Research article

Gorenstein projective modules over Milnor squares of rings

  • Received: 27 July 2024 Revised: 19 September 2024 Accepted: 24 September 2024 Published: 08 October 2024
  • MSC : 16E05, 18G05, 18G25

  • We construct a class of Gorenstein-projective modules over Milnor squares of rings. As an application, we obtain Gorenstein-projective modules over Morita context rings with two bimodule homomorphisms zero in the general setting instead of Artin algebras or Noetherian rings.

    Citation: Qianqian Guo. Gorenstein projective modules over Milnor squares of rings[J]. AIMS Mathematics, 2024, 9(10): 28526-28541. doi: 10.3934/math.20241384

    Related Papers:

  • We construct a class of Gorenstein-projective modules over Milnor squares of rings. As an application, we obtain Gorenstein-projective modules over Morita context rings with two bimodule homomorphisms zero in the general setting instead of Artin algebras or Noetherian rings.



    加载中


    [1] E. E. Enochs, M. Cortés-Izurdiaga, B. Torrecillas, Gorenstein conditions over triangular matrix rings, J. Pure Appl. Algebra, 218 (2014), 1544–1554. http://doi.org/10.1016/j.jpaa.2013.12.006 doi: 10.1016/j.jpaa.2013.12.006
    [2] E. E. Enochs, O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z., 220 (1995), 611–633. http://doi.org/10.1007/BF02572634 doi: 10.1007/BF02572634
    [3] H. Eshraghi, R. Hafezi, S. Salarian, Z. W. Li, Gorenstein projective modules over triangular matrix rings, Algebra Colloq., 23 (2016), 97–104. http://doi.org/10.1142/S1005386716000122 doi: 10.1142/S1005386716000122
    [4] A. Facchini, P. Vámos, Injective modules over pullbacks, J. Lond. Math. Soc., s2-31 (1985), 425–438. http://doi.org/10.1112/jlms/s2-31.3.425 doi: 10.1112/jlms/s2-31.3.425
    [5] N. Gao, C. Psaroudakis, Gorenstein homological aspects of monomorphism categories via Morita rings, Algebr. Represent. Theor., 20 (2017), 487–529. http://doi.org/10.1007/s10468-016-9652-1 doi: 10.1007/s10468-016-9652-1
    [6] E. L. Green, C. Psaroudakis, On Artin algebras arising from Morita contexts, Algebr. Represent. Theor., 17 (2014), 1485–1525. http://doi.org/10.1007/s10468-013-9457-4 doi: 10.1007/s10468-013-9457-4
    [7] Q. Q. Guo, C. C. Xi, Gorenstein projective modules over rings of Morita contexts, Sci. China Math., in press. http://doi.org/10.1007/s11425-022-2206-8
    [8] D. Herbara, P. Prihoda, Infinitely generated projective modules over pullbacks of rings, Trans. Amer. Math. Soc., 366 (2014), 1433–1454. http://doi.org/10.1090/S0002-9947-2013-05798-4 doi: 10.1090/S0002-9947-2013-05798-4
    [9] H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra, 189 (2004), 167–193. http://doi.org/10.1016/j.jpaa.2003.11.007 doi: 10.1016/j.jpaa.2003.11.007
    [10] W. Hu, X.-H. Luo, B.-L. Xiong, G. D. Zhou, Gorenstein projective bimodules via monomorphism categories and filtration categories, J. Pure Appl. Algebra, 223 (2019), 1014–1039. http://doi.org/10.1016/j.jpaa.2018.05.012 doi: 10.1016/j.jpaa.2018.05.012
    [11] P. A. Krylov, A. A. Tuganbaev, Modules over formal matrix rings, J. Math. Sci., 171 (2010), 248–295. http://doi.org/10.1007/s10958-010-0133-5 doi: 10.1007/s10958-010-0133-5
    [12] L. S. Levy, Modules over pullbacks and subdirect sums, J. Algebra, 71 (1981), 50–61. http://doi.org/10.1016/0021-8693(81)90106-X doi: 10.1016/0021-8693(81)90106-X
    [13] J. Milnor, Introduction to algebraic K-theory, Princeton: Princeton University Press, 1972. https://doi.org/10.1515/9781400881796
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(158) PDF downloads(20) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog