In this paper, three new automorphisms were identified over the ring $ \mathbb{Z}_{4}+u\mathbb{Z}_{4}+u^{2}\mathbb{Z}_{4} $ where $ u^3 = u^2 $. With the help of these automorphisms, the characteristic structures of the generator polynomials for the $ \theta_i $-cyclic codes and $ (\theta_i, \lambda) $-constacyclic codes of odd length on this ring were investigated. Also, for all the units over the ring, $ \mathbb{Z}_{4} $-images of $ \theta_i $-cyclic and $ (\theta_i, \lambda) $-constacyclic codes were reviewed with the associated codes based on determined transformations. Using these observations, new and optimal codes were obtained and presented in the table. In addition, a new transformation was identified that involved DNA base pairs with the elements of $ \mathbb{Z}_{4} $. Moreover, a unit reverse polynomial was created, and in this way a new generation method has been built to construct reversible DNA codes over this ring. Finally, this article was further enhanced with supporting examples of the DNA as a part of the study.
Citation: Fatma Zehra Uzekmek, Elif Segah Oztas, Mehmet Ozen. $ (\theta_i, \lambda) $-constacyclic codes and DNA codes over $ \mathbb{Z}_{4}+u\mathbb{Z}_{4}+u^{2}\mathbb{Z}_{4} $[J]. AIMS Mathematics, 2024, 9(10): 27908-27929. doi: 10.3934/math.20241355
In this paper, three new automorphisms were identified over the ring $ \mathbb{Z}_{4}+u\mathbb{Z}_{4}+u^{2}\mathbb{Z}_{4} $ where $ u^3 = u^2 $. With the help of these automorphisms, the characteristic structures of the generator polynomials for the $ \theta_i $-cyclic codes and $ (\theta_i, \lambda) $-constacyclic codes of odd length on this ring were investigated. Also, for all the units over the ring, $ \mathbb{Z}_{4} $-images of $ \theta_i $-cyclic and $ (\theta_i, \lambda) $-constacyclic codes were reviewed with the associated codes based on determined transformations. Using these observations, new and optimal codes were obtained and presented in the table. In addition, a new transformation was identified that involved DNA base pairs with the elements of $ \mathbb{Z}_{4} $. Moreover, a unit reverse polynomial was created, and in this way a new generation method has been built to construct reversible DNA codes over this ring. Finally, this article was further enhanced with supporting examples of the DNA as a part of the study.
[1] | M. Ozen, F. Z. Uzekmek, E. S. Oztas, Cyclic and constacyclic codes over the ring $\mathbb{Z}_{4}/ < u^3-u^2>$ and their Gray images, Turkish J. Math., 45 (2021), 579–596. https://doi.org/10.3906/mat-2006-112 doi: 10.3906/mat-2006-112 |
[2] | M. Ozen, F. Z. Uzekmek, N. Aydin, N. T. Ozzaim, Cyclic and some constacyclic codes over the ring $\mathbb{Z}_{4}[u]/\langle u^2-1\rangle$, Finite Field. Appl., 38 (2016), 27–39. https://doi.org/10.1016/j.ffa.2015.12.003 doi: 10.1016/j.ffa.2015.12.003 |
[3] | S. Zhu, Y. Wang, M. Shi, Some results on cyclic codes over $\mathbb{F}_2+v\mathbb{F}_2$, IEEE Transact. Infor. Theory, 56 (2010), 1680–1684. https://doi.org/10.1109/TIT.2010.2040896 doi: 10.1109/TIT.2010.2040896 |
[4] | R. K. Bandi, M. Bhaintwal, A note on cyclic codes over $\mathbb{Z}_{4}+u\mathbb{Z}_{4}$, Discrete Math. Algh. App., 8 (2018), 17. https://doi.org/10.1142/S1793830916500178 doi: 10.1142/S1793830916500178 |
[5] | Z. X. Wan, Series on applied mathematics: Quaternary codes, Singapore: World Scientific, 1997. |
[6] | E. Prange, Cyclic error correcting codes in two symbols, Cambridge Mass: Air Force Cambridge Research Center, 1957. |
[7] | H. Q. Dinh, A. K. Singh, N. Kumar, S. Sriboonchitta, On constacyclic codes over $\mathbb{Z}_{4}[v]/\langle v^2-v\rangle$ and their gray images, IEEE Comm. Letters, 2018. https://doi.org/10.1109/lcomm.2018.2848942 |
[8] | J. Gao, F. W. Fu, Y. Gao, Some classes of linear codes over $\mathbb{Z}_{4}+v\mathbb{Z}_{4}$ and their applications to construct good and new $\mathbb{Z}_{4}$-linear codes, Appl. Algeb. Engin. Commun. Comput., 28 (2016), 131–153. https://doi.org/10.1007/s00200-016-0300-0 doi: 10.1007/s00200-016-0300-0 |
[9] | M. Ashraf, G. Mohammad, Skew cyclic codes over $\mathbb{F}_{q}+u\mathbb{F}_{q}+v\mathbb{F}_{q}$, Asian-European J. Math., 11 (2018), 35–45. https://doi.org/10.1142/S1793557118500729 doi: 10.1142/S1793557118500729 |
[10] | F. Gursoy, I. Siap, B. Yildiz, Construction of skew cyclic codes over $\mathbb{F}_q+v\mathbb{F}_q$, Adv. Math. Commun., 8 (2014), 313–322. https://doi.org/10.3934/amc.2014.8.313 doi: 10.3934/amc.2014.8.313 |
[11] | D. Boucher, W. Geiselmann, F. Ulmer, Skew cyclic codes, App. Algebra Eng. Comm., 18 (2007), 379–389. https://doi.org/10.1007/s00200-007-0043-z doi: 10.1007/s00200-007-0043-z |
[12] | D. Boucher, P. Sole, F. Ulmer, Skew constacyclic codes over Galois rings, Adv. Math. Commun., 2 (2008), 273–292. https://doi.org/10.3934/amc.2008.2.273 doi: 10.3934/amc.2008.2.273 |
[13] | D. Boucher, F. Ulmer, Coding with skew polynomial rings, J. Symb. Comput., 44 (2009), 1644–1656. https://doi.org/10.1016/j.jsc.2007.11.008 doi: 10.1016/j.jsc.2007.11.008 |
[14] | A. Sharma, M. Bhaintwal, A class of skew-constacyclic codes over $\mathbb{Z}_{4}+u\mathbb{Z}_{4}$, Int. J. Infor. Coding Theory, 4 (2017), 289–302. https://doi.org/10.1504/IJICOT.2017.10005836 doi: 10.1504/IJICOT.2017.10005836 |
[15] | L. Adleman, Molecular computation of solutions to combinatorial problems, Science, 1994, 1021–1024. https://doi.org/10.1126/science.7973651 |
[16] | H. Q. Dinh, K. S. Abhay, S. Pattanayak, Construction of cyclic DNA codes over the ring $\mathbb{Z}_4[u]/(u^2-1)$ based on the deletion distance, Theoret. Comput. Sci., 773 (2019), 27–42. https://doi.org/10.1016/j.tcs.2018.06.002 doi: 10.1016/j.tcs.2018.06.002 |
[17] | A. Marathe, A. N. Condon, R. M. Corn, On combinatorial DNA word design, J. Comput. Biol., 8 (2001), 201–219. https://doi.org/10.1089/10665270152530818 doi: 10.1089/10665270152530818 |
[18] | E. S. Oztas, I. Siap, Lifted polynomials over $\mathbb{F}_16$ and their applications to DNA codes, Filomat, 27 (2013), 459–466. https://doi.org/10.2298/FIL1303459O doi: 10.2298/FIL1303459O |
[19] | E. S. Oztas, B. Yildiz, I. Siap, A novel approach for constructing reversible codes and applications to DNA codes over the ring $\mathbb{F}_2[u]/(u^2k-1)$, Finite Fiel. Appl., 46 (2017), 217–234. https://doi.org/10.1016/j.ffa.2017.04.001 doi: 10.1016/j.ffa.2017.04.001 |
[20] | J. L. Massey, Reversible codes, Inf. Control, 7 (1964), 369–380. https://doi.org/10.1016/S0019-9958(64)90438-3 doi: 10.1016/S0019-9958(64)90438-3 |
[21] | A. Bayram, E. S. Oztas, I. Siap, Codes over $\mathbb{F}_4+v\mathbb{F}_4$ and some DNA applications, Desig. Codes, Crypt., 80 (2016), 379–393. https://doi.org/10.1007/s10623-015-0100-8 doi: 10.1007/s10623-015-0100-8 |
[22] | H. Q. Dinh, A. K. Singh, S. Pattanayak, S. Sriboonchitta, Cyclic DNA codes over the ring $\mathbb{F}_2+u\mathbb{F}_2+v\mathbb{F}_2+uv\mathbb{F}_2+v^2\mathbb{F}_2+uv^2\mathbb{F}_2$, Desig. Codes, Crypt., 86 (2018), 1451–1467. https://doi.org/10.1007/s10623-017-0405-x doi: 10.1007/s10623-017-0405-x |
[23] | I. Siap, T. Abualrub, A. Ghrayeb, Cyclic DNA codes over the ring $\mathbb{F}_2[u]/(u^2-1)$ based on the deletion distance, J. Franklin Instit., 346 (2009), 731–740. https://doi.org/10.1016/j.jfranklin.2009.07.002 doi: 10.1016/j.jfranklin.2009.07.002 |
[24] | B. Yildiz, I. Siap, Cyclic codes over $\mathbb{F}_2[u]/(u^4-1)$ and applications to DNA codes, Comput. Math. Appl., 63 (2012), 1169–1176. https://doi.org/10.1016/j.camwa.2011.12.029 doi: 10.1016/j.camwa.2011.12.029 |
[25] | J. Liu, H. Liu, Construct of cyclic DNA codes over the ring $Z_4 + vZ_4$, IEEE Access, 8 (2020), 111200–111207. https://doi.org/10.1109/ACCESS.2020.3001283 doi: 10.1109/ACCESS.2020.3001283 |
[26] | S. Dougherty, Algebraic coding theory over finite commutative rings, Springer, 2010. |
[27] | S. Roman, Advanced linear algebra, Third Edition, Springer, 2010. |
[28] | W. Bosma, J. Cannon, Handbook of magma functions, University of Sydney, 1995. |
[29] | Online content: N. Aydin, P. Liu, B. Yoshino, Quantum codes, 2021. Available from: http://quantumcodes.info/Z4. |