Research article

Bifurcation, chaotic behavior and solitary wave solutions for the Akbota equation

  • Received: 17 June 2024 Revised: 13 July 2024 Accepted: 19 July 2024 Published: 22 July 2024
  • MSC : 34H10, 35B20, 35C05, 35C07

  • In this article, the dynamic behavior and solitary wave solutions of the Akbota equation were studied based on the analysis method of planar dynamic system. This method can not only analyze the dynamic behavior of a given equation, but also construct its solitary wave solution. Through traveling wave transformation, the Akbota equation can easily be transformed into an ordinary differential equation, and then into a two-dimensional dynamical system. By analyzing the two-dimensional dynamic system and its periodic disturbance system, planar phase portraits, three-dimensional phase portraits, Poincaré sections, and sensitivity analysis diagrams were drawn. Additionally, Lyapunov exponent portrait of a dynamical system with periodic disturbances was drawn using mathematical software. According to the maximum Lyapunov exponent portrait, it can be deduced whether the system is chaotic or stable. Solitary wave solutions of the Akbota equation are presented. Moreover, a visualization diagram and contour graphs of the solitary wave solutions are presented.

    Citation: Zhao Li, Shan Zhao. Bifurcation, chaotic behavior and solitary wave solutions for the Akbota equation[J]. AIMS Mathematics, 2024, 9(8): 22590-22601. doi: 10.3934/math.20241100

    Related Papers:

  • In this article, the dynamic behavior and solitary wave solutions of the Akbota equation were studied based on the analysis method of planar dynamic system. This method can not only analyze the dynamic behavior of a given equation, but also construct its solitary wave solution. Through traveling wave transformation, the Akbota equation can easily be transformed into an ordinary differential equation, and then into a two-dimensional dynamical system. By analyzing the two-dimensional dynamic system and its periodic disturbance system, planar phase portraits, three-dimensional phase portraits, Poincaré sections, and sensitivity analysis diagrams were drawn. Additionally, Lyapunov exponent portrait of a dynamical system with periodic disturbances was drawn using mathematical software. According to the maximum Lyapunov exponent portrait, it can be deduced whether the system is chaotic or stable. Solitary wave solutions of the Akbota equation are presented. Moreover, a visualization diagram and contour graphs of the solitary wave solutions are presented.



    加载中


    [1] M. H. Rafiq, N. Raza, A. Jhangeer, Nonlinear dynamics of the generalized unstable nonlinear Schrödinger equation: a graphical perspective, Opt. Quant. Electron., 55 (2023), 628. https://doi.org/10.1007/s11082-023-04904-8 doi: 10.1007/s11082-023-04904-8
    [2] B. Sivakumar, Chaos theory in geophysics: past, present and future, Chaos Soliton. Fract., 19 (2004), 441–462. https://doi.org/10.1016/S0960-0779(03)00055-9 doi: 10.1016/S0960-0779(03)00055-9
    [3] A. Tiwari, R. Nathasarma, B. K. Roy, A new time-reversible 3D chaotic system with coexisting dissipative and conservative behaviors and its active non-linear control, J. Franklin Inst., 361 (2024), 106637. https://doi.org/10.1016/j.jfranklin.2024.01.038 doi: 10.1016/j.jfranklin.2024.01.038
    [4] J. C. Xing, C. Ning, Y. Zhi, I. Howard, Analysis of bifurcation and chaotic behavior of the micro piezoelectric pipe-line robot drive system with stick-slip mechanism, Commun. Nonlinear Sci. Numer. Simul., 134 (2024), 107998. https://doi.org/10.1016/j.cnsns.2024.107998 doi: 10.1016/j.cnsns.2024.107998
    [5] M. H. Rafiq, N. Raza, A. Jhangeer, Dynamic study of bifurcation, chaotic behavior and multi-soliton profiles for the system of shallow water wave equations with their stability, Chaos Soliton. Fract., 171 (2023), 113436. https://doi.org/10.1016/j.chaos.2023.113436 doi: 10.1016/j.chaos.2023.113436
    [6] C. S. Liu, A novel Lie-group theory and complexity of nonlinear dynamical systems, Commun. Nonlinear Sci. Numer. Simul., 20 (2015), 39–58. https://doi.org/10.1016/j.cnsns.2014.05.004 doi: 10.1016/j.cnsns.2014.05.004
    [7] Y. X. Li, W. F. Sun, Y. Kai, Chaotic behaviors, exotic solitons and exact solutions of a nonlinear Schrödinger-type equation, Optik, 285 (2023), 170963. https://doi.org/10.1016/j.ijleo.2023.170963 doi: 10.1016/j.ijleo.2023.170963
    [8] Z. T. Ju, Y. Lin, B. Chen, H. Wu, M. Chen, Q. Xu, Electromagnetic radiation induced non-chaotic behaviors in a Wilson neuron model, Chin. J. Phys., 77 (2022), 214–222. https://doi.org/10.1016/j.cjph.2022.03.012 doi: 10.1016/j.cjph.2022.03.012
    [9] B. Liang, C. Y. Hu, Z. Tian, Q. Wang, C. Jian, A 3D chaotic system with multi-transient behavior and its application in image encryption, Phys. A., 616 (2023), 128624. https://doi.org/10.1016/j.physa.2023.128624 doi: 10.1016/j.physa.2023.128624
    [10] L. Xiang, J. C. Chen, Z. T. Zhu, Z. Song, Z. Bao, X. Zhu, et al., Enhanced quantum state transfer by circumventing quantum chaotic behavior, Nat. Commun., 15 (2024), 4918. https://doi.org/10.1038/s41467-024-48791-3 doi: 10.1038/s41467-024-48791-3
    [11] T. Mathanaranjan, M. S. Hashemi, H. Rezazadeh, L. Akinyemi, A. Bekir, Chirped optical solitons and stability analysis of the nonlinear Schrödinger equation with nonlinear chromatic dispersion, Commun. Theor. Phys., 75 (2023), 085005. https://doi.org/10.1088/1572-9494/ace3b0 doi: 10.1088/1572-9494/ace3b0
    [12] T. Mathanaranjan, New Jacobi elliptic solutions and other solutions in optical metamaterials having higher-order dispersion and its stability analysis, Int. J. Appl. Comput. Math., 9 (2023), 66. https://doi.org/10.1007/s40819-023-01547-x doi: 10.1007/s40819-023-01547-x
    [13] T. Mathanaranjan, S. M. Rajan, S. Veni, Y. Yildirim, Cnoidal waves and solitons to three-copuled nonlinear Schrödinger's equation with spatially-dependent coefficients, Ukr. J. Phys. Opt., 25 (2023), 1003. https://doi.org/10.3116/16091833/Ukr.J.Phys.Opt.2024.S1003 doi: 10.3116/16091833/Ukr.J.Phys.Opt.2024.S1003
    [14] C. Y. Liu, Z. Li, The dynamical behavior analysis and the traveling wave solutions of the stochastic Sasa-Satsuma equation, Qual. Theor. Dyn. Syst., 23 (2024), 157. https://doi.org/10.1007/s12346-024-01022-y doi: 10.1007/s12346-024-01022-y
    [15] M. S. Gu, C. Peng, Z. Li, Traveling wave solution of (3+1)-dimensional negative-order KdV-Calogero-Bogoyavlenskii-Schiff equation, AIMS Math., 9 (2024), 6699–6708. https://doi.org/10.3934/math.2024326 doi: 10.3934/math.2024326
    [16] A. Q. Khan, F. Nazir, M. B. Almatrafi, Bifurcation analysis of a discrete Phytoplankton-Zooplankton model with linear predational response function and toxic substance distribution, Int. J. Biomath., 16 (2023), 2250095. https://doi.org/10.1142/S1793524522500954 doi: 10.1142/S1793524522500954
    [17] A. Q. Khan, S. A. H. Bukhari, M. B. Almatrafi, Global dynamics, Neimark-Sacker bifurcation and hybrid control in a Leslie's prey-predator model, Alex. Eng. J. 61 (2022), 11391–11404. https://doi.org/10.1016/j.aej.2022.04.042
    [18] M. Berkal, M. B. Almatrafi, Bifurcation and stability of two-dimensional Activator-Inhibitor model with fractional-order derivative, Fractal Fract., 7 (2023), 344. https://doi.org/10.3390/fractalfract7050344 doi: 10.3390/fractalfract7050344
    [19] A. Q. Khan, M. Tasneem, M. B. Almatrafi, Discrete-time COVID-19 epidemic model with bifurcation and control, Math. Biosci. Eng., 19 (2022), 1944–1969. https://doi.org/10.3934/mbe.2022092 doi: 10.3934/mbe.2022092
    [20] M. Berkal, J. F. Navarro, M. B. Almatrafi, M. Y. Hamada, Qualitative behavior of a two-dimensional discrete-time plant-herbivore model, Commun. Math. Biol. Neurosci., 2024 (2024), 44. https://doi.org/10.28919/cmbn/8478 doi: 10.28919/cmbn/8478
    [21] K. Hosseini, F. Alizadeh, E. Hinçal, B. Kaymakamzade, K. Dehingia, M. S. Osman, A generalized nonlinear Schrödinger equation with logarithmic nonlinearity and its Gaussian solitary wave, Opt. Quant. Electron., 56 (2024), 929. https://doi.org/10.1007/s11082-024-06831-8 doi: 10.1007/s11082-024-06831-8
    [22] K. Hosseini, F. Alizadeh, E. Hinçal, D. Baleanu, A. Akgül, A. M. Hassan, Lie symmetries, bifurcation analysis, and Jacobi elliptic function solutions to the nonlinear Kodama equation, Results Phys., 54 (2023), 107129. https://doi.org/10.1016/j.rinp.2023.107129 doi: 10.1016/j.rinp.2023.107129
    [23] J. Wu, Y. J. Huang, Boundedness of solutions for an Attraction-Repulsion model with indirect signal production, Mathematics, 12 (2024), 1143. https://doi.org/10.3390/math12081143
    [24] J. Wang, Z. Li, A dynamical analysis and new traveling wave solution of the fractional coupled Konopelchenko-Dubrovsky model, Fractal Fract., 8 (2024), 341. https://doi.org/10.3390/fractalfract8060341 doi: 10.3390/fractalfract8060341
    [25] J. Wu, Z. Yang, Global existence and boundedness of chemotaxis-fluid equations to the coupled Solow-Swan model, AIMS Math., 8 (2023), 17914–17942. https://doi.org/10.3934/math.2023912 doi: 10.3934/math.2023912
    [26] W. A. Faridi, M. A. Bakar, M. B. Riaz, Z. Myrzakulova, R. Myrzakulov, A. M. Mostafa, Exploring the optical soliton solutions of Heisenberg ferromagnet-type of Akbota equation arising in surface geometry by explicit approach, Opt. Quant. Electron., 56 (2024), 1046. https://doi.org/10.1007/s11082-024-06904-8 doi: 10.1007/s11082-024-06904-8
    [27] T. Mathanaranjan, R. Myrzakulov, Integrable Akbota equation: conservation laws, optical soliton solutions and stability analysis, Opt. Quant. Electron., 56 (2024), 564. https://doi.org/10.1007/s11082-023-06227-0 doi: 10.1007/s11082-023-06227-0
    [28] Y. L. He, Y. Kai, Wave structures, modulation instability analysis and chaotic behaviors to Kudryashov's equation with third-order dispersion, Nonlinear Dynam., 112 (2024), 10355–10371. https://doi.org/10.1007/s11071-024-09635-3 doi: 10.1007/s11071-024-09635-3
    [29] A. Jhangeer, N. Raza, A. Ejaz, M. H, Rafiq, Qualitative behavior and variant soliton profiles of the generalized $P$-type equation with its sensitivity visualization, Alex. Eng. J., 104 (2024), 292–305. https://doi.org/10.1016/j.aej.2024.06.046 doi: 10.1016/j.aej.2024.06.046
    [30] Z. Li, E. Hussain, Qualitative analysis and optical solitons for the (1+1)-dimensional Biswas-Milovic equation with parabolic law and nonlocal nonlinearity, Results Phys., 56 (2024), 107304. https://doi.org/10.1016/j.rinp.2023.107304 doi: 10.1016/j.rinp.2023.107304
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(477) PDF downloads(48) Cited by(1)

Article outline

Figures and Tables

Figures(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog