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1. Introduction

Let Ai and A be four rings with units for i = 0, 1, 2. Let πi : Ai → A0 and pi : A → Ai be ring
homomorphisms for i = 1, 2. We fix a commutative diagram of rings.

A
p1 //

p2

��

A1

π1

��

(∗)

A2
π2 //A0

If the sequence 0 // A
(p1,p2)// A1 ⊕ A2

( π1
−π2

)
// A0 is exact, it is called a pullback, and A is called a pullback

ring. For the given πn for n = 1, 2, we can always define a ring A := {(x, y) ∈ A1 × A2 | (x)π1 = (y)π2},
and define pn : A → An as the canonical projections for n = 1, 2 such that it is a standard pullback.
The ring A is unique up to isomorphism, and we shall always consider the standard case throughout the
paper. If, moreover, one of π1 and π2 is surjective, then it is called a Milnor square of rings (see [13]),
which gives the short exact sequence

0 // A
(p1,p2) // A1 ⊕ A2

( π1
−π2

)
// A0

// 0 (†)
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Note that if π1 is surjective, then so is p2.
Milnor squares of rings appear in many aspects in mathematics, such as algebraic K-theory,

representation theory, and homological algebra (for instance, see [4, 8, 12, 13]). In [13], they were
studied by the author Milnor in his construction of projective A-modules from projective A1- and
A2-modules, and then the establishment of the Mayer–Vietoris sequence of K-groups. As Milnor’s
philosophy of investigation of projective A-modules, Facchini and Vámos studied injective and flat
A-modules from injective and flat A1- and A2-modules, respectively, in [4]. Herbara and Prihoda also
investigated infinitely generated projective modules in [8] within the framework of Milnor squares of
rings. In view of the development of Gorenstein homological algebra (see, for instance, [2, 9]), it is
essential to study Gorenstein-projective modules in the context of pullback rings, and the question
of how to construct Gorenstein-projective A-modules from Gorenstein-projective A1- and A2-modules
arises naturally.

In this paper, we give a method to answer this question under certain conditions. Given two
Gorenstein-projective A1- and A2-modules G1 and G2, and an isomorphism g : A0 ⊗A1 G1 → A0 ⊗A2 G2

of A0-modules, we can define the standard pullback module G of the triple (G1,G2, g) (see Section 2.3).
Our main result Theorem 1.1 shows that G is a Gorenstein-projective A-module.

Theorem 1.1. Let A1
π1
→ A0

π2
← A2 be homomorphisms of rings such that both π1 and π2 are surjective,

and let A be the pullback ring. Denote by An-GProj the category of Gorenstein-projective An-modules
for n = 1, 2. Assume that the following conditions hold.

(i) TorA2
1 (A0,H) = 0 for all H ∈ A2-GProj.

(ii) Add(Ker(πn)) ⊆ An-GProj⊥ for n = 1, 2.
Let (G1,G2, g) be a triple such that Gn is a Gorenstein-projective An-module for n = 1, 2 and

g : A0 ⊗A1 G1 ' A0 ⊗A2 G2 is an A0-isomorphism. Then the pullback module of the triple (G1,G2, g) is
a Gorenstein-projective A-module.

Moreover, when A2 is strongly left CM-free (see Section 3), the conditions (i) and (ii) in
Theorem 1.1 can be weakened as follows:

Corollary 1.2. Assume that A2 is strongly left CM-free. If Add(Ker(π1)) ⊆ A1-GProj⊥, and Gn is a
Gorenstein-projective An-module for n = 1, 2, then the pullback module of the triple (G1,G2, g) is a
Gorenstein-projective A-module.

An important class of examples of Milnor squares of rings with both π1 and π2 surjective can be
provided by the Morita context rings with two bimodule homomorphisms zero. The current works
(see [5,7]) about the construction of Gorenstein-projective modules over these kinds of rings are mainly
concentrated in the settings of Artin algebras and Noetherian rings, while our results, Theorem 1.3, as
an application of Theorem 1.1, extends these results to the general rings.

Theorem 1.3. Let Λ(0,0) =
(

Λ N
M B

)
(0,0) be a Morita context ring with two bimodule homomorphisms zero.

Assume that the following conditions hold.
(1) TorΛ

1 (M,H) = 0 for all H ∈ Λ-GProj, and Add(BM) ⊆ B-GProj⊥,
(2) TorB

1 (N,G) = 0 for all G ∈ B-GProj, and Add(ΛN) ⊆ Λ-GProj⊥.
Let U ∈ Λ-GProj, V ∈ B-GProj. If there exist a Λ-module X, a B-module Y, and two short exact

sequences
0 // N ⊗B V

g // X s // U // 0
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and
0 // M ⊗Λ U

f // Y t // V // 0

in Λ-Mod and B-Mod, respectively, then (X,Y, (1M ⊗ s) f , (1N ⊗ t)g) is a Gorensteon-projective Λ(0,0)-
module.

The rest of this paper is structured as follows: In Section 2, we fix some notations and recall
basic facts for later use. In Section 3, we prove the main result Theorem 1.1 in Theorem 3.3, while
Lemmas 3.1 and 3.2 are the preparations. In Section 4, we prove Theorem 1.3 in Corollary 4.1.

2. Preliminaries

In this section, we recall basic definitions and facts for later proofs.
Let A be an associative ring with unit. We denote by A-Mod the category of all left A-modules.

As usual, A-Proj is the full subcategory of A-Mod consisting of all projective modules. For a module
AX, we denote by Add(AX) the full subcategory of A-Mod consisting of modules isomorphic to direct
summands of direct sums of AX. Then we have A-Proj = Add(AA).

Let · · · → X2 → X1 → X0 → · · · be a sequence in A-Mod and Y ∈ A-Mod. It is called HomA(−,Y)-

exact if itself is exact and applying HomA(−,Y) preserves its exactness. Let · · · → P1
d1
→ P0

δ
→ X → 0

be a projective resolution of AX. We denote Ker(di) by ΩiX for i ≥ 1 and Ker(δ) by Ω0X.
The composite of two homomorphisms f : X → Y and g : Y → Z will be denoted by f g instead of

g f . Thus, the image of x ∈ X under f is written as (x) f or x f , and the image of f is denoted by Im( f ).
The composite of two functors F : C → D and G : D → E will be denoted by G ◦ F, which is a

functor from C → E. Let (F,G) be an adjoint pair where F : C → D and G : D → C. We denote by
η : IdC → GF the unit, and by ε : FG → IdD the counit. We need the following fact.

Lemma 2.1. Let (F,G) be an adjoint pair. Then

(1) The adjunction isomorphism ηX,Y : HomD(FX,Y) → HomC(X,GY) is defined by f 7→ ηX(G f )
with the inverse map η−1

X,Y defined by g 7→ (Fg)εY , where ηX and εY are the corresponding unit and
counit maps.

(2) Let
U α //

f
��

V
g
��

GU′
Gβ // GV ′

be a commutative diagram in C. Then the diagram

FU Fα //

( f )η−1
U,U′
��

FV
(g)η−1

V,V′
��

U′
β // V ′

is commutative, and vice versa.

Next, we recall the definition of approximations. LetD be a full additive subcategory of an additive
category C and X an object in C. A morphism f : X → D in C is called a left D-approximation
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of X if D ∈ D and HomC( f ,D′) : HomC(D,D′) → HomC(X,D′) is surjective for any object D′ ∈
D. Dually, a morphism f : D → X in C is called a right D-approximation of X if D ∈ D and
HomC(D′, f ) : HomC(D′,D) → HomC(D′, X) is surjective for any object D′ ∈ D. Note that left and
right approximations are termed as preenvelopes and precovers in ring theory, respectively.

Let 0→ X
α
→ T → Y → 0 be a short exact sequence with AT projective. Then α is a left Add(AA)-

approximation of X if and only if Ext1
A(Y, P) = 0 for all P ∈ A-Proj if and only if it is HomA(−, P)-exact

for every P ∈ A-Proj.
The following homological facts are often used.

Lemma 2.2. Let A and B be unitary rings, and let AX be an A-module, BU a B-module, and BMA a
B-A-bimodule. If TorA

1 (M, X) = Ext1
B(M,U) = 0, then

Ext1
B(M ⊗A X,U) ' Ext1

A(X,HomB(M,U)).

Proof. Consider the short exact sequences

0 −→ AK
f
−→ AP −→ AX −→ 0,

and
0 −→ BU −→ BI

g
−→ BL −→ 0,

where P ∈ A-Proj, I ∈ B-Inj. Since TorA
1 (M, X) = Ext1

B(M,U) = 0 by assumption, applying BM ⊗A −

and HomB(M,−) yield two short exact sequences

0 −→ BM ⊗A K −→ BM ⊗A P −→ BM ⊗A X −→ 0,

and
0 −→ HomB(M,U) −→ HomB(M, I)

g∗
−→ HomB(M, L) −→ 0,

respectively. Note that Hom is a functor of two variables. Then we have the following commutative
diagram with exact rows and columns

0

��

0

��

0

��
0 //

A(X, B(M,U))

��

//
A(P, B(M,U))

��

//
A(K, B(M,U))

��

// Ext1
A(X, B(M,U)) // 0

0 //
A(X, B(M, I))

A(X,g∗)
��

//
A(P, B(M, I))

��

//
A(K, B(M, I))

A(K,g∗)
��

// 0

0 //
A(X, B(M, L)) //

��

A(P, B(M, L))

��

A( f ,(M,L))//
A(K, B(M, L)) //

��

Ext1
A(X, B(M, L)) // 0

Ext1
B(M ⊗A X,U)

��

0 Ext1
B(M ⊗A K,U)

��
0 0
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In fact, the exactness of the left column follows from the commutative diagram with exact rows

0 //
B(M ⊗A X,U)

'

��

//
B(M ⊗A X, I)

'

��

//
B(M ⊗A X, L)

'

��

// Ext1
B(M ⊗A X,U)

'

��

// 0

0 //
A(X, B(M,U)) //

A(X, B(M, I)) A(X,g∗)//
A(X, B(M, L)) // Coker(A(X, g∗)) // 0

Similarly, one can verify that the right column and the middle row are exact. Then by the Snake
Lemma, we have Ext1

A(X, B(M,U)) ' Ext1
B(M ⊗A X,U). �

2.1. Gorenstein-projective modules

Recall that a complete projective resolution is an exact sequence

P• = · · · P2
dP

2
−→ P1

dP
1
−→ P0

dP
0
−→ P0

d0
P
−→ P1

d0
P
−→ P2 → · · ·

such that HomA(P•, P) is exact for every projective A-module P. An A-module X is called Gorenstein-
projective if there exits a complete projective resolution complex P• such that X ' Im(dP

0 ) = Ker(d0
P).

One can observe that if P• is a complete projective resolution, then all the images and kernels of P• are
Gorenstein-projective. We denote by A-GProj the category of all Gorenstein-projective A-modules, and
let A-GProj⊥ := {AX | Ext1

A(M, X) = 0,∀AM ∈ A-GProj}. We list the following well-known properties
for later use (see also [9]).

Lemma 2.3. Let 0→ G′ → G → G′′ → 0 be a short exact sequence in A-Mod.

(1) If G and G′′ are Gorenstein-projective, then G′ is Gorenstein-projective.
(2) If G, G′ are Gorenstein-projective, and Ext1

A(G′′, P) = 0 for all projective A-modules P, then G′′

is Gorenstein-projective.

Lemma 2.4. For any module AG, the following two conditions are equivalent.

(1) AG is Gorenstein-projective.
(2) There exists a HomA(−, P)-exact sequence 0 → G → Q0 → Q1 → · · · for every projective

A-module P, and Exti
A(G, P) = 0 for all i ≥ 1 and all projective A-modules P.

Moreover, if M ∈ A-Mod such that projdim(AM) < ∞, then M ∈ A-GProj⊥.

2.2. Modules under change of rings

Let f : A → B be a homomorphism of rings. Then every B-module U can be viewed as an A-
module by defining a · u := (a) f u for all a ∈ A and u ∈ U. Thus we get the so-called restriction functor
A(−) : B-Mod → A-Mod. Moreover, there is an adjoint pair (B ⊗A −, A(−)) of functors whose unit is
the canonical homomorphism of A-modules:

ηX : X −→ AB ⊗A X, x 7→ 1B ⊗ x for x ∈ X

for X ∈ A-Mod, and the counit

εU : B ⊗A U −→ U, b ⊗ u 7→ bu for u ∈ U, b ∈ B,

for U ∈ B-Mod.
By Lemma 2.1, we have the following fact.

AIMS Mathematics Volume 9, Issue 10, 28526–28541.
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Lemma 2.5. Let X ∈ A-Mod, U ∈ B-Mod. Then

(1) There is an adjunction isomorphism

ηX,U : HomB(B ⊗A X,U)→ HomA(X,U), f 7→ ( f )ηX,U : x 7→ (1B ⊗ x) f , x ∈ X

with the inverse map η−1
X,U defined by (g)η−1

X,U = (1B ⊗ g)εU : b ⊗ x 7→ b((x)g), x ∈ X, b ∈ B.
(2) The cannonical isomorphism B ⊗A (A)I → (B)I maps b ⊗ (ai) to b(ai f ) is the image of f I under

η−1
AI ,BI , where I denotes any cardinal number and f I denotes the diagonal map.

If f is surjective, then B ⊗A X ' X/Ker( f )X for X ∈ A-Mod, and we have the following lemma.

Lemma 2.6. Let X ∈ A-Mod, U ∈ B-Mod. Then

(1) The unit map ηX : X → B ⊗A X is surjective.
(2) The counit map εU : B ⊗A U −→ U is an isomorphism.
(2) Let g ∈ HomA(X,U). If g is surjective, then so is (g)η−1

X,U .

Remark that the unit map in Lemma 2.6(1) is actually the composite X → X/Ker( f )X ' B ⊗A X.
Next we study when a ring extension preserves Gorenstein-projective modules.

Lemma 2.7. Let f : A → B be a surjective homomorphism of rings. Suppose that TorA
1 (B,H) = 0 for

all H ∈ A-GProj, and Add(Ker(f)) ⊆ A-GProj⊥. If X ∈ A-GProj, then B ⊗A X ∈ B-GProj.

Proof. Since X ∈ A-Gproj, there exists a complete projective resolution P• such that Ker(d0
P) = X.

Since TorA
1 (B,H) = 0 for all Gorenstein-projective A-modules, we have that B ⊗A P• is exact with

Ker(1B ⊗ d0
P) = B ⊗A X.

Next we shall show that HomB(B⊗A P•,Q) is exact for every Q ∈ B-Proj, while by the isomorphism
HomB(B ⊗A P•,Q) � HomA(P•,Q), we only need to show that HomA(P•,Q) is exact. Then it is
sufficient to show that AQ ⊆ A-GProj⊥. Since Add(Ker(f)) ⊆ A-GProj⊥, by the short exact 0 −→
Ker( f ) −→ A −→ B −→ 0, we have Add(AB) ⊆ A-GProj⊥, and thus AQ ⊆ A-GProj⊥. Then it follows
that HomA(P•,Q) is exact. �

2.3. Modules over Milnor squares of rings

In this subsection, we mainly study the module category of a pullback ring.
Let (∗) be a Milnor square of rings. From whom we obtain four left adjoint functors listed in the

following diagram
A-Mod F //

L
��

A1-Mod
F1
��

A2-Mod
F2 //A0-Mod

where F, L denote the left adjoint functors A1 ⊗A − and A2 ⊗A −, respectively, and Fn denotes the left
adjoint functors A0 ⊗An − for n = 1, 2. We will fix the above notations in the rest of the paper. Note that
there is a natural isomorphism of functors π : F1F → A0 ⊗A − → F2L. As for Fn, we denote the unit
map by ηn : Xn −→ FnXn for Xn ∈ An-Mod, and the counit map εn : FnY −→ Y for Y ∈ A0-Mod.

Following [4], we study the category of A-Mod by the so-called fiber product category F of A1-Mod
and A2-Mod. An object in F is a triple (X1, X2, x), where Xn ∈ An-Mod, n = 1, 2, and x : F1X1 → F2X2
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is an A0-isomorphism. A homomorphism from a triple (X1, X2, x) to another triple (Y1,Y2, y) in F is a
pair (α1, α2) of An-homomorphisms αn : Xn → Yn such that the following square commutes.

F1X1
F1α1 //

x
��

F1Y1

y
��

F2X2
F2α2 // F2Y2

(2.1)

Then for an A-module X, there is an associated triple (FX, LX, πX) where πX : F1FX → F2LX is
the composite of the cannonical A0-isomorphisms F1FX

'
→ A0 ⊗A X

'
→ F2LX.

Conversely, for a triple (X1, X2, x) in F , there is an associated pullback module Pb(X1, X2, x) :=
{(x1, x2) ∈ X1 × X2 | (1A1 ⊗ x1)x = 1A2 ⊗ x2}. Write X for Pb(X1, X2, x) for brevity. Then X gives the
following standard pullback diagram of A-modules:

X
j1 //

j2
��

X1

η1 x
��

X2
η2 // F2X2

(2.2)

and the short exact sequence 0 // X
( j1, j2) // X1 ⊕ X2

(η1 x
−η2

)
// F2X2

// 0 , where jn is the canonical
projection for n = 1, 2. We denote by j̃1 and j̃2 the image of j1 and j2 under the isomorphism
HomA(X, X1) ' HomA1(FX, X1) and HomA(X, X2) ' HomA2(LX, X2), respectively.

In this language, we summarize Milnor’s classical description of projective modules over Milnor
squares of rings as follows.

Lemma 2.8. [13] An A-module P is projective if and only if there is a triple (P1, P2, p) in F such that
Pn is projective as An-module for n = 1, 2, and P ' Pb(P1, P2, p).

Moreover, if (P1, P2, p) is such a triple in F with P its pullback module, then FP ' P1, and LP ' P2.

In the following lemma, we discuss the case that for every triple (X1, X2, x) with X its pullback
module, it holds that FX ' X1 and LX ' X2.

Lemma 2.9. If πn is surjective for n = 1, 2, then both j̃1 : FX → X1 and j̃2 : LX → X2 are
isomorphisms.

Proof. Since πn is surjective, pn is also surjective for n = 1, 2 by the pullback diagram (∗). Now
consider the pullback diagram of A-modules with exact rows

0 //Ker( j1)
i1 //

'

��

X
j1 //

j2
��

X1

η1 x
��

0 //K2X2
//X2

η2 //F2X2

where K2 denotes Ker(π2), and Ker( j1) = (0,K2X2). By Lemma 2.6(1), the unit map ηn is surjective for
n = 1, 2. Then jn is also surjective by the pullback diagram, and so is j̃n by Lemma 2.6(3).
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Next, we shall show that j̃n is injective. We only prove the case for n = 1, since the proof of n = 2
is similar. Applying F to the upper row of the above diagram gives the exact sequence

FKer( j1)
Fi1 // FX

j̃1 // X1
// 0

We claim that Im(Fi1) = 0. Actually, let a1 ⊗ (0, k2x2) ∈ FKer( j1) with a1 ∈ A1, k2 ∈ K2, x2 ∈ X2. Since
η1x is surjective, there exists a x1 ∈ X1 such that (x1, x2) ∈ X. Then a1⊗ (0, k2x2) = a1⊗ (0, k2)(x1, x2) =

a1(0, k2)⊗ (x1, x2) in FX, but (0, k2) obviously lies in Ker(p1), thus a1(0, k2) = 0, and our claim follows,
which implies that j̃1 is an isomorphism. �

A module AX is called separated (see [12]), if there exists an A-monomorphism X → X1 ⊕ X2 for
some An-module Xn, n = 1, 2. By Lemma 2.8, a projective module is separated. Thus, a Gorenstein-
projective module is also separated by the definition that it can be embedded into a projective module.
The following lemma, which can be obtained from [12, Corollary 3.3], shows that a separated module
must be a pullback module.

Lemma 2.10. Let X be an A-module. Then the following are equivalent.

(1) X is separated.
(2) (p1 ⊗ 1X, p2 ⊗ 1X) : X −→ FX ⊕ LX is a monomorphism.
(3) There is a short exact sequence

0 // X // FX ⊕ LX
(η1πX
−η2

)
// F2LX // 0 .

(4) X is isomorphic to a pullback module of a triple in F .

Proof. (1) ⇒ (2) Since X is separated, there exists a monomorphism (c1, c2) : X → X1 ⊕ X2 with
An-module Xn, Note that p1⊗1X and p2⊗1X are actually the unit maps corresponding to the left adjoint
functions F and L, respectively. Then (c1, c2) factors through FX ⊕ LX; that is, there is a commutative
diagram.

X
(p1⊗1X ,p2⊗1X) //� _

(c1,c2)
�

FX ⊕ LX

cvv
X1 ⊕ X2

where c =
( (c1)η−1

X,X1
0

0 (c2)η−1
X,X2

)
. This shows that (p1 ⊗ 1X, p2 ⊗ 1X) is indeed a monomorphism.

(2)⇒ (3) This follows from the commutative diagram

X
(p1⊗1X ,p2⊗1X) //

��

FX ⊕ LX // A0 ⊗A X //

'

��

0

0 // X′ // FX ⊕ LX
(η1πX
−η2

)
// F2LX // 0

(2.3)

where the upper row is obtained from applying − ⊗A X to (†), and X′ denotes Ker
(
η1πX
−η2

)
. Since (p1 ⊗

1X, p2 ⊗ 1X) is injective, it follows that X ' X′.
(3) ⇒ (4) (3) implies that X is isomprphic to Ker

(
η1πX
−η2

)
, which is the pullback module of the triple

(FX, LX, πX).
(4)⇒ (1) is trivial. �
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Finally, we have an analogue of Lemma 2.8.

Proposition 2.11. Suppose that πn is surjective for n = 1, 2. Then an A-module X is separated if and
only if there is a triple (X1, X2, x) in F such that X ' Pb(X1, X2, x).

Moreover, if (X1, X2, x) is a triple in F with X its pullback module, then FX ' X1 and LX ' X2.

Proof. This follows from Lemmas 2.10 and 2.9. �

3. Proof of the main results

In this section, we always assume that (∗) is a Milnor square of rings such that πn is surjective for
n = 1, 2.

We call a triple (G1,G2, g) in F a Gorenstein triple if Gn ∈ An-GProj for n = 1, 2. Our purpose is to
construct a Gorenstein-projective A-module from a given Gorenstein triple.

We know that each Gorenstein-projective module can be embedded into a projective module such
that the cokernel is also Gorenstein-projective by its definition, while the following lemma will lift this
property to a whole Gorenstein triple, which will be crucial to our later proof.

Lemma 3.1. Assume that Add(AnKer(πn)) ⊆ An-GProj⊥ for n = 1, 2. Then for a Gorenstein triple
(G1,G2, g), there exists a (T1,T2, t) and a homomorphism (α1, α2) : (G1,G2, g) → (T1,T2, t) in F such
that AnTn ∈ Add(An An) and αn is a left Add(An An)-approximation of Gn, for n = 1, 2.

Proof. Our proof proceeds in two steps:
Step 1. Construction of (T1,T2, t). Since G1 ∈ A1-GProj, there is a monomorphism a : G1 → P1

which is a left Add(A1 A1)-approximation of G1. By choosing a projective module Q1, we can modify

a as a1 : G1
(a,0)
→ P1 ⊕ Q1 ' (A1)I , where I denotes any cardinal number. Similarly, there is also a

monomorphism a2 : G2 → (A2)J, which is a left Add(A2 A2)-approximation of G2. Now write T1 for
(A1)I ⊕ (A1)J and T2 for (A2)I ⊕ (A2)J. Considering the canonical isomorphism

F1T1
' // F1(A1)I ⊕ F1(A1)J

( tI
1 0
0 tJ

1

)
// (A0)I ⊕ (A0)J

( (tI
2)−1 0
0 (tJ

2 )−1

)
// F2(A2)I ⊕ F2(A2)J ' // F2T2

where tI
n denotes the image of (πn)I under the isomorphism HomAn((An)I , (A0)I) →

HomA0(Fn(An)I , (A0)I), which is an isomorphism by Lemma 2.5(2), and tJ
n is defined in the

same way for n = 1, 2. Then we naturally get a triple (T1,T2, t) in F .
Step 2. Construction of (α1, α2). Our aim is to construct two homomorphisms b1 : G1 → (A1)J and

b2 : G2 → (A2)I such that (α1, α2) := ((a1, b1), (b2, a2)) : (G1,G2, g) → (T1,T2, t) is a homomorphism
in F . If so, it will follow from an being an Add(An An)-approximation that αn is also an Add(An An)-
approximation for n = 1, 2, and then we will complete the proof.

Actually, by the definition of t and by the diagram (2.1), our desired bn should make the following
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diagram commute.

F1G1
(F1a1,F1b1)//

' g

��

F1(A1)I ⊕ F1(A1)J( tI
1 0
0 tJ

1

)
��

(A0)I ⊕ (A0)J( (tI
2)−1 0
0 (tJ

2 )−1

)
��

F2G2
(F2b2,F2a2)// F2(A2)I ⊕ F2(A2)J

(3.1)

that is, b1 : G1 → (A1)J and b2 : G2 → (A2)I should satisfy (F1b1)tJ
1(tJ

2)−1 = gF2a2, and (F1a1)tI
1(tI

2)−1 =

gF2b2 respectively.
To obtain b1 : G1 → (A1)J, we need to consider the composite map g(F2a2)tJ

2 : F1G1 → (A0)J

in A0-Mod, and denote it by g0. Let g̃0 be the image of g0 under the isomorphism ηG1,(A0)J :
HomA0(F1G1, (A0)J) ' HomA1(G1, (A0)J). By the assumption that Add(A1Ker(π1)) ⊆ A1-GProj⊥, we
have Ext1

A1
(G1,Ker(π1)J) = 0. Then applying HomA1(G1,−) to the short exact sequence

0→ Ker(π1)J → (A1)J (π1)J

→ (A0)J → 0

preserves its exactness. Thus there exists a b1 : G1 → (A1)J such that b1(π1)J = g̃0. Note that by
Lemma 2.5(1), we have g0 = (F1g̃0)ε1 = (F1b1)(F1(π1)J)ε1 with ε1 the counit map F1(A0)J → (A0)J,

but again by Lemma 2.5(1) and the definition of tJ
1 , we have (F1(π1)J)ε1 = tJ

1 , and then it follows that
(F1b1)tJ

1 = g0 := g(F2a2)tJ
2 , as desired. Similarly, by considering the composite map g−1(F1a1)tI

1, the
existence of the desired b2 can also be proved. This completes the proof. �

The following lemma exhibits a situation that makes an A-module X lie in the left Ext-orthogonal
group of Add(AA), which is a necessary condition for AX to be Gorenstein-projective.

Lemma 3.2. Suppose that F2 sends Gorenstein-projective A2-modules to Gorenstein-projective A0-
modules. Let 0 → X → T → Y → 0 be a short exact sequence in A-Mod where T is projective and
both X and Y are pullback modules of two Gorenstein triples. If TorA

1 (An, X) = 0, and TorA
1 (An,Y) = 0

for n = 1, 2, then we have Ext1
A(X, P) = 0 for all P ∈ A-Proj.

Proof. Take P ∈ A-Proj and write Pn for An ⊗A P ∈ An-Proj for n = 0, 1, 2. By applying − ⊗A P to (†),
we have the short exact sequence

0→ P→ P1 ⊕ P2 → P0 → 0.

Applying HomA(Y,−) to the above sequence yields the long exact sequence

· · · → Ext1
A(Y, P0)→ Ext2

A(Y, P)→ Ext2
A(Y, P1 ⊕ P2)→ · · · .

Then we only need to show that Ext1
A(Y, P0) = 0, and Ext2

A(Y, P1 ⊕ P2) ' Ext1
A(X, P1 ⊕ P2) = 0. If so, it

will follow that Ext2
A(Y, P) = 0, and thus Ext1

A(X, P) = 0 by the dimension shifting.
We first show that Ext1

A(X, Pn) = 0 for n = 1, 2. Assume that X is a pullback module of a Gorenstein
triple (X1, X2, x). By Lemma 2.9, we have FX ' X1, and LX ' X2, and thus FX ∈ A1-GProj and
LX ∈ A2-GProj. Then, by Lemma 2.2 and the assumption that TorA

1 (An, X) = 0 for n = 1, 2, we have
Ext1

A(X, P1) ' Ext1
A1

(FX, P1) = 0, and Ext1
A(X, P2) ' Ext1

A2
(LX, P2) = 0.
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Next, we show that Ext1
A(Y, P0) = 0. Since Y is also a pullback module of a Gorenstein triple,

we similarly have FY ∈ A1-GProj and LY ∈ A2-GProj. Then, by the assumption on F2, we have
A0 ⊗A Y ' F2LY ∈ A0-GProj. Applying − ⊗A Y to (†) yields a long exact sequence

0 −→ TorA
1 (A1,Y) ⊕ TorA

1 (A2,Y) −→ TorA
1 (A0,Y) −→ Y −→ FY ⊕ LY.

Since Y is separated, it follows from Lemma 2.10(2) that TorA
1 (A0,Y) ' TorA

1 (A1,Y) ⊕ TorA
1 (A2,Y) = 0.

Then by Lemma 2.2, we have Ext1
A(Y, P0) ' Ext1

A0
(A0 ⊗A Y, P0) = 0. �

Now it is time to prove our main result.

Theorem 3.3. Let (G1,G2, g) be a Gorenstein triple in F , and G := Pb(G1,G2, g). Assume that the
following conditions hold.

(i) TorA2
1 (A0,H) = 0 for all H ∈ A2-GProj.

(ii) Add(Ker(πn)) ⊆ An-GProj⊥ for n = 1, 2.
Then we have that
(a) There exists a short exact sequence 0 → G → T → G1 → 0 in A-Mod where T is projective,

and G1 is a pullback module of a Gorenstein triple in F , and TorA
1 (An,G1) = 0 for n = 1, 2.

(b) Ω0G is a pullback module of a Gorenstein triple in F , and TorA
1 (An,G) = 0 for n = 1, 2.

(c) G ∈ A-GProj.

Proof. By the conditions (i), and (ii) for n = 2, it follows from Lemma 2.7 that F2 sends Gorenstein-
projective A2-modules to A0-modules, which will be used as a fact in the following proof.

(a) By Lemma 3.1, we have a triple (T1,T2, t) and a homomorphism (α1, α2) from (G1,G2, g) to
(T1,T2, t) in F with αn an Add(An)-approximation of Gn. Since Gn can be embedded into a projective
module, the embedding map must factor through αn, and it follows that αn is injective, and we have the
short exact sequence in An-mod

0 // Gn
αn // Tn

βn // Ln
// 0 (3.2)

where Ln ∈ An-GProj by Lemma 2.3(2) for n = 1, 2. Then, by applying Fn to (3.2) and by the
condition (i) and diagram (2.2), we obtain the commutative diagram with an exact lower row

F1G1
F1α1 //

' g
��

F1T1

' t
��

// F1L1

l
��

// 0

0 // F2G2
F2α2 // F2T2

// F2L2
// 0

(3.3)

where the induced map l is an isomorphism by the Five Lemma. Denote by T the pullback module
of the triple (T1,T2, t). By the definition of pullback modules, we obtain the left two columns of the
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following commutative diagram with exact columns and the lower two rows

0

��

0

��

0

��
0 // G α //

����

T

��

// G1

��

// 0

0 // G1 ⊕G2

(η1g
−η2

)
��

(
α1 0
0 α2

)
// T1 ⊕ T2

( η1t
−η2

)
��

(
β1 0
0 β2

)
// L1 ⊕ L2

( η1l
−η2

)
��

// 0

0 // F2G2

��

F2α2 // F2T2

��

// F2L2

��

// 0

0 0 0

(3.4)

where G1 denotes Ker
(
η1l
−η2

)
. In fact, the commutativity of the lower two squares follows from (3.3) and

the functoriality of ηn for n = 1, 2. Then, by the Snake Lemma, we obtain our desired short exact
sequence, the induced first row

0→ G
α
→ T → G1 → 0.

In fact, from the exact third column in (3.4), we see that G1 is the pullback module of the Gorenstein
triple (L1, L2, l) in F , and from the upper two rows in diagram (3.4), we deduce the commutative two
diagrams by Lemma 2.1(2)

0 // FG Fα //

'

��

LT
'

��

// FG1 //

'

��

0

0 // G1
α1 // T1

// L1
// 0

0 // LG Lα //

'

��

LT
'

��

// LG1 //

'

��

0

0 // G2
α2 // T2

// L2
// 0

where all the vertical isomorphisms follow from Lemma 2.9, which implies that both Fα and Lα are
injective, and thus TorA

1 (An,G1) = 0 for n = 1, 2.

(b) Choose a short exact sequence 0 → Ω0G → P
β
→ G → 0 with AP projective. Since both G

and P are separated, we have, by Lemma 2.10(3), the two exact columns of the following commutative
diagram with exact rows

0

��

0

��

0

��
0 // Ω0G //

��

P

��

β // G

��

// 0

0 // C1 ⊕C2

(η1c
−η2

)
��

// FP ⊕ LP

(η1πP
−η2

)
��

(
Fβ 0
0 Lβ

)
// FG ⊕ LG

(η1πG
−η2

)
��

// 0

0 // F2C2

��

// F2LP

��

F2Lβ // F2LG

��

// 0

0 0 0

(3.5)
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where C1 and C2 are kernels of Fβ and Lβ, respectively, both of which are Gorenstein-projective
modules by Lemma 2.3(1). c is induced from the diagram

F1C1
//

c'

��

F1FP //

πP'

��

F1FG //

πG'

��

0

0 // F2C2
// F2LP // F2LG // 0

where the commutativity of the right square follows from the functoriality of π : F1F → F2L, and the
exactness of the lower row follows from the condition (i). Then, by the Snake Lemma, the first column
is exact. This shows that Ω0G is isomorphic to the pullback module of the Gorenstein triple (C1,C2, c)
in F . Now, by a similar proof in (a), we have TorA

1 (An,G) = 0 for n = 1, 2.
(c) Step 1. We show that Ext1

A(G, P) = 0 for every P ∈ A-Proj.
Actually, this follows from Lemma 3.2 and the short exact sequence

0→ G
α
→ T → G1 → 0 (3.6)

in (a), since G is a pullback module of a Gorenstein triple by the assumption, and TorA
1 (An,G) = 0

for n = 1, 2 by (b), and G1 is a pullback module of a Gorenstein triple such that TorA
1 (An,G1) = 0 for

n = 1, 2 by (a).
Step 2. We show that there is a HomA(−, P)-exact sequence

T + : 0 −→ G
α
−→ T −→ T 1 −→ · · · −→ T i

di
T
−→ T i+1 −→ · · ·

for every P ∈ A-Proj.
Since G1 is a pullback module of a Gorenstein triple, again by (a) and by induction on i ≥ 1, we

obtain a series of short exact sequences of A-modules

0 −→ Gi αi

−→ T i −→ Gi+1 −→ 0

with T i projective and Gi the pullback module of a Gorenstein triple such that TorA
1 (An,Gi) = 0 for

n = 1, 2. Then, by Lemma 3.2, we have Ext1
A(Gi, P) = 0 for all i ≥ 1 and P ∈ A-Proj. Thus, by splicing

these short exact sequences for all i ≥ 1, together with (3.6), we obtain the desired P+.

Step 3. We show that Exti
A(G, P) = 0 for all i ≥ 2 and P ∈ A-Proj.

This is equivalent to showing that Ext1
A(ΩiG, P) = 0 for all i ≥ 0 and P ∈ A-Proj. But this similarly

follows from the induction on ΩiG by (b) for i ≥ 0, and applying Lemma 3.2 to the short exact
sequences 0→ Ωi+1G → Ti → ΩiG → 0 and 0→ Ω0G → T0 → G → 0 with T0,Ti projective.

Finally, by Lemma 2.4, we get that G is a Gorenstein-projective A-module. �

A ring is said to be strongly left CM-free (see [1]) if each Gorenstein-projective left module over it
is projective. We have the following corollary.

Corollary 3.4. Let (G1,G2, g) be a Gorenstein triple in F , and G := Pb(G1,G2, g). Assume that A2 is
strongly left CM-free, and Add(Ker(π1)) ⊆ A1-GProj⊥. Then G ∈ A-GProj.

AIMS Mathematics Volume 9, Issue 10, 28526–28541.



28539

4. Applications to Morita context rings

Morita context rings play an important role in ring theory. They provide many important examples
and frameworks of kinds of problems (for instance, see [6, 11]). In this section we construct
Gorenstein-projective modules over Morita context rings with two bimodule homomorphisms zero
Λ(0,0) =

(
Λ N
M B

)
(0,0) , of which the multiplication is defined as(

λ n
m b

) (
λ′ n′

m′ b′

)
=

(
λλ′ λn′ + nb′

mλ′ + bm′ bb′

)
.

A left Λ(0,0)-module is identified with a quadruple (ΛX, BY, f , g), where f ∈ HomB(M ⊗Λ X,Y) and
g ∈ HomΛ(N ⊗B Y, X), and a homomorphism from a triple (X,Y, f , g) to another triple (X′,Y ′, f ′, g′) is
a pair (α, β) with α ∈ HomΛ(X, X′) and β ∈ HomB(Y,Y ′) such that the two diagrams are commutative

M ⊗Λ X

1M⊗α

��

f // Y

β

��
M ⊗Λ X′

f ′ // Y ′

and N ⊗B Y

1N⊗β

��

g // X

α

��
N ⊗B Y ′

g′ // X′

For more details about Morita context rings, we refer the reader to [6], for instance.
Let A1 be the upper triangular matrix ring

(
Λ N
0 B

)
, A2 be the lower triangular matrix ring

(
Λ 0
M B

)
, and

A0 be the diagonal matrix ring
(

Λ 0
0 B

)
. Then Λ(0,0) can be interpreted as a pullback ring through the

following commutative diagram.
Λ(0,0)

p1 //

p2

��

A1

π1

��
A2

π2 //A0

where pn and πn are canonical projections for n = 1, 2. By the characterization of Gorenstein-projective
modules over triangular matrix rings in [3], we obtain the following corollary, which allows us to obtain
Gorenstein-projective Λ(0,0)-modules from Gorenstein-projective Λ-modules and B-modules.

Corollary 4.1. Assume that (1) TorΛ
1 (M,H) = 0 for all H ∈ Λ-GProj, and Add(BM) ⊆ B-GProj⊥,

(2) TorB
1 (N,G) = 0 for all G ∈ B-GProj, and Add(ΛN) ⊆ Λ-GProj⊥.

Let U ∈ Λ-GProj, V ∈ B-GProj. If there exist a Λ-module X, a B-module Y, and two short exact
sequences

0 // N ⊗B V
g // X s // U // 0

and
0 // M ⊗Λ U

f // Y t // V // 0

in Λ-Mod and B-Mod, respectively, then (X,Y, (1M ⊗ s) f , (1N ⊗ t)g) ∈ Λ(0,0)-Gproj.

Proof. Write W for (X,Y, (1N ⊗ t)g, (1M ⊗ s) f ), W1 for (X,V, 0, g), W2 for (U,Y, f , 0), and W0 for
(U,V, 0, 0). Then W0 ' A0 ⊗A1 W1 ' A0 ⊗A2 W2, and one can verify that the following commutative
diagram is a pullback diagram,

W
(1X ,t) //

(s,1Y )
��

W1

(s,1V )
��

W2
(1U ,t) // W0
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By the condition (2) and the short exact sequence

0 // N ⊗B V
g // X s // U // 0,

it follows from Theorem [3, Theorem 2.5] that W1 := (X,V, g) ∈ A1-GProj. Dually, by the condition (1)
and the short exact sequence

0 // M ⊗Λ U
f // Y t // V // 0,

we have W2 := (U,Y, f ) ∈ A2-GProj. Now we only need to show that the conditions (i) and (ii) in
Theorem 3.3 are satisfied here, and then it will follow that W ∈ Λ(0,0)-GProj.

Actually, by [5, Lemma 3.9], it follows from Add(ΛN) ⊆ Λ-GProj⊥ that Add(ΛN, 0, 0) ⊆ A1-GProj⊥,
and similarly we have Add(0, BM, 0) ⊆ A2-GProj⊥. By [11, Proposition 6.1] or [7, Lemma 3.7], it
follows from TorΛ

1 (M,H) = 0 for all H ∈ Λ-GProj that TorA2
1 ((MΛ, 0, 0),H′) = 0 for all H′ ∈ A2-GProj.

Then, by the short exact sequence

0 −→ (MΛ, 0, 0) −→ A2 −→ A0 −→ 0 ,

we have TorA2
1 (A0,H′) = 0 for all H′ ∈ A2-GProj. Actually, for every H′ ∈ A2-GProj, we have

TorA2
1 (A0,H′) = TorA2

2 (A0,fH′) = TorA2
1 ((MΛ, 0, 0),fH′) = 0, where fH′ lies in the short exact

sequence 0→ H′ → P→ fH′ → 0 taken from the complete projective resolution of H′. �

Corollary 4.1 extends both the construction of Gorenstein-projective modules over Morita context
algebras in [5, Theorem 3.10(α)] and the sufficient conditions for a module to be Gorenstein-projective
over Noetherian rings in [7, Proposition 3.14(2)] to the general rings. The conditions (1) and (2) in
Corollary 4.1 can be realized by flatdimMΛ < ∞, flatdimNB < ∞, projdimΛN < ∞, projdimBM < ∞.

Let ∆(0,0) be the special Morita context rings where Λ = N = M = B in Λ(0,0). By Corollary 4.1, we
have the following, which extends the results in [5, Corollary 3.12], also in [10, Example 4.11].

Corollary 4.2. Let U,V ∈ Λ-GProj. If there exist two Λ-modules X and Y and two short exact
sequences

0 // V
g // X s // U // 0

and

0 // U
f // Y t // V // 0

in Λ-Mod, then (X,Y, tg, s f ), (Y, X, s f , tg) ∈ ∆(0,0)-Gproj.
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