Research article

Weighted expectile average estimation based on CBPS with responses missing at random

  • Received: 22 February 2024 Revised: 08 July 2024 Accepted: 22 July 2024 Published: 29 July 2024
  • MSC : 62F10, 62F12

  • An improved weighted expectile average estimator for the regression coefficient has been obtained based on the covariate balancing propensity score (CBPS), when the responses of linear models are missing at random. The asymptotic normality of the proposed method has been proved, and the estimation effect of the method is further illustrated by numerical simulation.

    Citation: Qiang Zhao, Zhaodi Wang, Jingjing Wu, Xiuli Wang. Weighted expectile average estimation based on CBPS with responses missing at random[J]. AIMS Mathematics, 2024, 9(8): 23088-23099. doi: 10.3934/math.20241122

    Related Papers:

  • An improved weighted expectile average estimator for the regression coefficient has been obtained based on the covariate balancing propensity score (CBPS), when the responses of linear models are missing at random. The asymptotic normality of the proposed method has been proved, and the estimation effect of the method is further illustrated by numerical simulation.



    加载中


    [1] R. J. A. Little, D. B. Rubin, Statistical analysis with missing data, 2 Eds., New York: Wiley, 2002. http://dx.doi.org/10.1002/9781119013563
    [2] F. Yates, The analysis of replicated experiments when the field results are incomplete, Emprie Jour. Exp. Agric., 1 (1933), 129–142.
    [3] D. G. Horvitz, D. J. Thompson, A generalization of sampling without replacement from a finite universe, J. Am. Stat. Assoc., 47 (1952), 663–685. http://dx.doi.org/10.1080/01621459.1952.10483446 doi: 10.1080/01621459.1952.10483446
    [4] J. M. Robins, A. Rotnitzky, L. P. Zhao, Estimation of regression coefficients when some of regression coefficients estimation regressors are not always observed, J. Am. Stat. Assoc., 89 (1994), 846–866. http://dx.doi.org/10.2307/2290910 doi: 10.2307/2290910
    [5] K. Imai, M. Ratkovic, Covariate balancing propensity score, J. R. Stat. Soc. B., 76 (2014), 243–263. http://dx.doi.org/10.1111/rssb.12027 doi: 10.1111/rssb.12027
    [6] D. Guo, L. Xue, Y. Hu, Covariate-balancing-propensity-score-based inference for linear models with missing responses, Statist. Probab. Lett., 123 (2017), 139–145. http://dx.doi.org/10.1016/j.spl.2016.12.001 doi: 10.1016/j.spl.2016.12.001
    [7] W. K. Newey, J. L. Powell, Asymmetric least squares estimation and testing, Econometrica, 55 (1987), 819–847. http://dx.doi.org/10.2307/1911031 doi: 10.2307/1911031
    [8] F. Sobotka, G. Kauermann, L. S. Waltrup, T. Kneib, On confidence intervals for semiparametric expectile regression, Stat. Comput., 23 (2013), 135–148. http://dx.doi.org/10.1007/s11222-011-9297-1 doi: 10.1007/s11222-011-9297-1
    [9] L. S. Waltrup, F. Sobotka, T. Kneib, Expectile and quantile regression David and Goliath, Stat. Model., 15 (2015), 433–456. http://dx.doi.org/10.1177/1471082X14561155 doi: 10.1177/1471082X14561155
    [10] J. F. Ziegel, Coherence and elicitability, Math. Financ., 26 (2016), 901–918. http://dx.doi.org/10.1111/mafi.12080 doi: 10.1111/mafi.12080
    [11] Y. Pan, Z. Liu, W. Cai, Large-scale expectile regression with covariates missing at random, IEEE. Access., 8 (2020), 36502–36513. http://dx.doi.org/10.1109/access.2020.2970741 doi: 10.1109/access.2020.2970741
    [12] Y. Pan, Z. Liu, W. Cai, Weighted expectile regression with covariates missing at random, Commun. Stat.-Simul. C., 52 (2023), 1057–1076. http://dx.doi.org/10.1080/03610918.2021.1873371 doi: 10.1080/03610918.2021.1873371
    [13] J. C. Peng, L. K. Lee, M. G. Ingersoll, An introduction to logistic regression analysis and reporting, J. Educ. Res., 96 (2002), 3–14. http://dx.doi.org/10.1080/00220670209598786 doi: 10.1080/00220670209598786
    [14] L. P. Hansen, Large sample properties of generalized method of moments estimators, Econometrica, 50 (1982), 1029–1054. http://dx.doi.org/10.2307/1912775 doi: 10.2307/1912775
    [15] S. Zhao, Expected regression estimation of semiparametric model, Shanxi Normal Univ., 2021.
    [16] D. Guo, Estimation methods and theories of several types of regression models under missing data, Beijing Univ. Tech., 2017.
    [17] N. L. Hjort, D. Pollard, Asymptotics for minimisers of convex processes, arXiv Preprint, 2011. https://doi.org/10.48550/arXiv.1107.3806
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(355) PDF downloads(30) Cited by(0)

Article outline

Figures and Tables

Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog