 (u0θ0)1/k′

+

(
amns0

asb0
−

amns1

asb1

)
ys0

(usθ0)1/k′ âsb̂0

+

(
amn0t

a0bt
−

amn1t

a1bt

)
y0t

â0b̂t (u0θt)1/k′
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+

s−1∑
i=1

(
amni0

aib0
−

amn,i+1,0

ai+1b0
−

amni1

aib1
+

amn,i+1,1

ai+1b1

)
yi0

âib̂0 (uiθ0)1/k′

+

t−1∑
j=1

(
amn0 j

a0b j
−

amn0, j+1

a0b j+1
−

amn1 j

a1b j
+

amn1, j+1

a1b j+1

)
y0 j

â0b̂ j

(
u0θ j

)1/k′

+

s−1∑
i=1

(
amnit

aibt
−

amn,i+1,t

ai+1bt

)
yit

âib̂t (uiθt)1/k′

+

t−1∑
j=1

(
amns j

asb j
−

amns, j+1

asb j+1

)
ys j

âsb̂ j

(
usθ j

)1/k′

+

s−1,t−1∑
i, j=1

(
amni j

aib j
−

amni, j+1

aib j+1
−

amn,i+1, j

ai+1b j
−

amn,i+1, j+1

ai+1b j+1

)
yi j

âib̂ j

(
uiθ j

)1/k′

+
amnstyst

asbtâsb̂t (usθt)1/k′

=

s,t∑
i, j

hmn
sti jyi j =

(
H(k)

mny
)

[s,t]

for every s, t,m, n ∈ N, where the 4−dimensional matrix H(k)
mn =

(
hmn

sti j

)
is defined by

hmn
sti j =



1

â0b̂0 (u0θ0)1/k′
∆

(i j)
11

(
amni j

aib j

)
, i = j = s = t = 0,

1

asâsb̂0 (usθ0)1/k′
∆

(i j)
01

(
amni j

b j

)
, i = s, j = t = 0,

1

btâ0b̂t (u0θt)1/k′
∆

(i j)
10

(
amni j

ai

)
, j = t , i = s = 0,

1

âib̂0 (uiθ0)1/k′
∆

(i j)
11

(
amni j

aib j

)
, 1 ≤ i ≤ s − 1, j = t = 0,

1

â0b̂ j

(
u0θ j

)1/k′
∆

(i j)
11

(
amni j

aib j

)
, 1 ≤ j ≤ t − 1, i = s = 0,

1

btâib̂t (uiθt)1/k′
∆

(i j)
10

(
amni j

ai

)
, 1 ≤ i ≤ s − 1, j = t,

1

asâsb̂ j

(
usθ j

)1/k′
∆

(i j)
01

(
amni j

b j

)
, 1 ≤ j ≤ t − 1 , i = s,

1

âib̂ j

(
uiθ j

)1/k′
∆

(i j)
11

(
amni j

aib j

)
, 1 ≤ i ≤ s − 1, 1 ≤ j ≤ t − 1,

amnst

asbtâsb̂t (usθt)1/k′
, i = s and j = t,

for every s, t, i, j ∈ N. Then, we can write the equality as follows:

(Ax)[s,t]
mn =

(
H(k)

mny
)

[s,t]
. (3.5)
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Thus, it follows from (3.5) that the bp-convergence of (Ax)[s,t]
mn and the statement H(k)

mn ∈
(
Lk,Cbp

)
are

equivalent for all x ∈
∣∣∣Fu,θ

a,b

∣∣∣
k

and m, n ∈ N. Therefore, the condition (3.3) is satisfied for each fixed

m, n ∈ N, that is, Amn ∈
(∣∣∣Fu,θ

a,b

∣∣∣
k

)β(bp)
for each fixed m, n ∈ N and 1 < k < ∞ .

If we take bp-limit in the terms of the matrix H(k)
mn =

(
hmn

sti j

)
while s, t → ∞, we deduce that

bp − lim
s,t→∞

hmn
sti j = hmni j =

1

âib̂ j

(
uiθ j

)1/k′
∆

(i j)
11

(
amni j

aib j

)
. (3.6)

Therefore, using the 4-dimensional matrix H(k) =
(
h(k)

mni j

)
, we obtain with the relations (3.5) and (3.6)

that
bp − lim

s,t→∞
(Ax)[s,t]

mn = bp − lim
(
H(k)y

)
mn
. (3.7)

Thus, it can be written that A =
(
amni j

)
∈

(∣∣∣Fu,θ
a,b

∣∣∣
k
,Mu

)
if and only if H(k) ∈ (Lk,Mu) , by having in

mind of the relation (3.7).
Therefore, using Lemma 2.2 (b), we conclude that

sup
m,n∈N

∑
i, j

∣∣∣∣∣∣∣∣∣
1

âib̂ j

(
uiθ j

)1/k′
∆

(i j)
11

(
amni j

aib j

)∣∣∣∣∣∣∣∣∣
k
′

< ∞,

which satisfies the condition (3.4).
So, we obtain that A =

(
amni j

)
∈

(∣∣∣Fu,θ
a,b

∣∣∣
k
,Mu

)
if and only if the conditions (3.3) and (3.4) are

satisfied.
Thus, the theorem is proved.

Theorem 3.2. Assume that A =
(
amni j

)
be an arbitrary 4-dimensional infinite matrix. In that case, the

following statements hold:
(a) A =

(
amni j

)
∈

(∣∣∣Fa,b

∣∣∣
1
,Cbp

)
if and only if (3.1) and (3.2) are satisfied, and there exists

(
α(1)

i j

)
∈ Ω

such that

bp − lim
m,n→∞

∆
(i j)
11

(
amni j

aib j

)
1

âib̂ j
= α(1)

i j .

(b) Let 1 < k < ∞. Then, A =
(
amni j

)
∈

(∣∣∣Fu,θ
a,b

∣∣∣
k
,Cbp

)
if and only if (3.3) and (3.4) are satisfied, and

there exists
(
α(k)

i j

)
∈ Ω such that

bp − lim
m,n→∞

∆
(i j)
11

(
amni j

aib j

)
1

âib̂ j

(
uiθ j

)1/k′
= α(k)

i j .

Proof. This theorem can be proved by using Lemma 2.2 (d) and (e) in a similar way to that used in the
proof of Theorem 3.1.
Theorem 3.3. Assume that A =

(
amni j

)
be an arbitrary 4-dimensional infinite matrix. In that case, the

following statements hold:
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(a) Let 1 ≤ k < ∞. A =
(
amni j

)
∈

(∣∣∣Fa,b

∣∣∣
1
,Lk

)
if and only if (3.1) and

sup
i, j∈N

∑
m,n

∣∣∣∣∣∣ 1

âib̂ j
∆

(i j)
11

(
amni j

aib j

)∣∣∣∣∣∣k < ∞
hold.
(b) Let 1 < k < ∞. A =

(
amni j

)
∈

(∣∣∣Fu,θ
a,b

∣∣∣
k
,Lu

)
if and only if (3.3) and

∞∑
i, j=0


∞∑

m,n=0

∣∣∣∣∣∣∣∣∣
1

âib̂ j

(
uiθ j

)1/k′
∆

(i j)
11

(
amni j

aib j

)∣∣∣∣∣∣∣∣∣


k
′

< ∞

hold.
Proof. This theorem can be proved by using Lemma 2.2 (c) and Lemma 2.3 in a similar way to that
used in the proof of Theorem 3.1.
Lemma 3.4. [27] Let λ and µ be two double sequence spaces in Ω, A =

(
amni j

)
an arbitrary 4-

dimensional infinite matrix and B =
(
bmni j

)
be a triangle 4-dimensional infinite matrix. Then,

A ∈ (λ, µB) if and only if BA ∈ (λ, µ) .
Now, we can give the final results of our work by considering the Lemmas 2.2, 2.3, and 3.4.

Corollary 3.5. Let A =
(
amni j

)
and T =

(
tmni j

)
four-dimensional matrices be given by the relation

tmni j =

m,n∑
u,v=1

ψmnuvauvi j,

where Ψ = (ψmnuv) is defined as

ψmnuv =

 (umθn)1/k
′

âmb̂naubv, 0 ≤ u ≤ m, 0 ≤ v ≤ n,
0, otherwise,

by considering the relation (2.1) . Then, the necessary and sufficient conditions for the classes(
Lu,

∣∣∣Fu,θ
a,b

∣∣∣
k

)
and

(
Lk,

∣∣∣Fa,b

∣∣∣
1

)
can be found for 1 ≤ k < ∞ as follows:

(a) A =
(
amni j

)
∈

(
Lu,

∣∣∣Fu,θ
a,b

∣∣∣
k

)
if and only if

sup
i, j∈N

∑
m,n

∣∣∣tmni j

∣∣∣k < ∞
holds for 1 ≤ k < ∞.
(b) A =

(
amni j

)
∈

(
Lk,

∣∣∣Fa,b

∣∣∣
1

)
if and only if

∞∑
r,s=0

 ∞∑
m,n=0

|tmnrs|


k
′

< ∞

holds for 1 < k < ∞.
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4. Conclusions

In this paper, a new double series space
∣∣∣Fu,θ

a,b

∣∣∣
k

is defined by using the four-dimensional factorable
matrix F and the absolute summability method for k ≥ 1. Also, some algebraic and topological
properties of the space

∣∣∣Fu,θ
a,b

∣∣∣
k

are given, and the α-, β (bp)-, and γ-duals of this space are determined.
Finally, the characterizations of some new four-dimensional matrix classes in the related spaces are
presented and some important results concerned with Riesz and Cesàro matrix methods are extended
to double sequences owing to the four-dimensional factorable matrix. By using the new series space
defined the four-dimensional factorable matrix F, many impressive results can be obtained in the theory
of series spaces and matrix transformations.
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