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1. Introduction

In practical applications, due to the interference of various factors, collected data is often
incomplete. Missing data is common in public opinion polls, medical research, experimental science,
and other application fields. Missing data will not only result in the reduction of effective information,
the deviation of the estimation result, but also affect the statistical decision-making and distort the
analysis result to some extent. One approach to deal with missing data is complete-case analysis,
which deletes all incomplete data. However, Little and Rubin [1] pointed out that this will cause biased
estimation when the occurrence of missing data is not completely at random. Yates [2] introduced an
imputation method which is widely used to handle missing responses. The purpose of this method is
to find suitable values for the missing data to impute. Then, the data of the filled values are regarded
as the complete observation data, which can be analyzed by the classical method. Inverse probability
weighting (IPW), which was proposed by Horvitz and Thompson [3], is another method to deal with
missing data. The inverse of the selection probability is chosen to be the weight assigned to the fully
observed data. The missing at random (MAR) assumption, in the sense of Rubin et al. [4], is a common
assumption for statistical analysis with missing data.
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In the case of missing data, the missing mechanism is usually unknown, and parameter methods
and nonparametric methods are commonly used to estimate. For the parameter method, there may be
a model misspecification problem. Imai and Ratkovic [5] proposed the covariate balanced propensity
score (CBPS), which improves the parameter method. Based on the CBPS method, Guo et al. [6]
applied the CBPS method to mean regression to obtain the estimators of the regression parameters β
and the mean µ in the case of missing data.

Expectile regression, which was proposed by Newey and Powell [7], can be regarded as a
generalization of mean regression. Expectile regression uses the sum of asymmetric residual squares
as the loss function, and since the loss function is convex and differentiable, expectile regression has
computational advantages over quantile regression. Recently, people have carried out a lot of specific
research on expectile regression. Sobotka et al. [8] established the asymptotic properties of a semi-
parametric expectile regression estimator and introduced confidence intervals for expectiles. Waltrup et
al. [9] observed that expectile regression tends to have less crossing and more robustness against heavy
tailed distributions than quantile regression. Ziegel [10] concluded that expectile shares coherence
and elicitability. Pan et al. [11] considered fitting a linear expectile regression model for estimating
conditional expectiles based on a large quantity of data with covariates missing at random. Recently,
Pan et al. [12] developed a weighted expectile regression approach for estimating the conditional
expectile when covariates are missing at random (MAR). They only considered a single expectile,
and the missing mechanism was assumed to be logistic regression. However, the missing mechanism
model may be misspecified. In addition, it is known that making full use of multiple target information
can improve the efficiency of parameter estimation. In summary, when the model may be misspecified,
we use the idea of covariate balance to study the weighted expectile average estimation of unknown
parameters based on CBPS by using multiple expected information. Our estimators can improve
performance of the usual weighted expectile average estimator in terms of standard deviation (SD)
and mean squared error (MSE).

The rest of this paper is organized as follows. In Section 2, we propose a CBPS-based estimator for
the propensity score. In Section 3, we estimate the expected quantile weighted average of the regression
parameters based on CBPS. Moreover, we establish the asymptotic normality of the weighted estimator
in Section 4. In Section 5, a simulation study is carried out to assess the performance of the proposed
method. The proofs of those theoretical results are deferred to the Appendix.

2. CBPS-based estimator for the propensity score

Consider the following linear regression model:

Yi = XT
i β + εi, i = 1, 2, . . . , n, (2.1)

where Yi is response, Xi is covariate, β is the p-dimensional vector of unknown parameters, and εi is
the random error. Assuming that the response variable Yi is missing at random, the covariate Xi can be
fully observed. For the ith individual, let δi denote the observing indicator, i.e., δi = 1 if Yi is observed
and 0 otherwise. In our paper, we only consider the missing mechanism of missing at random (MAR),
that is,

P(δi = 1|Xi,Yi) = π(Xi) , πi, (2.2)

where πi is called the selection probability function or the propensity score.
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The most popular choice of π(Xi) is a logistic regression function (Peng et al. [13]). We make the
same choice and posit a logistic regression model for π(Xi),

π(Xi, γ) =
exp(γ0 + XT

i γ1)
1 + exp(γ0 + XT

i γ1)
, (2.3)

and γ = (γ0, γ
T
1 )T ∈ Θ is the unknown parameter vector with the parameter space Θ ⊆ Rq+1. Here, γ

can be estimated by maximizing the log-likelihood function

L(γ) =

n∑
i=1

{δi log π(Xi, γ) + (1 − δi) log(1 − π(Xi, γ)}.

Assuming that π(Xi, γ) is twice continuously differentiable with respect to γ, maximizing L(γ) implies
the first-order condition

1
n

n∑
i=1

s(δi, Xi, γ) = 0, s(δi, Xi, γ) =
δiπ
′(Xi, γ)

π(Xi, γ)
−

(1 − δi)π′(Xi, γ)
1 − π(Xi, γ)

, (2.4)

where π′(Xi, γ) = ∂π(Xi, γ)/∂γT . The maximum likelihood method is a commonly used and simple
parameter estimation method. However, when the selection probability model (2.3) is assumed to be
wrong, the estimator based on this method will have a large deviation. In order to make the parameter
method more robust, we use the covariate balanced propensity score method proposed by Imai and
Ratkovic [5] to estimate the unknown parameter γ, that is,

E
{

δiX̃i

π(Xi, γ)
−

(1 − δi)X̃i

1 − π(Xi, γ)

}
= 0. (2.5)

X̃i = f (Xi) is an M-dimensional vector-valued measurable function of Xi. For any covariate function,
as long as the expectation exists, Eq (2.5) must hold. If the propensity score model is incorrectly
specified, then the maximum likelihood may not be able to balance the covariates. Following Imai and
Ratkovic [5], we can set X̃i = Xi to ensure that the first moment of each covariate is balanced even
when the model is misspecified. π(Xi, γ) satisfies the condition

E
{

δiXi

π(Xi, γ)
−

(1 − δi)Xi

1 − π(Xi, γ)

}
= 0. (2.6)

The sample form of the covariate equilibrium condition obtained from (2.6) is

1
n

n∑
i=1

z(δi, Xi, γ)Xi = 0, (2.7)

where
z(δi, Xi, γ) =

δi − π(Xi, γ)
π(Xi, γ)(1 − π(Xi, γ))

.

According to Imai and Ratkovic [5], if we only use the condition of the π′(Xi, γ) equilibrium, i.e., (2.4),
at this time, the number of equations is equal to the number of parameters. Then, the covariate
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equilibrium propensity score is just-identified. If we combine Eq (2.4) with the score condition given
in Eq (2.7),

Ū(γ) =
1
n

n∑
i=1

U(δi, Xi, γ), (2.8)

where

U(δi, Xi, γ) =

(
s(δi, Xi, γ)

z(δi, Xi, γ)Xi

)
,

then the covariate equilibrium propensity score is over-identified because the number of moment
conditions exceeds that of parameters. For over-identified CBPS, the estimation of γ can be obtained
by using the generalized moment method (GMM) (Hansen [14]). For a positive semidefinite symmetric
weight matrix W, the GMM estimator γ̂ can be obtained by minimizing the following objective function
for γ:

Q(γ) = ŪT (γ)WŪ(γ). (2.9)

The above method is also applicable to the case where the covariate balanced propensity score
is just-identified.

3. Estimator for the regression parameter

Pan et al. [12] introduced the weighted expectile regression estimation of a linear model in
detail. According to the idea of inverse probability weighting, when the selection probability function
(π1 . . . , πn)T is known, the expectile estimator of β under missing responses is defined as

(β̂τk ,T , b̂τk) = arg min
β,bτk

n∑
i=1

δi

π(Xi, γ)
Φτk(Yi − XT

i β − bτk), (3.1)

where τk ∈ (0, 1) is expectile level, and Φτk(v) = |τk − I(v ≤ 0)| v2. bτk represents the τk-expectile of the
error term εi. Then, according to Zhao et al. [15], let K be the number of expectiles, and consider the
equally spaced expectiles τk = k

K+1 , k = 1, 2, . . . ,K. The weighted expectile average estimator of the
linear model parameter β when the missing mechanism is known is defined as

β̂ =

K∑
k=1

ωkβ̂τk,T ,

where the weight vector (ω1, . . . , ωK)T satisfies
∑K

k=1 ωk = 1.
When the selection probability function is unknown, we use the method proposed in the second

section to estimate the parameter γ based on CBPS, so as to obtain π(Xi, γ̂). The loss function of the
τk-expectile can be defined as

Ln(βτk , bτk) =

n∑
i=1

δi

π(Xi, γ̂)
Φτk(Yi − XT

i β − bτk).

By minimizing the loss function, we can obtain the expectile estimation of the unknown parameter β,

(β̂τk , b̂τk) = arg min
β,bτk

Ln(βτk , bτk). (3.2)
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Therefore, the weighted expectile average estimation of the linear model parameter βwhen the missing
mechanism is unknown under the missing responses is defined as

β̂w =

K∑
k=1

ωkβ̂τk . (3.3)

The weight vector (ω1, . . . , ωK)T satisfies
∑K

k=1 ωk = 1.

4. Asymptotic property

Let γ0 and β0 represent the true values of γ and β respectively, and U(γ) =

(
s(δ, X, γ)

z(δ, X, γ)X

)
. In

addition, with reference to Pan et al. [12] and Guo [16], the following regularity conditions are required.
C1: γ0 is the interior point of Θ.
C2: U(γ) is differentiable in the neighborhood 4 of γ0.
C3: E[U(γ0)] = 0, E[‖U(γ0)‖2] < ∞.
C4: E[supγ∈4

∥∥∥∇γU(γ)
∥∥∥] < ∞, where ∇γ is the first-order partial derivative of the function to γ.

C5: Γ = E[∇γU(γ)] exists.
C6: For any i, there exists a compact set X, such that Xi ∈ X ⊂ R

p, and Xi and εi are independent.
C7: The regression errors {εi}

n
i=1 are independent and identically distributed with common

cumulative distribution function F(·), satisfying E[ε2
i ] < ∞.

C8: There exists a > 0 such that π(Vi, γ) > a for any i.
C9: The symmetric matrix Σ1 is positive definite.

The following theorem presents the asymptotic distribution of β̂w.
Theorem 4.1 (Asymptotic Normality of β̂w) Under the assumptions C1–C9, we have

√
n(β̂ω − β0)

d
→ N(0,Σ−1

1 ΛΣ−1
1 ),

where Σ1 = E[XiXT
i ], Λ = E[λλT ], λ = µ − E[∂µ/∂γT ]{E[∂U(γ)/∂γT ]}−1U(γ), µ =

δ
π(X,γ) X

∑K
k=1

ωkΨτk (ε−b0k)
g(τk) .

5. Simulation

In the following, the expectile weighted average estimation based on covariate balancing
propensity score proposed in this paper is analyzed by numerical simulation, and the method is
compared with the usual parameter estimation method in the case of correct and wrong model
assumptions. Consider the following linear model:

Y = β1X1 + β2X2 + β3X3 + ε, (5.1)

where β1 = 0.5, β2 = 1, β3 = 1, and (X1, X2, X3) obeys the joint normal distribution with mean of 0,
covariance of 0.5, and variance of 1. The error term ε obeys the standard normal distribution. In our
simulation, we take K = 10, τk = k/11 for k = 1, 2, . . . , 10, and consider the real choice probability
model as

π(X1, X2, X3) = exp(0.3X1 + 0.25X2 + 0.25X3)/[1 + exp(0.3X1 + 0.25X2 + 0.25X3)]. (5.2)

AIMS Mathematics Volume 9, Issue 8, 23088–23099.



23093

Under the assumption of random missing, in order to illustrate the effect when the model is
misspecified, we assume that the covariates

X∗ = (X∗1, X
∗
2, X

∗
3) , {exp(X1/2), (X2)/{1 + exp(X1)} + 10, (X1X3/25 + 0.6)3}.

If the model (5.2) is represented by π(X∗), the model will be specified incorrectly. In the simulation
study of the expectile regression of the unknown parameter β, we consider the following two cases: (1)
Propensity score model is correctly specified. (2) Propensity score model is misspecified. Zhao [15]
proposed the weighted composite expectile regression method for a varying-coefficient partially linear
model. For a given scenario, referring to Zhao [15], we compare the weighted expectile average
estimation based on CBPS, denoted as CBPS-WEAE, with weighted composite expectile regression,
denoted as WCER, and weighted composite quantile regression, denoted as WCQR, to examine the
performance of the estimator, where the weights of WCER and WCQR are estimated by the generalized
linear model.

In the simulation, samples of size n = 500, 800, 1000, 1200 are generated independently. For
each scenario, we conduct 1000 simulations and calculate the average mean squared error (MSE) for
estimator of β and the average bias (Bias) and standard deviation (SD) for estimator of β1, β2, and β3.
In order to examine the influence of the error distribution on the performance of the proposed method,
two different distributions of the model error ε are considered: standard normal distribution N(0, 1)
and centralized χ2 distribution with 4 degrees of freedom. The results of our simulations are presented
in Tables 1 and 2.

From Tables 1 and 2 we observe that, as expected, all three estimators are unbiased. In terms
of MSE, as a convenient measure of average error, we observe that when model error ε follows
the standard normal distribution N(0, 1), CBPS-WEAE performs best among the three estimators
considered, followed immediately by WCER, while WCQR performs worst. When ε follows a
centralized χ2 distribution with 4 degrees of freedom, CBPS-WEAE is superior to the other two
methods. When sample size is large, it can be seen that the performance of the three estimators is
significantly improved compared with that when the sample size is small. In general, our proposed
improved estimator is effective.
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Table 1. Simulation results (×100) under the error ε ∼ N(0, 1).

n Model Method MSE
β1 β2 β3

Bias SD Bias SD Bias SD

500

correct
WCQR 2.437 -0.100 9.038 -0.221 9.041 2.498 8.966
WCER 2.155 -0.172 8.533 -0.303 8.384 0.366 8.512

CBPS-WEAE 2.139 0.023 8.490 -0.433 8.355 -0.218 8.488

incorrect
WCQR 2.371 0.731 8.908 -0.616 8.866 2.498 8.855
WCER 2.256 0.518 8.642 -0.471 8.698 0.366 8.658

CBPS-WEAE 2.122 0.348 8.382 -0.680 8.547 -0.104 8.280

800

correct
WCQR 1.490 -0.033 6.944 0.105 7.190 2.498 7.011
WCER 1.380 -0.012 6.616 -0.036 6.886 0.366 6.844

CBPS-WEAE 1.356 0.311 6.569 -0.219 6.931 0.076 6.663

incorrect
WCQR 1.392 0.474 6.729 -0.176 6.689 2.498 6.997
WCER 1.357 0.266 6.980 0.291 6.455 0.366 6.732

CBPS-WEAE 1.310 -0.262 6.676 0.098 6.536 -0.285 6.609

1000

correct
WCQR 1.491 0.123 6.156 -0.143 6.427 2.498 6.375
WCER 1.107 0.067 6.008 0.003 6.182 0.366 6.044

CBPS-WEAE 1.098 3.303 6.094 -0.296 5.973 -0.260 6.069

incorrect
WCQR 1.202 0.037 6.497 -0.307 6.477 2.498 6.000
WCER 1.172 -0.155 6.252 0.213 6.452 0.366 6.042

CBPS-WEAE 1.122 -0.483 6.137 -0.070 6.209 -0.279 5.985

1200

correct
WCQR 1.033 0.021 5.819 0.136 5.967 2.498 5.824
WCER 0.902 0.132 5.513 0.027 5.470 0.366 5.472

CBPS-WEAE 0.898 0.403 5.486 -0.115 5.487 -0.267 5.421

incorrect
WCQR 1.005 0.401 5.968 -0.347 5.687 2.498 5.681
WCER 0.960 0.117 5.682 -0.027 5.578 0.366 5.712

CBPS-WEAE 0.923 -0.118 5.611 -0.290 5.451 -0.119 5.571
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Table 2. Simulation results (×100) under the error ε ∼ χ2(4).

n Model Method MSE
β1 β2 β3

Bias SD Bias SD Bias SD

500

correct
WCQR 42.007 1.385 36.000 1.970 37.445 2.498 38.742
WCER 19.889 0.282 25.231 0.767 26.285 0.366 25.743

CBPS-WEAE 18.424 -3.970 24.657 10.138 24.950 -0.236 24.431

incorrect
WCQR 37.935 4.173 36.241 0.443 35.828 2.498 34.384
WCER 19.472 1.481 25.942 -0.235 25.159 0.366 25.316

CBPS-WEAE 19.078 -3.454 25.124 -3.294 24.263 -4.148 25.491

800

correct
WCQR 33.040 1.769 33.706 1.452 32.203 2.498 33.593
WCER 12.696 1.142 21.067 0.887 20.695 0.366 19.901

CBPS-WEAE 12.471 -4.204 21.122 1.985 19.963 -0.534 19.540

incorrect
WCQR 32.691 2.495 34.420 1.215 32.328 2.498 32.158
WCER 13.098 -0.743 21.348 0.776 20.046 0.366 21.269

CBPS-WEAE 12.594 -4.931 20.047 -2.309 20.593 -3.187 19.872

1000

correct
WCQR 31.334 2.961 32.292 -1.051 32.338 2.498 32.208
WCER 12.647 1.554 21.038 0.214 19.026 0.366 21.370

CBPS-WEAE 9.456 -3.280 18.555 0.380 16.798 0.746 17.568

incorrect
WCQR 31.671 4.760 33.762 0.512 31.422 2.498 31.931
WCER 11.049 0.102 18.822 -0.729 17.908 0.366 20.694

CBPS-WEAE 9.811 -2.869 18.456 -3.676 17.077 -2.495 17.939

1200

correct
WCQR 29.885 -0.103 31.443 2.665 30.750 2.498 32.389
WCER 11.241 -0.516 18.673 1.694 18.976 0.366 20.328

CBPS-WEAE 8.751 -5.023 17.754 1.652 16.251 -0.198 16.391

incorrect
WCQR 31.091 1.617 33.886 3.476 30.736 2.498 31.688
WCER 10.297 0.207 18.428 0.508 18.222 0.366 18.942

CBPS-WEAE 9.455 -4.175 17.484 -2.462 16.866 -3.193 17.961

6. Conclusions

In this paper, in order to improve the estimation efficiency of weighted expectile average
estimation, we estimate the selection probability function based on CBPS and propose a weighted
expectile average estimator based on CBPS when the response variables are missing at random. The
asymptotic normality of the proposed method is proved, and the estimation effect of the method is
further illustrated by numerical simulation. The numerical simulation results show that the method
is effective.
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Appendix: Assumptions and proofs

Define the following symbols:
ηi = δi

π(Xi,γ) XiΨτk(εi),
η̂i = δi

π(Xi,γ̂) XiΨτk(εi),
Fn = − 1

√
n

∑n
i=1 η̂i,

εi = Yi − XT
i β0,

ω = (ω1, ω2, ...ωn)T ,
Σ1 = E[XiXT

i ],
Ψτk = 2 |τk − I(v ≤ 0)| v,
u = (u1, u2, ..., un)T ,

Gn(u) =
∑n

i=1
δi

π(Xi,γ̂)

[
Ψτk(εi −

XT
i u
√

n ) − Ψτk(εi)
]
.

Lemma 1. Assume that C1–C5 hold. Then, when n→ ∞,

√
n(γ̂ − γ0)

d
→ N(0, (ΓT Σ−1Γ)−1),

where Γ = E[∇γU(γ)], Σ = E[U(γ)UT (γ)].
The proof of Lemma 1 can refer to Theorem 2.2.1 in Guo [16].

Lemma 2. If the conditions C1–C4 are satisfied, then

Fn
d
→ N(0,Ω),

where Ω = E[QQT ],Q = η − E[∂η/∂γT ]{E[∂U(γ)/∂γT ]}−1U(γ).
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Proof. By expanding 1
√

n

∑n
i=1 η̂i at γ and the proof process of Lemma 1, we can get

1
√

n

n∑
i=1

η̂i =
1
√

n

n∑
i=1

ηi +

1
n

n∑
i=1

∂ηi

∂γ


γ∗

√
n(γ̂ − γ)

=
1
√

n

n∑
i=1

ηi −

1
n

n∑
i=1

∂ηi

∂γ


γ∗

1
n

n∑
i=1

∂Ui(γ)
∂γ

−1

γ∗

 1
√

n

n∑
i=1

Ui(γ)


=

1
√

n

n∑
i=1

[
ηi − DnB−1

n Ui(γ)
]
,

(A.1)

where Dn =
[

1
n

∑n
i=1

∂ηi
∂γ

]
γ∗
, Bn =

[
1
n

∑n
i=1

∂Ui(γ)
∂γ

]
γ∗

, and γ∗ lies between γ and γ̂.
According to the central limit theorem,

1
√

n

n∑
i=1

(ηi − DnB−1
n Ui(γ))

d
→ N(0,Ω),

where Ω = E[QQT ],Q = η − E[∂η/∂γT ]{E[∂U(γ)/∂γT ]}−1U(γ).
Therefore, Lemma 2 is proved.

Lemma 3. If the conditions C1–C4 are satisfied, then

√
n(β̂τk − β0)

d
→ N(0,

1
4g2(τ)

Σ−1
1 ΩΣ−1

1 ).

Proof. If the conditions C1–C4 are satisfied, it can be known from Pan et al. [12] that

Gn(u) = g(τ)uT Σ1u + FT
n u + op(1), (A.2)

where g(τ) = (1 − τ)F(0) + τ(1 − F(0)).
Known by Hjort and Pollard [17], if

Dn(u) =
1
2

uT Au + BT u + op(1),

where Dn(u) is a convex objective function with minimum point ûn, A is a symmetric and positive
definite matrix, and B is a random variable, then

ûn
d
−→ −A−1B.

Therefore, if we define ûn =
√

n(β̂τk − β0), then β̂τk = β0 + ûn√
n . By some simple calculations

and (A.2), we have

ûn = arg min
u

n∑
i=1

δi

π(Vi, γ̂)

[
Ψτk(εi −

XT
i u
√

n
) − Ψτk(εi)

]
= arg min

u
Gn(u)

= arg min
u

[
g(τ)uT Σ1u + FT

n u + op(1)
]
.

(A.3)
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According to condition C4, Σ1 is a symmetric positive definite matrix. Lemma 3 is proved by Lemma 1
and Slutsky’s theorem.

Proof of Theorem 4.1. By Lemma 3 we know that

√
n(β̂τk − β0) = Σ−1

1

1
√

n

∑n
i=1

δi
π(Xi,γ̂) XiΨτk(εi − b0k)

2g(τk)
+ op(1).

From β̂w =
∑K

k=1 ωkβ̂τk ,
∑K

k=1 ωk = 1, we can get

√
n(β̂w − β0) =

√
n(

K∑
k=1

ωkβ̂τk − β0)

=
√

n
K∑

k=1

ωk(β̂τk − β0)

=
1
√

n
Σ−1

1

n∑
i=1

δi

π(Xi, γ̂)
Xi

 K∑
k=1

ωkΨτk(εi − b0k)
2g(τk)

 + op(1).

(A.4)

According to the proof of Lemma 2, we can obtain that

n∑
i=1

η̂i =

n∑
i=1

δi

π(Xi, γ̂)
XiΨτk(εi) =

n∑
i=1

[
ηi − DnB−1

n Ui(γ)
]
.

Let µi = δi
π(Xi,γ) Xi

∑K
k=1

ωkΨτk (εi−b0k)
g(τk) , µ̂i = δi

π(Xi,γ̂) Xi
∑K

k=1
ωkΨτk (εi−b0k)

g(τk) , and then

n∑
i=1

µ̂i =

n∑
i=1

[
µi − HnB−1

n Ui(γ)
]
,

where Hn =
[

1
n

∑n
i=1

∂µi
∂γ

]
γ∗

. Therefore, Eq (A.4) is equivalent to

√
n(β̂w − β0) =

1
√

n
Σ−1

1

n∑
i=1

{
[
µi − HnB−1

n Ui(γ)
]
} + op(1). (A.5)

Therefore,
√

n(β̂ω − β0)
d
→ N(0,Σ−1

1 ΛΣ−1
1 ),

where Λ = E[λλT ], λ = µ − E[∂µ/∂γT ]{E[∂U(γ)/∂γT ]}−1U(γ), µ = δ
π(X,γ) X

∑K
k=1

ωkΨτk (ε−b0k)
g(τk) .
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