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Abstract: This article explores the mathematical and statistical performances and connections of
the two well-known ordinary least-squares estimators (OLSEs) and best linear unbiased estimators
(BLUEs) of unknown parameter matrices in the context of a multivariate general linear model (MGLM)
for regression, both of which are defined under two different optimality criteria. Tian and Zhang [38]
once collected a series of existing and novel identifying conditions for OLSEs to be BLUEs under
general linear models: On connections among OLSEs and BLUEs of whole and partial parameters
under a general linear model, Stat. Probabil. Lett., 112 (2016), 105–112. In this paper, we show how
to extend this kind of results to multivariate general linear models. We shall give a direct algebraic
procedure to derive explicit formulas for calculating the OLSEs and BLUEs of parameter spaces in
a given MGLM, discuss the relationships between OLSEs and BLUEs of parameter matrices in the
MGLM, establish many algebraic equalities related to the equivalence of OLSEs and BLUEs, and give
various intrinsic statistical interpretations about the equivalence of OLSEs and BLUEs of parameter
matrices in a given MGLM using some matrix analysis tools concerning ranks, ranges, and generalized
inverses of matrices.
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1. Introduction

Throughout this paper, the symbol Rm×n stands for the collection of all m × n matrices over the
field of real numbers; AT , r(A), and R(A) stand for the transpose, the rank, and the range (column
space) of a matrix A ∈ Rm×n, respectively; Im denotes the identity matrix of order m. Two symmetric

https://www.aimspress.com/journal/Math
https://dx.doi.org/10.3934/math.20241144


23545

matrices A and B of the same size are said to satisfy the inequality A ≽ B in the Löwner partial
ordering if A − B is nonnegative definite. The Kronecker product of any two matrices A and B is
defined to be A⊗B = (ai jB). The vectorization operation of a matrix A = [ a1, . . . , an ] is defined to be

vec(A) =
−→
A = [ aT

1 , . . . , a
T
n ]T . A well-known property of the vec operator of a triple matrix product is

−−−→
AZB = (BT ⊗ A)

−→
Z . The Moore–Penrose generalized inverse of A ∈ Rm×n, denoted by A+, is defined

by the unique solution G to the four matrix equations AGA = A, GAG = G, (AG)T = AG, and
(GA)T = GA. In what follows, we denote by PA = AA+, A⊥ = EA = Im − AA+, and FA = In − A+A
the three orthogonal projectors induced by A, respectively. Further information about the orthogonal
projectors PA, EA, and FA and their applications in the linear statistical models can be found, e.g.,
in [17, 20, 26, 27].

In this paper, we consider the following partitioned multivariate general linear model:

M :

 Y = XΘ + Ψ = X1Θ1 + · · · + XkΘk + Ψ,

E(
−→
Ψ) = 0, Cov(

−→
Ψ) = Cov{

−→
Ψ,
−→
Ψ} = σ2ΣΣΣ2 ⊗ ΣΣΣ1,

(1.1)

where Y ∈ Rn×m is a matrix of observable dependent variables that comes from an experimental design
giving rise to n observations, X = [ X1, . . . ,Xk ] ∈ Rn×p is a model matrix with arbitrary rank (0 ≤
r(X) ≤ min{n, p}), Xi ∈ R

n×pi and Θi ∈ R
pi×m are matrices of fixed but unknown parameters, Θ =

[ΘT
1 , . . . ,Θ

T
k ]T ∈ Rp×m, with p = p1+· · ·+pk, i = 1, . . . , k, and E(

−→
Ψ) and Cov(

−→
Ψ) denote the expectation

and the covariance matrix of the random error vector
−→
Ψ, σ2 is an arbitrary positive scaling factor,

ΣΣΣ1 ∈ R
n×n and ΣΣΣ2 ∈ R

m×m are known positive semi-definite matrices of arbitrary ranks (0 < r(ΣΣΣ1) ≤ n)
and (0 < r(ΣΣΣ2) ≤ m), the Kronecker product ΣΣΣ2⊗ΣΣΣ1 means that

−→
Ψ has a separable covariance structure.

In this study, we do not necessarily assume that the random variables have normal distributions. Only if
more precise statistical properties are required, are normal or alternative distributions usually assumed
and discussed ( [4, 22, 23]).

We now give some introductions and remarks on the backgrounds of MGLMs. Equation (1.1) is a
relative direct extension of the most welcome type of univariate general linear models, which means
the incorporation of regressing one response variable on a given set of regressors to several response
variables on the regressors. This model is also a representative of various multivariate regression
frameworks, yet, has been a core object of study in the domain of multivariate analysis and applications.
In fact, MGLMs have the advantage of more complete situations that involve a number of variables,
both independent and dependent, and occur in many fields of statistical sciences, such as, analysis of
variance (ANOVA), analysis of covariance (ANCOVA), multivariate analysis of variance (MANOVA),
analysis of repeated measurements, factor analysis models, as well as many areas of applications to
describe predictive relationships of multiple responses related to a set of regressors. The increased
employment of repeated measures for panel studies has led to the necessity for more researches in the
modeling of this type of data; see a number of textbook and handbook literature [2,6,10,14,21,29,32]
that refers to the general theory of MGLMs and their applications. Due to the matrix structures of the
model equations in MGLMs, a commonly used method in the statistical analysis of MGLMs is to use
the well-known Kronecker products and vectorization operations of matrices. Through the use of these
operations, we can alternatively represent (1.1) in the following univariate general linear model:

M̂ :


−→
Y = (Im ⊗ X)

−→
Θ +
−→
Ψ = (Im ⊗ X1)

−→
Θ1 + · · · + (Im ⊗ Xk)

−→
Θk +

−→
Ψ,

E(
−→
Ψ) = 0, Cov(

−→
Ψ) = σ2ΣΣΣ2 ⊗ ΣΣΣ1.

(1.2)
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As we know, there are a number of optimality criteria that can be adopted to establish estimation
theory for unknown parameters in linear regression models. In comparison, the two kinds of classical
and widely-used estimators are known as the ordinary least-squares estimators (for short, OLSEs) and
the best linear unbiased estimators (for short, BLUEs), both of which are in fact two fundamental and
orthodox estimators of unknown parameters in theory and applications of linear statistical models for
regression. Below, we briefly introduce the existing definitions of the estimability, OLSEs, and BLUEs
of the unknown parameters under (1.1) ( [1, 26]), and then present some known exact and analytical
formulas for calculating the OLSEs and BLUEs and their properties.

Definition 1.1. Let M and M̂ be as given in (1.1) and (1.2), respectively.

(i) The matrix KΘ of parametric functions, where K ∈ Rk×p, is said to be estimable under M if there
exists an L ∈ Rk×n such that E(LY −KΘ) = 0.

(ii) The vector T
−→
Θ of parametric functions, where T ∈ Rt×mp, is said to be estimable under M̂ if there

exists an L ∈ Rt×mn such that E(L
−→
Y − T

−→
Θ) = 0.

The definitions of the OLSE and the BLUE of KΘ under (1.1) are given below.

Definition 1.2. Let M be as given in (1.1), and let K ∈ Rk×p be given.

(i) The OLSE of the parameter matrix Θ in M , denoted by OLSE(Θ), is defined to be

OLSE(Θ) = argmin
Θ

tr(( Y − XΘ )T ( Y − XΘ )). (1.3)

Correspondingly, the OLSE of KΘ under (1.1) is defined to be OLSE(KΘ) = KOLSE(Θ).
(ii) If there exists an L ∈ Rk×n such that

Cov(
−−−−−−−−→
LY −KΘ ) = min s.t. E(LY −KΘ) = 0 (1.4)

holds in the Löwner partial ordering, the corresponding linear matrix statistic LY is defined to be
the BLUE of KΘ under M , and is denoted by LY = BLUE(KΘ).

Since the OLSEs and BLUEs are defined by different optimality criteria, they may have diverse
expressions and mathematical and statistical properties. In fact, it has been known that the OLSEs
and BLUEs of unknown parameter matrices in a given MGLM can be represented in certain analytical
formulas that are composed of the given matrices and their generalized inverses in the models. Thus,
the algebraic and statistical properties and performances of OLSEs and BLUEs can be easily derived
from the analytical formulas. Because OLSEs are easy to compute and have many simple and nice
properties in a linear regression framework, statisticians are interested in the connections between
OLSEs and other estimators. Statisticians have noticed that OLSEs and BLUEs of the same unknown
parameters in a linear statistical model have some essential links; in particular, the OLSEs and BLUEs
of the same unknown parameters are equivalent under some rational conditions. Based on the known
theory on OLSEs and BLUEs under linear statistical models, statisticians proposed and studied many
inference problems from theoretical and applied points of view. Especially, they were interested
in the connections between the two types of estimators under linear statistical models by means of
some precise and effective matrix analysis tools. Recall that the problem of investigating twists of
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OLSEs and BLUEs in linear regression theory was initialized and approached in the late 1940s from
theoretical and applied points of view, and many classic and novel contributions on this topic have been
properly documented in the statistical literature since then; see, e.g., a recent survey paper [18] and the
references therein.

As a new attempt to approach this kind of problems under more general model assumptions, we
consider the connections between OLSEs and BLUEs under (1.1) in this current work. The study
includes solving the following two problems on the relationships between the estimators of the whole
and partial mean parameter matrices in (1.1):

(I) Establish the necessary and sufficient conditions for the following equality

OLSE(KΘ) = BLUE(KΘ) (1.5)

to hold, where KΘ is an estimable matrix of parametric functions under M for K ∈ Rk×p.
(II) Prove the following equivalent equalities of OLSEs and BLUEs

OLSE(XΘ) = BLUE(XΘ)⇔ OLSE(XiΘi) = BLUE(XiΘi) (1.6)

under the assumption that XiΘi is estimable under M , i = 1, 2, . . . , k.

The equalities for estimators in (1.5) and (1.6) have many different possible interpretations from
the mathematical and statistical points of view, and are not rare to see in the statistical inference
of a given MGLM. In fact, there are many publications on establishing equalities between OLSEs
and BLUEs under various linear statistical model assumptions. It is easy to convert these estimator
equalities to certain matrix equalities that involve the given matrices and their generalized inverses in
the models. Many influential and effective mathematical tools are available in order to characterize the
above equalities of estimators and their covariance matrices under MGLMs, but we prefer to use the
matrix rank method (for short, MRM) to characterize the equalities in (I) and (II). The MRM is now
highly recognized as a useful tool to establish and characterize various simple or complicated algebraic
equalities for matrices and their operations; see e.g., [35, 36] and the references therein on the MRM
in the investigations of the linear statistical models. In order to relate the work to existing results in
machine learning, some important results can be found in [7, 8, 15, 30, 39].

The rest of this paper is organized as follows: In Section 2, we introduce some matrix analysis tools
that can be used to characterize matrix equalities that involve generalized inverses, and give a group of
results related to the estimability of matrices of parametric functions under (1.1). We then show how
to directly establish analytical expressions of the OLSEs and BLUEs under the assumptions in (1.1).
In Section 3, we present several groups of classic and new equivalent statements for the OLSEs to be
the BLUEs under (1.1) by characterizing various matrix equalities. Some conclusions and remarks are
given in Section 4.

2. Notation and preliminary results

Recall that matrix algebra is one of the most important areas of mathematics, while many
matrix analysis tools play key roles in data science and statistical theory, including the field of
multivariate analysis and inferences from regression regression frameworks; see, e.g., [5, 26], among
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others. Specifically, the theory of generalized inverses of matrices, as ubiquitous tools to deal
with singular matrices, has been widely utilized to approach various complicated theoretical and
computational problems that occur in statistical analysis and inference; see, e.g., the reference
books [3, 9, 11, 27, 28, 31] concerning applications of matrix theory in statistics. Also recall that
many problems in statistical analysis of regression models can be equivalently transformed into
certain matrix analysis problems, so that people can use various algebraic tools in matrix theory to
approach the statistical analysis problems and to obtain various exact and satisfactory results and facts
from mathematical and statistical points of view. In the following, we introduce and explain some
preliminary groundwork in linear algebra and matrix theory that will be utilized in the context of this
paper. Let us first recall that block matrix and rank of a matrix are two basic concepts in mathematics
that appear at the entry level of linear algebra and are easily understandable by a beginner. On the
other hand, they have been taken as two irreplaceable study tools for dealing with various basic and
advanced problems in theoretical and computational mathematics because they give us the ability to
construct and analyze various simple and complicated matrix expressions and matrix equalities in a
clear and concise way.

For the purpose of establishing and characterizing various possible equalities for estimations in
the context of linear regression models, and simplifying various matrix equalities involving Moore–
Penrose generalized inverses of matrices, we need to use some well-known facts on ranks and
generalized inverses of matrices in the following two lemmas, and then proceed to give the proofs
of the main results in this article.

Lemma 2.1 ([19]). Let A ∈ Rm×n, B ∈ Rm×k, C ∈ Rl×n, and D ∈ Rl×k. Then,

r[ A, B ] = r(A) + r(EAB) = r(B) + r(EBA), (2.1)

r
[
A
C

]
= r(A) + r(CFA) = r(C) + r(AFC). (2.2)

If R(B) ⊆ R(A) and R(CT ) ⊆ R(AT ), then

r
[
A B
C D

]
= r(A) + r( D − CA+B ). (2.3)

In addition, the following results hold.

(i) r[ A, B ] = r(A)⇔ R(B) ⊆ R(A)⇔ AA+B = B⇔ EAB = 0.

(ii) r
[
A
C

]
= r(A)⇔ R(CT ) ⊆ R(AT )⇔ CA+A = C⇔ CFA = 0.

(iii) r[ A, B ] = r(A)+ r(B)⇔ R(A)∩R(B) = {0} ⇔ R((EAB)T ) = R(BT )⇔ R((EBA)T ) = R(AT ).

(iv) r
[
A
C

]
= r(A) + r(C)⇔ R(AT ) ∩R(CT ) = {0} ⇔ R(CFA) = R(C)⇔ R(AFC) = R(A).

(v) r( A + B ) = r(A) + r(B)⇔ R(A) ∩R(B) = {0} and R(AT ) ∩R(BT ) = {0} for A, B ∈ Rm×n.

Lemma 2.2 ([24]). Given two matrices A and B of appropriate sizes, the matrix equation AX = B
is solvable for X if and only if r[A, B ] = r(A), or equivalently, AA+B = B. In this case, the general
solution of the equation is X = A+B + FAU, where U is an arbitrary matrix.
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We also use the following basic facts about the Kronecker products of matrices.

Lemma 2.3. Let A ∈ Rm×n and B ∈ Rp×q, C ∈ Rn×s, and D ∈ Rq×t. Then, (A⊗B)(C⊗D) = AC ⊗ BD.
In particular, A ⊗ B = 0 if and only if A = 0 or B = 0.

For convenience of representation, we denote

Vi = [ 0, . . . ,Xi, . . . , 0 ], Wi = [ X1, . . . ,Xi−1, 0,Xi+1, . . . ,Xk ], i = 1, 2, . . . , k. (2.4)

In this case, the model matrix X in (1.1) and Im ⊗ X in (1.2) can be decomposed as

X = Vi +Wi = V1 + · · · + Vk, i = 1, 2, . . . , k, (2.5)
Im ⊗ X = Im ⊗ Vi + Im ⊗Wi = Im ⊗ V1 + · · · + Im ⊗ Vk, i = 1, 2, . . . , k. (2.6)

Correspondingly, the partial mean parameter matrices XiΘi and the partial mean parameter vectors
(Im ⊗ Xi)

−→
Θi on the right-hand sides of (1.1) and (1.2) can be rewritten as

XiΘi = ViΘ, (Im ⊗ Xi)
−→
Θi = (Im ⊗ Vi)

−→
Θ, i = 1, 2, . . . , k. (2.7)

In the following, we derive some necessary and sufficient conditions for KΘ to be estimable under
(1.1).

Theorem 2.4. Let M and M̂ be as given in (1.1) and (1.2), respectively, and let K ∈ Rk×p be given.
Then, the following statements are equivalent:

(i) KΘ is estimable under M .

(ii) (Im ⊗K)
−→
Θ is estimable under M̂ .

(iii) R(Im ⊗KT ) ⊆ R( Im ⊗ XT ).
(iv) R(KT ) ⊆ R(XT ).
(v) KX+X = K.

Proof. By Definition 1.1 (i), we see that

E( LY −KΘ ) = 0⇔ (LX −K)Θ = 0 for all Θ⇔ LX = K. (2.8)

Further, by Lemma 2.2, the matrix equation on the right-hand side of (2.8) is solvable for L if and only
if (iv) holds. The equivalence of (iv) and (v) follows from Lemma 2.1 (ii). Also, by Definition 1.1 (ii),

E(L
−→
Y − (Im ⊗K)

−→
Θ) = 0⇔ (L(Im ⊗ X) − (Im ⊗K))

−→
Θ = 0 for all

−→
Θ

⇔ L(Im ⊗ X) = (Im ⊗K), (2.9)

and by Lemma 2.2, the equation on the right-hand side of (2.9) is solvable for L if and only if (iii)

holds. Consequently, (iii) holds if and only if r
[
Im ⊗ X
Im ⊗K

]
= r(Im ⊗ X). Expanding both sides of the
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equality, we obtain

r



X 0 · · · 0
0 X · · · 0
...
...
. . .

...

0 0 · · · X
K 0 · · · 0
0 K · · · 0
...
...
. . .

...

0 0 · · · K


= r


X 0 · · · 0
0 X · · · 0
...
...
. . .

...

0 0 · · · X

⇔ r
[
X
K

]
= r(X).

This fact leads to the equivalence of (iii) and (iv). □

Concerning the estimability of XiΘi in (1.1), i = 1, 2, . . . , k, we have the following facts.

Theorem 2.5. Let M and M̂ be as given in (1.1) and (1.2), respectively. Then, the following five
statements are equivalent:

(i) XiΘi = ViΘ is estimable in M , i = 1, 2, . . . , k.
(ii) (Im ⊗ Vi)

−→
Θ is estimable under M̂ , i = 1, 2, . . . , k.

(iii) R(VT
i ) ⊆ R(XT ), i = 1, 2, . . . , k.

(iv) R(Vi) ∩R(Wi) = R(Xi) ∩R(Wi) = {0}, i = 1, 2, . . . , k.
(v) r(X) = r(Vi) + r(Wi) = r(Xi) + r(Wi), i = 1, 2, . . . , k.

Proof. Setting K = Vi in Theorem 2.4, we obtain (Im ⊗ K)
−→
Θ = (Im ⊗ Vi)

−→
Θ = (Im ⊗ Xi)

−→
Θi. In this

case, applying Theorem 2.4 to it and simplifying yield the equivalences of (i)–(iii). Further, (iii) is
equivalent to r[VT

i , XT ] = r(X), where r[VT
i , XT ] = r[VT

i , WT
i ] = r(Vi) + r(Wi) = r(Xi) + r(Wi) by

(2.4) for i = 1, 2, . . . , k, thus establishing the equivalences of (iii)–(v). □

Theorem 2.6. Let M be as given in (1.1). Then, the following two statements are equivalent:

(i) All X1Θ1, . . . ,XkΘk are estimable in M .
(ii) r(X) = r(X1) + · · · + r(Xk).

Proof. From (2.5),

r(X) ⩽ r(Xi) + r(Wi) ⩽ r(X1) + · · · + r(Xk), i = 1, 2, . . . , k. (2.10)

If (ii) holds, we see from (2.10) that

r(X) = r(X1) + r(W1) = · · · = r(Xk) + r(Wk). (2.11)

Hence, (i) holds by Theorem 2.5. The equivalence of (ii) and (2.11) can be established by induction.
□

Theorem 2.5 (iv) and (v) and Theorem 2.6 (ii) can be easily verified for the given model matrix in
M . In particular, they are all satisfied under the condition r(X) = p.

Below, we present a new derivation for the analytical formula of the OLSE of Θ in (1.1).
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Theorem 2.7. Let M be as given in (1.1), and suppose that KΘ is estimable under M for K ∈ Rk×p.

Then, the OLSE of KΘ under M can be uniquely expressed as

OLSE(KΘ) = KX+Y (2.12)

with

E( OLSE(KΘ) ) = KΘ, Cov(
−−−−−−−−−−→
OLSE(KΘ) ) = σ2ΣΣΣ2 ⊗ ((KX+)ΣΣΣ1(KX+)T ). (2.13)

In particular, the following results hold.

(i) XΘ in M is always estimable, and

OLSE(XΘ) = XX+Y, (2.14)

E( OLSE(XΘ) ) = XΘ, Cov(
−−−−−−−−−−→
OLSE(XΘ)) = σ2ΣΣΣ2 ⊗ (XX+ΣΣΣ1XX+). (2.15)

(ii) If XiΘi is estimable under M , then,

OLSE(XiΘi) = ViX+Y, i = 1, 2, . . . , k, (2.16)

E(OLSE(XiΘi)) = XiΘi, Cov(
−−−−−−−−−−−→
OLSE(XiΘi)) = σ2ΣΣΣ2 ⊗ (ViX+ΣΣΣ1(ViX+)T ), i = 1, 2, . . . , k. (2.17)

(iii) If all X1Θ1, . . . ,XkΘk are estimable under M , then,

OLSE(XΘ) = OLSE(X1Θ1) + · · · + OLSE(XkΘk). (2.18)

Proof. We first decompose the matrix product ( Y − XΘ )T ( Y − XΘ ) as

( Y − XΘ )T ( Y − XΘ ) = ( Y − XX+Y )T ( Y − XX+Y ) + ( XX+Y − XΘ )T ( XX+Y − XΘ )

= YT EXY + ( PXY − XΘ )T ( PXY − XΘ ).

Thus,

tr(( Y − XΘ )T ( Y − XΘ )) = tr(YT EXY) + tr(( PXY − XΘ )T ( PXY − XΘ )).

Minimizing both sides of equality with respect to Θ, we obtain the following formula

min
Θ

tr(( Y − XΘ )T ( Y − XΘ )) = tr(YT EXY) +min
Θ

tr(( PXY − XΘ )T ( PXY − XΘ )).

It is obvious that XΘ = PXY is always solvable for Θ, and the general solution is given by Θ =
X+Y + (Ip − X+X)U by Lemma 2.2. In this case, we obtain the following three fundamental formulas

OLSE(Θ) = argmin
Θ

tr(( Y − XΘ )T ( Y − XΘ )) = X+Y + (Ip − X+X)U,

min
Θ

tr(( Y − XΘ )T ( Y − XΘ )) = tr(YT EXY),

OLSE(KΘ) = KX+Y +K(Ip − X+X)U = KX+Y,

AIMS Mathematics Volume 9, Issue 9, 23544–23563.



23552

where U ∈ Rp×m is arbitrary. The expectation and covariance matrix of OLSE(KΘ) are

E(OLSE(KΘ)) = E(KX+Y) = KX+XΘ = KΘ,

Cov(
−−−−−−−−−−→
OLSE(KΘ) ) = Cov(

−−−−−→
KX+Y) = Cov((Im ⊗KX+)

−→
Y)

= σ2(Im ⊗KX+)(ΣΣΣ2 ⊗ ΣΣΣ1)(Im ⊗KX+)T

= σ2ΣΣΣ2 ⊗ ((KX+)ΣΣΣ1(KX+)T ),

by Lemma 2.3. Consequently, we are able to obtain (i)–(iii) from (2.12) and (2.13). □

With regard to the exact expression of the BLUE of KΘ, the following general results were
established in [12,13,37] through the ordinary employment of the analytical solutions of a constrained
quadratic matrix-valued optimization problem in [34].

Theorem 2.8. Let M be as given in (1.1), and suppose that KΘ is estimable under M for K ∈ Rk×p.

Then,

Cov(
−−−−−−−−→
LY −KΘ) = min s.t. E(LY −KΘ) = 0⇔ L[ X, ΣΣΣ1X⊥ ] = [ K, 0 ]. (2.19)

The matrix equation in (2.19), called the BLUE equation, is solvable for L, namely,

[ K, 0 ][ X, ΣΣΣ1X⊥ ]+[ X, ΣΣΣ1X⊥ ] = [ K, 0 ] (2.20)

holds. The general solution of L and the corresponding BLUE of KΘ under M can be written as

BLUE(KΘ) = LY = ([ K, 0 ][ X, ΣΣΣ1X⊥ ]+ + U[ X, ΣΣΣ1X⊥ ]⊥)Y, (2.21)

where U ∈ Rk×n is arbitrary. The expectation and covariance matrix of BLUE(KΘ) are

E(BLUE(KΘ)) = KΘ, (2.22)

Cov(
−−−−−−−−−−→
BLUE(KΘ)) = σ2ΣΣΣ2 ⊗ ([ K, 0 ][ X, ΣΣΣ1X⊥ ]+ΣΣΣ1([ K, 0 ][ X, ΣΣΣ1X⊥ ]+)T ), (2.23)

where

r[ X, ΣΣΣ1X⊥ ] = r[ X, X⊥ΣΣΣ1 ] = r[ X, ΣΣΣ1 ]. (2.24)

Furthermore, the following statements hold:

(i) XΘ in M is always estimable, and

BLUE(XΘ) = ([ X, 0 ][ X, ΣΣΣ1X⊥ ]+ + U[ X, ΣΣΣ1X⊥ ]⊥)Y, (2.25)
E(BLUE(XΘ)) = XΘ, (2.26)

Cov(
−−−−−−−−−−→
BLUE(XΘ)) = σ2ΣΣΣ2 ⊗ ([ X, 0 ][ X, ΣΣΣ1X⊥ ]+ΣΣΣ1([ X, 0 ][ X, ΣΣΣ1X⊥ ]+)T ), (2.27)

where U ∈ Rn×n is arbitrary.
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(ii) If XiΘi in M is estimable, then,

BLUE(XiΘi) = ([ Vi, 0 ][ X, ΣΣΣ1X⊥ ]+ + Ui[ X, ΣΣΣ1X⊥ ]⊥)Y, (2.28)
E(BLUE(XiΘi)) = XiΘi, (2.29)

Cov(
−−−−−−−−−−−→
BLUE(XiΘi)) = σ2ΣΣΣ2 ⊗ ([ Vi, 0 ][ X, ΣΣΣ1X⊥ ]+ΣΣΣ1([ Vi, 0 ][ X, ΣΣΣ1X⊥ ]+)T ), (2.30)

where Ui ∈ R
n×n is arbitrary, i = 1, 2, . . . , k.

(iii) If all XiΘi in (1.1) are estimable, then,

BLUE(XΘ) = BLUE(X1Θ1) + · · · + BLUE(XkΘk). (2.31)

3. Twists of OLSEs and BLUEs under an MGLM

In this section, we solve the estimation equality problems outlined in (1.5) and (1.6), and provide
a variety of algebraic and statistical descriptions of the proposed equivalent facts. For the purpose of
characterizing equalities between L1Y and L2Y, we need to use the following three manifest criteria
for comparison and contrast of linear statistics:

Definition 3.1. Let Y be as given in (1.1), and let L1, L2 ∈ R
k×n.

(i) The equality L1Y = L2Y is said to hold definitely if L1 = L2.
(ii) The equality L1Y = L2Y is said to hold with probability 1 if both E(L1Y − L2Y) = 0, and

Cov((Im ⊗ L1)
−→
Y − (Im ⊗ L2)

−→
Y) = 0.

(iii) L1Y and L2Y are said to have the same expectation matrices and dispersion matrices if both
E(L1Y) = E(L2Y), and Cov((Im ⊗ L1)

−→
Y) = Cov((Im ⊗ L2)

−→
Y) hold.

Our main results in the paper are presented below.

Theorem 3.2. Let M be as given in (1.1), and suppose that KΘ is estimable under M for K ∈ Rk×p.

Also, let OLSE(KΘ) and BLUE(KΘ) be as given in (2.12) and (2.21), respectively. Then, the following
16 statements are equivalent:

(i) OLSE(KΘ) = BLUE(KΘ) holds definitely.
(ii) OLSE(KΘ) = BLUE(KΘ) holds with probability 1.

(iii) Cov(
−−−−−−−−−−→
OLSE(KΘ)) = Cov(

−−−−−−−−−−→
BLUE(KΘ)).

(iv) Cov{
−−−−−−−−−−→
OLSE(KΘ),

−→
Y} = Cov{

−−−−−−−−−−→
BLUE(KΘ),

−→
Y}.

(v) Cov{
−−−−−−−−−−→
OLSE(KΘ),

−→
Y} = Cov{

−−−−−−−−−−→
BLUE(KΘ),

−−−−−−−−−−→
OLSE(XΘ)}.

(vi) Cov{
−−−−−−−−−−→
OLSE(KΘ),

−→
Y −
−−−−−−−−−−→
OLSE(XΘ)} = 0.

(vii) KX+ = [ K, 0 ][ X, ΣΣΣ1X⊥ ]+.
(viii) KX+ΣΣΣ1 = [ K, 0 ][ X, ΣΣΣ1X⊥ ]+ΣΣΣ1.

(ix) KX+ΣΣΣ1 = [ K, 0 ][ X, ΣΣΣ1X⊥ ]+ΣΣΣ1XX+.
(x) KX+ΣΣΣ1(KX+)T = [ K, 0 ][ X, ΣΣΣ1X⊥ ]+ΣΣΣ1([ K, 0 ][ X, ΣΣΣ1X⊥ ]+)T .

(xi) KX+ΣΣΣ1X⊥ = 0.
(xii) X⊥[ΣΣΣ1X, 0 ]F[ XT X,KT ] = 0.
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(xiii) r
[
ΣΣΣ1X X 0
XT X 0 KT

]
= r
[
ΣΣΣ1X X
XT X 0

]
= 2r(X).

(xiv) R((KX+ΣΣΣ1)T ) ⊆ R(X).

(xv) R

[
XTΣΣΣ1X⊥

0

]
⊆ R

[
XT X

K

]
.

(xvi) R

[
0

KT

]
⊆ R

[
ΣΣΣ1X X
XT X 0

]
.

Proof. The equivalences of the matrix equalities and relations in (vii)–(xvi) can be proved by the
algebraic tools presented in Lemma 2.1, while the details of the proofs can be found in [38], see
also [16, 33].

By Definition 3.1 (i), the equality OLSE(KΘ) = BLUE(KΘ) in (i) holds definitely if and only if the
coefficient matrices of Y in (2.12) and (2.21) are equal, i.e.,

KX+ = [ K, 0 ][ X, ΣΣΣ1X⊥ ]+ + U[ X, ΣΣΣ1X⊥ ]⊥. (3.1)

By Lemma 2.2, there exists a matrix U such that (3.1) holds if and only if

r
[
KX+ − [ K, 0 ][ X, ΣΣΣ1X⊥ ]+

[ X, ΣΣΣ1X⊥ ]⊥

]
= r
(
[ X, ΣΣΣ1X⊥ ]⊥

)
. (3.2)

We next simplify both sides of this rank equality. By (2.1),

r
[
KX+ − [ K, 0 ][ X, ΣΣΣ1X⊥ ]+

[ X, ΣΣΣ1X⊥ ]⊥

]
= r
[
KX+ − [ K, 0 ][ X, ΣΣΣ1X⊥ ]+ 0

In [ X, ΣΣΣ1X⊥ ]

]
− r[ X, ΣΣΣ1X⊥ ]

= r
[
KX+ [K, 0]

In [ X, ΣΣΣ1X⊥ ]

]
− r[ X, ΣΣΣ1 ] (by (2.24))

= r
[
0 0 KX+ΣΣΣ1X⊥

In 0 0

]
− r[ X, ΣΣΣ1 ] (by Theorem 2.4(v))

= r(KX+ΣΣΣ1X⊥) + n − r[ X, ΣΣΣ1 ]

= r[K(XT X)+XTΣΣΣ1X⊥] + n − r[ X, ΣΣΣ1 ] (by X+ = (XT X)+XT )

= r
[
XT X XTΣΣΣ1X⊥

K 0

]
− r(X) + n − r[ X, ΣΣΣ1 ] (by (2.3))

= r


XT X XTΣΣΣ1

K 0
0 XT

 − 2r(X) + n − r[ X, ΣΣΣ1 ] (by (2.2))

= r
[
ΣΣΣ1X X 0
XT X 0 KT

]
− 2r(X) + n − r[ X, ΣΣΣ1 ], (3.3)

r
(
[ X, ΣΣΣ1X⊥ ]⊥

)
= n − r[ X, ΣΣΣ1 ], (3.4)

r
[
ΣΣΣ1X X
XT X 0

]
= r
[
ΣΣΣ1X X

X 0

]
= r
[
0 X
X 0

]
= 2r(X). (3.5)
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Substituting (3.3)–(3.5) into (3.2) and simplifying lead to the equivalence of (i) and (xiii).
Because E(OLSE(KΘ) − BLUE(KΘ)) = 0, we see from Definition 3.1 (ii) that OLSE(KΘ) =

BLUE(KΘ) holds with probability 1 if and only if

Cov(
−−−−−−−−−−→
OLSE(KΘ) −

−−−−−−−−−−→
BLUE(KΘ))

= σ2(Im ⊗ (KX+ − [ K, 0 ][ X, ΣΣΣ1X⊥ ]+ − U[ X, ΣΣΣ1X⊥ ]⊥))(ΣΣΣ2 ⊗ ΣΣΣ1)

(Im ⊗ (KX+ − [ K, 0 ][ X, ΣΣΣ1X⊥ ]+ − U[ X, ΣΣΣ1X⊥ ]⊥))T = 0. (3.6)

Since ΣΣΣ2 ⊗ ΣΣΣ1 is nonnegative definite and ΣΣΣ2 , 0, (3.6) is equivalent to(
KX+ − [ K, 0 ][ X, ΣΣΣ1X⊥ ]+

)
ΣΣΣ1 = 0

by Lemma 2.3, thus establishing the equivalence of (ii) and (viii).
It follows from (2.13) and (2.23) that (iii) is equivalent to

Cov(
−−−−−−−−−−→
OLSE(KΘ)) − Cov(

−−−−−−−−−−→
BLUE(KΘ))

= σ2ΣΣΣ2 ⊗ (KX+ΣΣΣ1(KX+)T ) − σ2ΣΣΣ2 ⊗ ([ K, 0 ][ X, ΣΣΣ1X⊥ ]+ΣΣΣ1([ K, 0 ][ X, ΣΣΣ1X⊥ ]+)T )

= σ2ΣΣΣ2 ⊗ (KX+ΣΣΣ1(KX+)T − [ K, 0 ][ X, ΣΣΣ1X⊥ ]+ΣΣΣ1([ K, 0 ][ X, ΣΣΣ1X⊥ ]+)T ) = 0,

which is further equivalent to

KX+ΣΣΣ1(KX+)T − [ K, 0 ][ X, ΣΣΣ1X⊥ ]+ΣΣΣ1([ K, 0 ][ X, ΣΣΣ1X⊥ ]+)T = 0

by Lemma 2.3, thus establishing the equivalence of (iii) and (x).
By (2.12) and (2.21),

Cov{
−−−−−−−−−−→
OLSE(KΘ),

−→
Y} = σ2(Im ⊗KX+)(ΣΣΣ2 ⊗ ΣΣΣ1) = σ2ΣΣΣ2 ⊗KX+ΣΣΣ1, (3.7)

Cov{
−−−−−−−−−−→
BLUE(KΘ),

−→
Y} = σ2(Im ⊗ ([ K, 0 ][ X, ΣΣΣ1X⊥ ]+ + U[ X, ΣΣΣ1X⊥ ]⊥))(ΣΣΣ2 ⊗ ΣΣΣ1)

= σ2ΣΣΣ2 ⊗ ([ K, 0 ][ X, ΣΣΣ1X⊥ ]+ΣΣΣ1). (3.8)

Comparing the right-hand sides of (3.7) and (3.8) leads to the equivalence of (iv) and (viii).
By (2.14) and (2.21),

Cov{
−−−−−−−−−−→
BLUE(KΘ),

−−−−−−−−−−→
OLSE(XΘ)}

= σ2(Im ⊗ ([ K, 0 ][ X, ΣΣΣ1X⊥ ]+ + U[ X, ΣΣΣ1X⊥ ]⊥))(ΣΣΣ2 ⊗ ΣΣΣ1)(Im ⊗ XX+)
= σ2ΣΣΣ2 ⊗ ([ K, 0 ][ X, ΣΣΣ1X⊥ ]+ΣΣΣ1XX+). (3.9)

Comparing the right-hand sides of (3.7) and (3.9) leads to the equivalence of (v) and (ix).
By (2.12), (2.14), and (3.7),

Cov{
−−−−−−−−−−→
OLSE(KΘ),

−→
Y −
−−−−−−−−−−→
OLSE(XΘ)}

= Cov{
−−−−−−−−−−→
OLSE(KΘ),

−→
Y} − Cov{

−−−−−−−−−−→
OLSE(KΘ),

−−−−−−−−−−→
OLSE(XΘ)}

= σ2ΣΣΣ2 ⊗KX+ΣΣΣ1 − σ
2ΣΣΣ2 ⊗ (KX+ΣΣΣ1XX+) = σ2ΣΣΣ2 ⊗ (KX+ΣΣΣ1X⊥). (3.10)

Setting all sides of the equalities equal of the to zero yields the equivalence of (vi) and (xi) by Lemma
2.3. □

AIMS Mathematics Volume 9, Issue 9, 23544–23563.



23556

More results and facts associated with the equalities of OLSEs and BLUEs can be established from
algebraic and statistical considerations. In particular, the matrix equalities in Theorem 3.2 (viii)–(xi)
correspond directly to the estimation equalities and the covariance matrix equalities. In other words,
they have clear statistical interpretations and can be utilized in the corresponding statistical inference.

Let K = X in Theorem 3.2. We obtain the following results:

Corollary 3.3. Let OLSE(XΘ) and BLUE(XΘ) be as given in (2.14) and (2.25), respectively. Then,
the following 31 statements are equivalent:

(i) OLSE(XΘ) = BLUE(XΘ) holds definitely (with probability 1).
(ii) Cov(

−−−−−−−−−−→
OLSE(XΘ)) = Cov(

−−−−−−−−−−→
BLUE(XΘ)).

(iii) Cov(
−→
Y −
−−−−−−−−−−→
OLSE(XΘ)) = Cov(

−→
Y −
−−−−−−−−−−→
BLUE(XΘ)).

(iv) Cov(
−−−−−−−−−−→
OLSE(XΘ)) = Cov{

−−−−−−−−−−→
BLUE(XΘ),

−→
Y}.

(v) Cov(
−−−−−−−−−−→
OLSE(XΘ)) = Cov{

−−−−−−−−−−→
BLUE(XΘ),

−−−−−−−−−−→
OLSE(XΘ)}.

(vi) Cov{
−−−−−−−−−−→
OLSE(XΘ),

−→
Y} = Cov{

−−−−−−−−−−→
BLUE(XΘ),

−→
Y}.

(vii) Cov{
−−−−−−−−−−→
OLSE(XΘ),

−→
Y} = Cov{

−−−−−−−−−−→
BLUE(XΘ),

−−−−−−−−−−→
OLSE(XΘ)}.

(viii) Cov{
−−−−−−−−−−→
OLSE(XΘ),

−→
Y} = Cov{

−→
Y,
−−−−−−−−−−→
OLSE(XΘ)}.

(ix) Cov{
−→
Y −
−−−−−−−−−−→
OLSE(XΘ),

−→
Y} = Cov{

−→
Y,
−→
Y −
−−−−−−−−−−→
OLSE(XΘ)}.

(x) Cov{
−→
Y −
−−−−−−−−−−→
OLSE(XΘ),

−−−−−−−−−−→
OLSE(XΘ)} = Cov{

−−−−−−−−−−→
OLSE(XΘ),

−→
Y −
−−−−−−−−−−→
OLSE(XΘ)} = 0.

(xi) Cov{
−→
Y −
−−−−−−−−−−→
OLSE(XΘ),

−−−−−−−−−−→
OLSE(XΘ)} + Cov{

−−−−−−−−−−→
OLSE(XΘ),

−→
Y −
−−−−−−−−−−→
OLSE(XΘ)} = 0.

(xii) Cov{
−→
Y −
−−−−−−−−−−→
OLSE(XΘ),

−−−−−−−−−−→
OLSE(XΘ)} = 0.

(xiii) Cov(
−→
Y) = Cov(

−−−−−−−−−−→
OLSE(XΘ)) + Cov(

−→
Y −
−−−−−−−−−−→
OLSE(XΘ)).

(xiv) PX = [ X, 0 ][ X, ΣΣΣ1X⊥ ]+.
(xv) PXΣΣΣ1 = [ X, 0 ][ X, ΣΣΣ1X⊥ ]+ΣΣΣ1.

(xvi) PXΣΣΣ1 = [ X, 0 ][ X, ΣΣΣ1X⊥ ]+ΣΣΣ1PX.

(xvii) PXΣΣΣ1PX = [ X, 0 ][ X, ΣΣΣ1X⊥ ]+ΣΣΣ1([ X, 0 ][ X, ΣΣΣ1X⊥ ]+)T .

(xviii) X⊥ΣΣΣ1X⊥ = ( In − [ X, 0 ][ X, ΣΣΣ1X⊥ ]+ )ΣΣΣ1( In − [ X, 0 ][ X, ΣΣΣ1X⊥ ]+ )T .

(xix) PXΣΣΣ1PX = [ X, 0 ][ X, ΣΣΣ1X⊥ ]+ΣΣΣ1.

(xx) PXΣΣΣ1PX = [ X, 0 ][ X, ΣΣΣ1X⊥ ]+ΣΣΣ1PX.

(xxi) PXΣΣΣ1X⊥ = X⊥ΣΣΣ1PX = 0.
(xxii) PXΣΣΣ1X⊥ + X⊥ΣΣΣ1PX = 0.

(xxiii) X⊥ΣΣΣ1X = 0.
(xxiv) PXΣΣΣ1 = ΣΣΣ1PX.

(xxv) X⊥ΣΣΣ1 = ΣΣΣ1X⊥.
(xxvi) r[ X, ΣΣΣ1X ] = r(X).

(xxvii) r[ X⊥, ΣΣΣ1X⊥ ] = r(X⊥).
(xxviii) R(ΣΣΣ1X) ⊆ R(X).

(xxix) R(ΣΣΣ1X⊥) ⊆ R(X⊥).
(xxx) R(ΣΣΣ1X) = R(ΣΣΣ1) ∩R(X).

(xxxi) R(ΣΣΣ1X⊥) = R(ΣΣΣ1) ∩R(X⊥).

Proof. The equivalences of (i), (ii), (vi), (vii), (xii), (xiv)–(xvii), and (xxi) follow from Theorem 3.2
(i)–(xi) via setting K = X. The equivalences of the matrix equalities and relations in (xviii)–(xx),
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(xxiii), (xxiv), (xxvi), and (xxviii) were collected and proved in [38].
From (2.14) and (2.25),

Cov(
−→
Y −
−−−−−−−−−−→
OLSE(XΘ)) = σ2(Im ⊗ X⊥)(ΣΣΣ2 ⊗ ΣΣΣ1)(Im ⊗ X⊥) = σ2ΣΣΣ2 ⊗ X⊥ΣΣΣ1X⊥, (3.11)

Cov(
−→
Y −
−−−−−−−−−−→
BLUE(XΘ)) = σ2(Im ⊗ (In − [ X, 0 ][ X, ΣΣΣ1X⊥ ]+ − U[ X, ΣΣΣ1X⊥ ]⊥))(ΣΣΣ2 ⊗ ΣΣΣ1)

(Im ⊗ (In − [ X, 0 ][ X, ΣΣΣ1X⊥ ]+ − U[ X, ΣΣΣ1X⊥ ]⊥))T

= σ2ΣΣΣ2 ⊗ (In − [ X, 0 ][ X, ΣΣΣ1X⊥ ]+ )ΣΣΣ1( In − [ X, 0 ][ X, ΣΣΣ1X⊥ ]+)T . (3.12)

Comparing the right-hand sides of (3.11) and (3.12) leads to the equivalence of (iii) and (xviii).
From (2.15) and (3.8),

Cov(
−−−−−−−−−−→
OLSE(XΘ)) − Cov{

−−−−−−−−−−→
BLUE(XΘ),

−→
Y} = σ2ΣΣΣ2 ⊗ (PXΣΣΣ1PX) − σ2ΣΣΣ2 ⊗ ([ X, 0 ][ X, ΣΣΣ1X⊥ ]+ΣΣΣ1)

= σ2ΣΣΣ2 ⊗ (PXΣΣΣ1PX − [ X, 0 ][ X, ΣΣΣ1X⊥ ]+ΣΣΣ1). (3.13)

Setting both sides equal to zero yields the equivalence of (iv) and (xix).
From (2.15) and (3.9),

Cov(
−−−−−−−−−−→
OLSE(XΘ)) − Cov{

−−−−−−−−−−→
BLUE(XΘ),

−−−−−−−−−−→
OLSE(XΘ)}

= σ2ΣΣΣ2 ⊗ (PXΣΣΣ1PX) − σ2ΣΣΣ2 ⊗ ([ X, 0 ][ X, ΣΣΣ1X⊥ ]+ΣΣΣ1PX)

= σ2ΣΣΣ2 ⊗ (PXΣΣΣ1PX − [ X, 0 ][ X, ΣΣΣ1X⊥ ]+ΣΣΣ1PX). (3.14)

Thus, setting both sides equal to zero yields the equivalence of (v) and (xx).
From (3.7),

Cov{
−−−−−−−−−−→
OLSE(XΘ),

−→
Y} − Cov{

−→
Y,
−−−−−−−−−−→
OLSE(XΘ)}

= σ2ΣΣΣ2 ⊗ PXΣΣΣ1 − σ
2ΣΣΣ2 ⊗ ΣΣΣ1PX = σ

2ΣΣΣ2 ⊗ (PXΣΣΣ1 − ΣΣΣ1PX). (3.15)

Setting both sides equal to zero yields the equivalence of (viii) and (xxiv).
From (1.1) and (3.7),

Cov{
−→
Y −
−−−−−−−−−−→
OLSE(XΘ),

−→
Y} − Cov{

−→
Y,
−→
Y −
−−−−−−−−−−→
OLSE(XΘ)} = σ2ΣΣΣ2 ⊗ X⊥ΣΣΣ1 − σ

2ΣΣΣ2 ⊗ ΣΣΣ1X⊥

= σ2ΣΣΣ2 ⊗ (X⊥ΣΣΣ1 − ΣΣΣ1X⊥). (3.16)

Setting both sides equal to zero yields the equivalence of (ix) and (xxv).
From (xii), we obtain the equivalence of (x) and (xxi).
From (1.1), (2.15), (3.10), and (3.11),

Cov{
−−−−−−−−−−→
OLSE(XΘ),

−→
Y −
−−−−−−−−−−→
OLSE(XΘ)} + Cov{

−→
Y −
−−−−−−−−−−→
OLSE(XΘ),

−−−−−−−−−−→
OLSE(XΘ)}

= σ2ΣΣΣ2 ⊗ PXΣΣΣ1X⊥ + σ2ΣΣΣ2 ⊗ X⊥ΣΣΣ1PX

= σ2ΣΣΣ2 ⊗ (PXΣΣΣ1X⊥ + X⊥ΣΣΣ1PX), (3.17)

and

Cov(
−→
Y) − Cov(

−−−−−−−−−−→
OLSE(XΘ)) − Cov(

−→
Y −
−−−−−−−−−−→
OLSE(XΘ))
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= σ2ΣΣΣ2 ⊗ ΣΣΣ1 − σ
2ΣΣΣ2 ⊗ PXΣΣΣ1PX − σ

2ΣΣΣ2 ⊗ X⊥ΣΣΣ1X⊥

= σ2ΣΣΣ2 ⊗ (PXΣΣΣ1X⊥ + X⊥ΣΣΣ1PX), (3.18)

where by (2.1) and Lemma 2.1(v),

r(PXΣΣΣ1X⊥ + X⊥ΣΣΣ1PX) = r(PXΣΣΣ1X⊥) + r(X⊥ΣΣΣ1PX) = 2r(X⊥ΣΣΣ1PX)

= 2r[ X, ΣΣΣ1X ] − 2r(X). (3.19)

Setting both sides of (3.19) equal to zero and combining it with (3.17) and (3.18) yields the
equivalences of (xi), (xiii), (xxii), (xxiii), (xxvi), and (xxviii).

The equivalences of (xxiii)–(xxxi) on matrix equalities and range equalities are well known [25].
□

Observing from (2.7) that XiΘi = ViΘ, and letting K = Vi in Theorem 3.2, we obtain the following
results:

Corollary 3.4. Suppose that the partial mean matrix XiΘi is estimable under (1.1), and let OLSE(XiΘi)
and BLUE(XiΘi) be as given in (2.16) and (2.28), respectively, i = 1, . . . , k. Then, the following 18
statistical and algebraic statements are equivalent:

(i) OLSE(XiΘi) = BLUE(XiΘi) holds definitely (with probability 1), i = 1, 2, . . . , k.
(ii) Cov(

−−−−−−−−−−−→
OLSE(XiΘi)) = Cov(

−−−−−−−−−−−→
BLUE(XiΘi)), i = 1, 2, . . . , k.

(iii) Cov{
−−−−−−−−−−−→
OLSE(XiΘi),

−→
Y} = Cov{

−−−−−−−−−−−→
BLUE(XiΘi),

−→
Y}, i = 1, 2, . . . , k.

(iv) Cov{
−−−−−−−−−−−→
OLSE(XiΘi),

−→
Y} = Cov{

−−−−−−−−−−−→
BLUE(XiΘi),

−−−−−−−−−−→
OLSE(XΘ)}, i = 1, 2, . . . , k.

(v) Cov{
−−−−−−−−−−−→
OLSE(XiΘi),

−→
Y −
−−−−−−−−−−→
OLSE(XΘ)} = 0, i = 1, 2, . . . , k.

(vi) ViX+ = [ Vi, 0 ][ X, ΣΣΣ1X⊥ ]+, i = 1, 2, . . . , k.
(vii) ViX+ΣΣΣ1 = [ Vi, 0 ][ X, ΣΣΣ1X⊥ ]+ΣΣΣ1, i = 1, 2, . . . , k.

(viii) ViX+ΣΣΣ1 = [ Vi, 0 ][ X, ΣΣΣ1X⊥ ]+ΣΣΣ1PX, i = 1, 2, . . . , k.
(ix) ViX+ΣΣΣ1(ViX+)T = [ Vi, 0 ][ X, ΣΣΣ1X⊥ ]+ΣΣΣ1([ Vi, 0 ][ X, ΣΣΣ1X⊥ ]+)T , i = 1, 2, . . . , k.
(x) ViX+ΣΣΣ1X⊥ = 0, i = 1, 2, . . . , k.

(xi) X⊥[ΣΣΣ1X, 0 ]F[ XT X,VT
i ] = 0, i = 1, 2, . . . , k.

(xii) X⊥ΣΣΣ1W⊥
i Xi = 0, i = 1, 2, . . . , k.

(xiii) r
[
ΣΣΣ1X X 0
XT X 0 VT

i

]
= r
[
ΣΣΣ1X X
XT X 0

]
= 2r(X), i = 1, 2, . . . , k.

(xiv) r
[
ΣΣΣ1X X
WT

i X 0

]
= r(X) + r(Wi), i = 1, 2, . . . , k.

(xv) R[(ViX+ΣΣΣ1)T ] ⊆ R(X), i = 1, 2, . . . , k.

(xvi) R

[
XTΣΣΣ1X⊥

0

]
⊆ R

[
XT X
Vi

]
, i = 1, 2, . . . , k.

(xvii) R

[
0

VT
i

]
⊆ R

[
ΣΣΣ1X X
XT X 0

]
, i = 1, 2, . . . , k.

(xviii) R(ΣΣΣ1W⊥
i Xi) ⊆ R(X), i = 1, 2, . . . , k.

Proof. The equivalences of (i)–(v) follow from Theorem 3.2 (i)–(vi). The equivalences of the matrix
equalities and relations in (vi)–(xviii) were collected and proved in [38]; see also [33]. □
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Concerning the equalities between the OLSEs and the BLUEs of the whole and partial mean
parameter matrices in (1.1), we have the following results:

Theorem 3.5. Suppose that all XiΘi in (1.1) are estimable, i = 1, . . . , k. Then, the following 18
statistical statements are equivalent:

(i) OLSE(XΘ) = BLUE(XΘ) holds definitely (with probability 1).
(ii) Cov(

−−−−−−−−−−→
OLSE(XΘ)) = Cov(

−−−−−−−−−−→
BLUE(XΘ)).

(iii) Cov(
−→
Y −
−−−−−−−−−−→
OLSE(XΘ)) = Cov(

−→
Y −
−−−−−−−−−−→
BLUE(XΘ)).

(iv) Cov(
−→
Y) = Cov(

−−−−−−−−−−→
OLSE(XΘ)) + Cov(

−→
Y −
−−−−−−−−−−→
OLSE(XΘ)).

(v) Cov(
−−−−−−−−−−→
OLSE(XΘ)) = Cov{

−−−−−−−−−−→
BLUE(XΘ),

−→
Y}.

(vi) Cov(
−−−−−−−−−−→
OLSE(XΘ)) = Cov{

−−−−−−−−−−→
BLUE(XΘ),

−−−−−−−−−−→
OLSE(XΘ)}.

(vii) Cov{
−−−−−−−−−−→
OLSE(XΘ),

−→
Y} = Cov{

−−−−−−−−−−→
BLUE(XΘ),

−→
Y}.

(viii) Cov{
−−−−−−−−−−→
OLSE(XΘ),

−→
Y} = Cov{

−−−−−−−−−−→
BLUE(XΘ),

−−−−−−−−−−→
OLSE(XΘ)}.

(ix) Cov{
−−−−−−−−−−→
OLSE(XΘ),

−→
Y} = Cov{

−→
Y,
−−−−−−−−−−→
OLSE(XΘ)}.

(x) Cov{
−→
Y −
−−−−−−−−−−→
OLSE(XΘ),

−→
Y} = Cov{

−→
Y,
−→
Y −
−−−−−−−−−−→
OLSE(XΘ)}.

(xi) Cov{
−→
Y −
−−−−−−−−−−→
OLSE(XΘ),

−−−−−−−−−−→
OLSE(XΘ)} = Cov{

−−−−−−−−−−→
OLSE(XΘ),

−→
Y −
−−−−−−−−−−→
OLSE(XΘ)} = 0.

(xii) Cov{
−→
Y −
−−−−−−−−−−→
OLSE(XΘ),

−−−−−−−−−−→
OLSE(XΘ)} + Cov{

−−−−−−−−−−→
OLSE(XΘ),

−→
Y −
−−−−−−−−−−→
OLSE(XΘ)} = 0.

(xiii) Cov{
−−−−−−−−−−→
OLSE(XΘ),

−→
Y −
−−−−−−−−−−→
OLSE(XΘ)} = 0.

(xiv) All OLSE(XiΘi) = BLUE(XiΘi) hold definitely (with probability 1), i = 1, 2, . . . , k.
(xv) All Cov(

−−−−−−−−−−−→
OLSE(XiΘi)) = Cov(

−−−−−−−−−−−→
BLUE(XiΘi)) hold, i = 1, 2, . . . , k.

(xvi) All Cov{
−−−−−−−−−−−→
OLSE(XiΘi),

−→
Y} = Cov{

−−−−−−−−−−−→
BLUE(XiΘi),

−→
Y} hold, i = 1, 2, . . . , k.

(xvii) All Cov{
−−−−−−−−−−−→
OLSE(XiΘi),

−→
Y} = Cov{

−−−−−−−−−−−→
BLUE(XiΘi),

−−−−−−−−−−→
OLSE(XΘ)} hold, i = 1, 2, . . . , k.

(xviii) All Cov{
−→
Y −
−−−−−−−−−−→
OLSE(XΘ),

−−−−−−−−−−−→
OLSE(XiΘi)} = 0 hold, i = 1, 2, . . . , k.

Proof. The equivalences of (i)–(xiii) follow from Corollary 3.3. The equivalences of (xiv)–(xviii)
follow from Corollary 3.4. If (i) holds, then R(ΣΣΣ1X) ⊆ R(X) holds by Corollary 3.3 (xxviii), and
therefore the rank equality in Corollary 3.4 (xiii) holds as well, so that (i) implies (xiv)–(xviii). On
the contrary, adding both sides of the k equalities in (xiv) and combining the equality with (2.18) and
(2.31), we obtain (i). □

4. Concluding remarks

Because OLSEs and BLUEs of unknown parameters in MGLMs can all be represented in certain
exact and analytical formulas, it is definitely possible to obtain a number of clear and significant
facts and results regarding the two fundamental and orthodox types of estimators by means of various
mathematical analysis tools. In light of this fact, we described and studied in the preceding sections
a group of research problems on establishing connections between OLSEs and BLUEs of unknown
parameters in MGLMs through the well-organized employment of some exact algebraic methods
and techniques in matrix theory and obtained a variety of algebraic and statistical interpretations for
the equivalences of OLSEs and BLUEs under MGLMs. Unquestionably, this study shows that the
equivalence problems of OLSEs and BLUEs under MGLMs are not isolated facts, but have diverse
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intrinsic links from algebraic and statistical points of view. Also, notice that the results in the previous
sections are given in clear and analytical forms, so that they are easy to understand under various
assumptions, and thereby enable us to recognize and use these versatile equivalent facts in many
different situations when estimating parametric spaces in MGLMs and describing various mathematical
and statistical properties of the estimators. Thus, it is technically necessary to collect these equivalent
algebraic and statistical facts together and take them as a certain theoretical foundation for OLSE and
BLUE problems on MGLMs. This work also illustrates that although OLSEs and BLUEs are classic
objects of study, we are still able to propose various new and deep statistical inference problems on
these objects and derive many novel and profound results under general assumptions by making use
of various influential and effective matrix analysis tools and skilled partitioned matrix calculations.
Hence, the contributions in this paper are closely related to the current research on linear statistical
inference in its broadest sense. Finally, we believe that the resultant approaches to the equivalences of
OLSEs and BLUEs provide significant advances to algebraical methodology in the statistical analysis
of MGLMs and will enable methodological improvements and advances in the field of multivariate
analysis.
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