This article explores the mathematical and statistical performances and connections of the two well-known ordinary least-squares estimators (OLSEs) and best linear unbiased estimators (BLUEs) of unknown parameter matrices in the context of a multivariate general linear model (MGLM) for regression, both of which are defined under two different optimality criteria. Tian and Zhang [
Citation: Bo Jiang, Yongge Tian. Equivalent analysis of different estimations under a multivariate general linear model[J]. AIMS Mathematics, 2024, 9(9): 23544-23563. doi: 10.3934/math.20241144
This article explores the mathematical and statistical performances and connections of the two well-known ordinary least-squares estimators (OLSEs) and best linear unbiased estimators (BLUEs) of unknown parameter matrices in the context of a multivariate general linear model (MGLM) for regression, both of which are defined under two different optimality criteria. Tian and Zhang [
[1] | I. S. Alalouf, G. P. H. Styan, Characterizations of estimability in the general linear model, Ann. Statist., 7 (1979), 194–200. http://dx.doi.org/10.1214/aos/1176344564 doi: 10.1214/aos/1176344564 |
[2] | T. W. Anderson, An introduction to multivariate statistical analysis, 2 Eds., New York: Wiley, 1984. |
[3] | A. Basilevsky, Applied matrix algebra in the statistical sciences, New York: Dover Publications, 2013. |
[4] | D. Bertsimas, M. S. Copenhaver, Characterization of the equivalence of robustification and regularization in linear and matrix regression, Euro. J. Oper. Res., 70 (2018), 931–942. https://dx.doi.org/10.1016/j.ejor.2017.03.051 doi: 10.1016/j.ejor.2017.03.051 |
[5] | N. H. Bingham, W. J. Krzanowski, Linear algebra and multivariate analysis in statistics: development and interconnections in the twentieth century, British Journal for the History of Mathematics, 37 (2022), 43–63. http://dx.doi.org/10.1080/26375451.2022.2045811 doi: 10.1080/26375451.2022.2045811 |
[6] | R. Christensen, Linear models for multivariate, time series, and spatial data, New York: Springer, 1991. http://dx.doi.org/10.1007/978-1-4757-4103-2 |
[7] | M. H. Ding, H. Y. Liu, G. H. Zheng, On inverse problems for several coupled PDE systems arising in mathematical biology, J. Math. Biol., 87 (2023), 86. http://dx.doi.org/10.1007/s00285-023-02021-4 doi: 10.1007/s00285-023-02021-4 |
[8] | R. W. Farebrother, A. C. Aitken and the consolidation of matrix theory, Linear Algebra Appl., 264 (1997), 3–12. http://dx.doi.org/10.1016/S0024-3795(96)00398-9 doi: 10.1016/S0024-3795(96)00398-9 |
[9] | J. E. Gentle, Matrix algebra: theory, computations, and applications in statistics, 2 Eds., New York: Springer, 2017. http://dx.doi.org/10.1007/978-0-387-70873-7 |
[10] | R. Gnanadesikan, Methods for statistical data analysis of multivariate observations, 2 Eds., New York: Wiley, 1997. http://dx.doi.org/10.1002/9781118032671 |
[11] | D. A. Harville, Matrix algebra from a statistician's perspective, New York: Springer, 1997. https://dx.doi.org/10.1007/b98818 |
[12] | B. Jiang, Y. G. Tian, On additive decompositions of estimators under a multivariate general linear model and its two submodels, J. Multivariate Anal., 162 (2017), 193–214. http://dx.doi.org/10.1016/j.jmva.2017.09.007 doi: 10.1016/j.jmva.2017.09.007 |
[13] | B. Jiang, Y. G. Tian, On equivalence of predictors/estimators under a multivariate general linear model with augmentation, J. Korean Stat. Soc., 46 (2017), 551–561. http://dx.doi.org/10.1016/j.jkss.2017.04.001 doi: 10.1016/j.jkss.2017.04.001 |
[14] | K. Kim, N. Timm, Univariate and multivariate general linear models: theory and applications with SAS, 2 Eds., New York: CRC Press, 2006. |
[15] | H. Y. Liu, C. W. K. Lo, Determining a parabolic system by boundary observation of its non-negative solutions with biological applications, Inverse Probl., 40 (2024), 025009. http://dx.doi.org/10.1088/1361-6420/ad149f doi: 10.1088/1361-6420/ad149f |
[16] | R. Ma, Y. G. Tian, A matrix approach to a general partitioned linear model with partial parameter restrictions, Linear Multilinear A., 70 (2022), 2513–2532. http://dx.doi.org/10.1080/03081087.2020.1804521 doi: 10.1080/03081087.2020.1804521 |
[17] | A. Markiewicz, S. Puntanen, All about the $\perp$ with its applications in the linear statistical models, Open Math., 13 (2015), 33–50. http://dx.doi.org/10.1515/math-2015-0005 doi: 10.1515/math-2015-0005 |
[18] | A. Markiewicz, S. Puntanen, G. P. H. Styan, The legend of the equality of OLSE and BLUE: highlighted by C. R. Rao in 1967, In: Methodology and applications of statistics, Cham: Springer, 2021, 51–76. https://doi.org/10.1007/978-3-030-83670-2_3 |
[19] | G. Marsaglia, G. P. H. Styan, Equalities and inequalities for ranks of matrices, Linear Multilinear A., 2 (1974), 269–292. http://dx.doi.org/10.1080/03081087408817070 doi: 10.1080/03081087408817070 |
[20] | S. K. Mitra, Generalized inverse of matrices and applications to linear models, Handbook of Statistics, 1 (1980), 471–512. https://dx.doi.org/10.1016/S0169-7161(80)80045-9 doi: 10.1016/S0169-7161(80)80045-9 |
[21] | K. E. Muller, P. W. Stewart, Linear model theory: univariate, multivariate, and mixed models, New York: Wiley, 2006. http://dx.doi.org/10.1002/0470052147 |
[22] | S. C. Narula, P. J. Korhonen, Multivariate multiple linear regression based on the minimum sum of absolute errors criterion, Euro. J. Oper. Res., 73 (1994), 70–75. http://dx.doi.org/10.1016/0377-2217(94)90144-9 doi: 10.1016/0377-2217(94)90144-9 |
[23] | S. C. Narula, J. F. Wellington, Multiple criteria linear regression, Euro. J. Oper. Res., 181 (2007), 767–772. http://dx.doi.org/10.1016/j.ejor.2006.06.026 doi: 10.1016/j.ejor.2006.06.026 |
[24] | R. Penrose, A generalized inverse for matrices, Math. Proc. Cambridge, 51 (1955), 406–413. http://dx.doi.org/10.1017/S0305004100030401 doi: 10.1017/S0305004100030401 |
[25] | S. Puntanen, G. P. H. Styan, The equality of the ordinary least squares estimator and the best linear unbiased estimator, with comments by O. Kempthorne, S. R. Searle, and a reply by the authors, Am. Stat., 43 (1989), 153–161. http://dx.doi.org/10.1080/00031305.1989.10475644 doi: 10.1080/00031305.1989.10475644 |
[26] | S. Puntanen, G. P. H. Styan, J. Isotalo, Matrix tricks for linear statistical models: Our personal top twenty, Berlin: Springer, 2011. http://dx.doi.org/10.1007/978-3-642-10473-2 |
[27] | C. R. Rao, S. K. Mitra, Generalized inverse of matrices and its applications, New York: Wiley, 1972. |
[28] | C. R. Rao, M. B. Rao, Matrix algebra and its applications to statistics and econometrics, Singapore: World Scientific, 1998. http://dx.doi.org/10.1142/9789812779281 |
[29] | G. C. Reinsei, R. P. Velu, Multivariate reduced-rank regression: theory and applications, New York: Springer, 1998. http://dx.doi.org/10.1007/978-1-4757-2853-8 |
[30] | J. S. Respondek, Matrix black box algorithms–a survey, B. Pol. Acad. Sci.-Tech., 70 (2022), e140535. http://dx.doi.org/10.24425/bpasts.2022.140535 doi: 10.24425/bpasts.2022.140535 |
[31] | S. R. Searle, A. I. Khuri, Matrix algebra useful for statistics, 2 Eds., Hoboken: Wiley, 2017. |
[32] | G. A. F. Seber, Multivariate observations, Hoboken: Wiley, 2004. http://dx.doi.org/10.1002/9780470316641 |
[33] | Y. G. Tian, On equalities of estimations of parametric functions under a general linear model and its restricted models, Metrika, 72 (2010), 313–330. http://dx.doi.org/10.1007/s00184-009-0255-2 doi: 10.1007/s00184-009-0255-2 |
[34] | Y. G. Tian, A new derivation of BLUPs under random-effects model, Metrika, 78 (2015), 905–918. http://dx.doi.org/10.1007/s00184-015-0533-0 doi: 10.1007/s00184-015-0533-0 |
[35] | Y. G. Tian, Matrix rank and inertia formulas in the analysis of general linear models, Open Math., 15 (2017), 126–150. http://dx.doi.org/10.1515/math-2017-0013 doi: 10.1515/math-2017-0013 |
[36] | Y. G. Tian, B. Jiang, Matrix rank/inertia formulas for least-squares solutions with statistical applications, Spec. Matrices, 4 (2016), 130–140. http://dx.doi.org/10.1515/spma-2016-0013 doi: 10.1515/spma-2016-0013 |
[37] | Y. G. Tian, C. Wang, On simultaneous prediction in a multivariate general linear model with future observations, Stat. Probabil. Lett., 128 (2017), 52–59. http://dx.doi.org/10.1016/j.spl.2017.04.007 doi: 10.1016/j.spl.2017.04.007 |
[38] | Y. G. Tian, X. Zhang, On connections among OLSEs and BLUEs of whole and partial parameters under a general linear model, Stat. Probabil. Lett., 112 (2016), 105–112. http://dx.doi.org/10.1016/j.spl.2016.01.019 doi: 10.1016/j.spl.2016.01.019 |
[39] | Y. W. Yin, W. S. Yin, P. C. Meng, H. Y. Liu, The interior inverse scattering problem for a two-layered cavity using the Bayesian method, Inverse Probl. Imag., 16 (2022), 673–690. http://dx.doi.org/10.3934/ipi.2021069 doi: 10.3934/ipi.2021069 |