Research article Special Issues

Mesoscopic glass transition model: Influence of the cooling rate on the structure refinement

  • Received: 25 March 2024 Revised: 18 June 2024 Accepted: 24 June 2024 Published: 16 July 2024
  • MSC : 82-XX, 82Cxx, 82B26

  • The process of glass transition during the quenching in the domain with the cold wall has been numerically simulated. We have implemented the temperature-dependent form of the previously proposed theoretical model, which combined the heat transfer in the domain and the gauge theory of glass transition, assuming the presence of topologically stable distortions (disclinations) in the forming solid. The competition between crystallization (formation of polycrystalline structure) and the formation of the amorphous disordered phase has been shown. At the relatively slow cooling rates corresponding to the formation of the crystalline phase, we observed a columnar to equiaxed transition qualitatively similar to the observed in many metallic alloys. The moving front followed the equilibrium isotherm corresponding to the equilibrium temperature of transition in the disclinations subsystem, although front drag resulted in the effect of kinetic undercooling and the emergence of the maximum velocity of the crystallization front. High thermal conductivity values associated with the substantial heat flux lead to the bulk amorphous state. The dynamics of the coarsening of the primary amorphous structure depended on the annealing temperature.

    Citation: Vladimir Ankudinov, Konstantin Shklyaev, Mikhail Vasin. Mesoscopic glass transition model: Influence of the cooling rate on the structure refinement[J]. AIMS Mathematics, 2024, 9(8): 22174-22196. doi: 10.3934/math.20241078

    Related Papers:

  • The process of glass transition during the quenching in the domain with the cold wall has been numerically simulated. We have implemented the temperature-dependent form of the previously proposed theoretical model, which combined the heat transfer in the domain and the gauge theory of glass transition, assuming the presence of topologically stable distortions (disclinations) in the forming solid. The competition between crystallization (formation of polycrystalline structure) and the formation of the amorphous disordered phase has been shown. At the relatively slow cooling rates corresponding to the formation of the crystalline phase, we observed a columnar to equiaxed transition qualitatively similar to the observed in many metallic alloys. The moving front followed the equilibrium isotherm corresponding to the equilibrium temperature of transition in the disclinations subsystem, although front drag resulted in the effect of kinetic undercooling and the emergence of the maximum velocity of the crystallization front. High thermal conductivity values associated with the substantial heat flux lead to the bulk amorphous state. The dynamics of the coarsening of the primary amorphous structure depended on the annealing temperature.



    加载中


    [1] D. M. Herlach, P. K. Galenko, D. H. Moritz, Metastable solids from undercooled melts, Elsevier, 2007. https://doi.org/10.4028/www.scientific.net/MSF.539-543.1977
    [2] N. Provatas, K. Elder, Phase-field methods in materials science and engineering, Wiley-VCH, 2010.
    [3] M. I. Ojovan, Viscosity and glass transition in amorphous oxides, Adv. Cond. Matter Phys., 2008 (2008), 817829. https://doi.org/10.1155/2008/817829 doi: 10.1155/2008/817829
    [4] M. Sperl, E. Zaccarelli, F. Sciortino, P. Kumar, H. E. Stanley, Disconnected glass-glass transitions and diffusion anomalies in a model with two repulsive length scales, Phys. Rev. Lett., 104 (2010), 145701. https://doi.org/10.1103/PhysRevLett.104.145701 doi: 10.1103/PhysRevLett.104.145701
    [5] L. Xu, S. V. Buldyrev, N. Giovambattista, H. E. Stanley, Liquid-liquid phase transition and glass transition in a monoatomic model system, Int. J. Mol. Sci., 11 (2010), 5184–5200. https://doi.org/10.3390/ijms11125184 doi: 10.3390/ijms11125184
    [6] H. Tanaka, T. Kawasaki, H. Shintani, K. Watanabe, Critical-like behaviour of glass-forming liquids, Nat. Mater., 9 (2010), 324–331. https://doi.org/10.1038/nmat2634. doi: 10.1038/nmat2634
    [7] D. M. Herlach, Non-equilibrium solidification of undercooled metallic metls, Mat. Sci. Eng. R, 12 (1994), 177–272. https://doi.org/10.1016/0927-796X(94)90011-6 doi: 10.1016/0927-796X(94)90011-6
    [8] W. Gotze, L. Sjogren, Relaxation processes in supercooled liquids, Rep. Prog. Phys., 55 (1992), 241–376. https://doi.org/10.1088/0034-4885/55/3/001 doi: 10.1088/0034-4885/55/3/001
    [9] J. Jackle, Models of the glass transition, Rep. Prog. Phys., 49 (1986), 171. https://dx.doi.org/10.1088/0034-4885/49/2/002 doi: 10.1088/0034-4885/49/2/002
    [10] P. K. Galenko, D. Jou, Rapid solidification as non-ergodic phenomenon, Phys. Rep., 818 (2019), 1–70. https://doi.org/10.1016/j.physrep.2019.06.002 doi: 10.1016/j.physrep.2019.06.002
    [11] R. E. Ryltsev, N. M. Chtchelkatchev, V. N. Ryzhov, Superfragile glassy dynamics of a one-component system with isotropic potential: Competition of diffusion and frustration, Phys. Rev. Lett., 110 (2013), 025701. https://doi.org/10.1103/PhysRevLett.110.025701 doi: 10.1103/PhysRevLett.110.025701
    [12] M. G. Vasin, Glass transition as a topological phase transition, Phys. Rev. E, 106 (2022), 044124. https://doi.org/10.1103/PhysRevE.106.044124 doi: 10.1103/PhysRevE.106.044124
    [13] E. Kats, V. Lebedev, A. Muratov, Weak crystallization theory, Phys. Rep., 228 (1993), 1–91. https://doi.org/10.1016/0370-1573(93)90119-X doi: 10.1016/0370-1573(93)90119-X
    [14] R. Prieler, D. Li, H. Emmerich, Nucleation and successive microstructure evolution via phase-field and phase-field crystal method, J. Cryst. Growth, 312 (2010), 1434–1436. http://dx.doi.org/10.1016/j.jcrysgro.2009.09.022 doi: 10.1016/j.jcrysgro.2009.09.022
    [15] D. Tourret, H. Liu, J. LLorca, Phase-field modeling of microstructure evolution: Recent applications, perspectives and challenges, Prog. Mater. Sci., 123 (2022), 100810. https://doi.org/10.1016/j.pmatsci.2021.100810 doi: 10.1016/j.pmatsci.2021.100810
    [16] D. Jou, J. C. Vázquez, G. Lebon, Extended irreversible thermodynamics, 4 Eds., Springer Berlin Heidelberg, 2010. https://doi.org/10.1007/978-90-481-3074-0
    [17] P. Galenko, D. Jou, Diffuse-interface model for rapid phase transformations in nonequilibrium systems, Phys. Rev. E, 71 (2005), 046125. https://doi.org/10.1103/PhysRevE.71.046125 doi: 10.1103/PhysRevE.71.046125
    [18] M. D. Krivilyov, E. V. Kharanzhevskii, V. G. Lebedev, D. A. Danilov, E. V. Danilova, P. K. Galenko, Synthesis of composite coatings using rapid laser sintering of metallic powder mixtures, Phys. Met. Metallogr.+, 114 (2013), 799–820. https://doi.org/10.1134/S0031918X13080073 doi: 10.1134/S0031918X13080073
    [19] H. Fu, M. Dehsara, M. Krivilyov, S. D. Mesarovic, D. P. Sekulic, Kinetics of the molten Al-Si triple line movement during a brazed joint formation, J. Mater. Sci., 51 (2016), 1798–1812. https://doi.org/10.1007/s10853-015-9550-7 doi: 10.1007/s10853-015-9550-7
    [20] I. Steinbach, L. Zhang, M. Plapp, Phase-field model with finite interface dissipation, Acta Mater., 60 (2012), 2689–2701. https://doi.org/10.1016/j.actamat.2012.01.035 doi: 10.1016/j.actamat.2012.01.035
    [21] H. Wang, P. K. Galenko, X. Zhang, W. Kuang, F. Liu, D. M. Herlach, Phase-field modeling of an abrupt disappearance of solute drag in rapid solidification, Acta Mater., 90 (2015), 282–291. https://doi.org/10.1016/j.actamat.2015.02.021 doi: 10.1016/j.actamat.2015.02.021
    [22] D. A. Danilov, V. G. Lebedev, P. K. Galenko, A grand potential approach to phase-field modeling of rapid solidification, J. Non-Equil. Thermody., 39 (2014), 93–111. https://doi.org/10.1515/jnetdy-2013-0032 doi: 10.1515/jnetdy-2013-0032
    [23] U. M. B. Marconi, P. Tarazona, Dynamic density functional theory of fluids, J. Chem. Phys., 110 (1999), 8032–8044. https://doi.org/10.1063/1.478705 doi: 10.1063/1.478705
    [24] S. Van Teeffelen, R. Backofen, A. Voigt, H. Löwen, Derivation of the phase-field-crystal model for colloidal solidification, Phys. Rev. E, 79 (2009), 1–10. https://doi.org/10.1103/PhysRevE.79.051404 doi: 10.1103/PhysRevE.79.051404
    [25] V. Ankudinov, I. Starodumov, N. P. Kryuchkov, E. V. Yakovlev, S. O. Yurchenko, P. K. Galenko, Correlated noise effect on the structure formation in the phase-field crystal model, Math. Method. Appl. Sci., 44 (2021), 12185–12193. https://doi.org/10.1002/mma.6887 doi: 10.1002/mma.6887
    [26] J. Berry, K. R. Elder, M. Grant, Simulation of an atomistic dynamic field theory for monatomic liquids: Freezing and glass formation, Phys. Rev. E, 77 (2008), 061506. https://doi.org/10.1103/PhysRevE.77.061506 doi: 10.1103/PhysRevE.77.061506
    [27] A. J. Archer, M. J. Robbins, U. Thiele, E. Knobloch, Solidification fronts in supercooled liquids: How rapid fronts can lead to disordered glassy solids, Phys. Rev. E, 86 (2012), 031603. https://doi.org/10.1103/PhysRevE.86.031603 doi: 10.1103/PhysRevE.86.031603
    [28] J. Berry, M. Grant, Modeling multiple time scales during glass formation with phase-field crystals, Phys. Rev. Lett., 106 (2011), 175702. https://doi.org/10.1103/PhysRevLett.106.175702 doi: 10.1103/PhysRevLett.106.175702
    [29] S. Abdalla, A. J. Archer, L. Gránásy, G. I. Tóth, Thermodynamics, formation dynamics, and structural correlations in the bulk amorphous phase of the phase-field crystal model, J. Chem. Phys., 157 (2022), 164502. https://doi.org/10.1063/5.0114705 doi: 10.1063/5.0114705
    [30] S. Tang, J. C. Wang, B. Svendsen, D. Raabe, Competitive bcc and fcc crystal nucleation from non-equilibrium liquids studied by phase-field crystal simulation, Acta Mater., 139 (2017), 196–204. https://doi.org/10.1016/j.actamat.2017.08.015 doi: 10.1016/j.actamat.2017.08.015
    [31] T. Wang, E. Napolitano, A phase-field model for phase transformations in glass-forming alloys, Metall. Mater. Trans. A, 43 (2012), 2662–2668. https://doi.org/10.1007/s11661-012-1136-2 doi: 10.1007/s11661-012-1136-2
    [32] A. Ericsson, M. Fisk, H. Hallberg, Modeling of nucleation and growth in glass-forming alloys using a combination of classical and phase-field theory, Comput. Mater. Sci., 165 (2019), 167–179. https://doi.org/10.1016/j.commatsci.2019.04.008 doi: 10.1016/j.commatsci.2019.04.008
    [33] P. Bruna, E. Pineda, D. Crespo, Phase-field modeling of glass crystallization: Change of the transport properties and crystallization kinetic, J. Non-Cryst. Solids, 353 (2007), 1002–1004. https://doi.org/10.1016/j.jnoncrysol.2006.12.086 doi: 10.1016/j.jnoncrysol.2006.12.086
    [34] P. K. Galenko, V. Ankudinov, K. Reuther, M. Rettenmayr, A. Salhoumi, E. V. Kharanzhevskiy, Thermodynamics of rapid solidification and crystal growth kinetics in glass-forming alloys, Philos. T. Roy. Soc. A, 377 (2019), 20180205. https://doi.org/10.1098/rsta.2018.0205 doi: 10.1098/rsta.2018.0205
    [35] P. K. Galenko, R. Wonneberger, S. Koch, V. Ankudinov, E. V. Kharanzhevskiy, M. Rettenmayr, Bell-shaped "dendrite velocity-undercooling" relationship with an abrupt drop of solidification kinetics in glass forming Cu-Zr(-Ni) melts, J. Cryst. Growth, 532 (2020), 125411. https://doi.org/10.1016/j.jcrysgro.2019.125411 doi: 10.1016/j.jcrysgro.2019.125411
    [36] M. V. Dudorov, A. D. Drozin, A. V. Stryukov, V. E. Roshchin, Mathematical model of solidification of melt with high-speed cooling, J. Phys.-Condens. Mat., 34 (2022), 444002. https://doi.org/10.1088/1361-648X/ac8c12 doi: 10.1088/1361-648X/ac8c12
    [37] P. A. Gamov, A. D. Drozin, M. V. Dudorov, V. E. Roshchin, Model for nanocrystal growth in an amorphous alloy, Russ. Metall.+, 2012 (2012), 1002–1005. https://doi.org/10.1134/S0036029512110055 doi: 10.1134/S0036029512110055
    [38] M. M. A. Rafique, Modelling and simulation of solidification phenomena during additive manufacturing of bulk metallic glass matrix composites (BMGMC)—A brief review and introduction of technique, J. Encapsulat. Adsorpt. Sci., 8 (2018), 67–116. https://doi.org/10.4236/jeas.2018.82005 doi: 10.4236/jeas.2018.82005
    [39] X. H. Wu, G. Wang, D. C. Zeng, Z. W. Liu, Prediction of the glass-forming ability of Fe-B binary alloys based on a continuum-field-multi-phase-field model, Comput. Mater. Sci., 108 (2015), 27–33. https://doi.org/10.1016/j.commatsci.2015.06.004 doi: 10.1016/j.commatsci.2015.06.004
    [40] X. Wu, G. Wang, D. Zeng, Prediction of the glass forming ability in a Fe-25%B binary amorphous alloy based on phase-field method, J. Non-Cryst. Solids, 466–467 (2017), 52–57. https://doi.org/10.1016/j.jnoncrysol.2017.03.043 doi: 10.1016/j.jnoncrysol.2017.03.043
    [41] S. Ganorkar, Y. H. Lee, S. Lee, Y. C. Cho, T. Ishikawa, G. W. Lee, Unequal effect of thermodynamics and kinetics on glass forming ability of Cu-Zr alloys, AIP Adv., 10 (2020), 045114. https://doi.org/10.1063/5.0002784 doi: 10.1063/5.0002784
    [42] C. Cammarota, G. Gradenigo, G. Biroli, Confinement as a tool to probe amorphous order, Phys. Rev. Lett., 111 (2013), 1–5. https://doi.org/10.1103/PhysRevLett.111.107801 doi: 10.1103/PhysRevLett.111.107801
    [43] A. A. Novokreshchenova, V. G. Lebedev, Determining the phase-field mobility of pure nickel based on molecular dynamics data, Tech. Phys., 62 (2017), 642–644. https://doi.org/10.1134/S1063784217040181 doi: 10.1134/S1063784217040181
    [44] A. Z. Patashinskii, V. L. Pokrovskii, Fluctuation theory of phase transitions, Oxford/New York: Pergamon Press, 1979. http://doi.org/10.1002/bbpc.19800840723
    [45] A. N. Vasilev, Quantum-field renormalization groups in the cases of critical-behavior and stochastical dynamics, Russia: PIYAF Publ., Saint-Petersburg, 1998.
    [46] M. G. Vasin, V. M. Vinokur, Description of glass transition kinetics in 3D XY model in terms of gauge field theory, Phys. A, 525 (2019), 1161–1169. https://doi.org/10.1016/j.physa.2019.04.065 doi: 10.1016/j.physa.2019.04.065
    [47] G. Toulouse, Theory of the frustration effect in spin glasses: Ⅰ, Commun. Phys., 2 (1977), 115–119.
    [48] J. C. Dyre, Colloquium: The glass transition and elastic models of glass-forming liquids, Rev. Mod. Phys., 78 (2006), 953–972. https://doi.org/10.1103/RevModPhys.78.953 doi: 10.1103/RevModPhys.78.953
    [49] J. Villain, Two-level systems in a spin-glass model: Ⅱ. Three-dimensional model and effect of a magnetic field, J. Phys. C, 11 (1978), 745. https://doi.org/10.1088/0022-3719/11/4/018 doi: 10.1088/0022-3719/11/4/018
    [50] E. Fradkin, B. A. Huberman, S. H. Shenker, Gauge symmetries in random magnetic systems, Phys. Rev. B, 18 (1978), 4789–4814. https://link.aps.org/doi/10.1103/PhysRevB.18.4789
    [51] N. R. Blackett, Disclination lines in glasses, Philos. Mag., 40 (1979), 859–868. https://doi.org/10.1080/01418617908234879 doi: 10.1080/01418617908234879
    [52] D. R. Nelson, Order, frustration, and defects in liquids and glasses, Phys. Rev. B, 28 (1983), 5515–5535. https://doi.org/10.1103/PhysRevB.28.5515 doi: 10.1103/PhysRevB.28.5515
    [53] I. E. Dzyaloshinskii, G. E. Volovick, Poisson brackets in condensed matter physics, Ann. Phys., 125 (1980), 67–97. https://doi.org/10.1016/0003-4916(80)90119-0 doi: 10.1016/0003-4916(80)90119-0
    [54] I. E. Dzyaloshinskii, S. P. Obukhov, Topological phase transition in the XY model of a spin glass, Zh. Eksp. Teor. Fiz, 83 (1982), 13–832.
    [55] M. Baggioli, I. Kriuchevskyi, T. W. Sirk, A. Zaccone, Plasticity in amorphous solids is mediated by topological defects in the displacement field, Phys. Rev. Lett., 127 (2021), 015501. https:/doi.org/10.1103/PhysRevLett.127.015501 doi: 10.1103/PhysRevLett.127.015501
    [56] M. Baggioli, M. Landry, A. Zaccone, Deformations, relaxation, and broken symmetries in liquids, solids, and glasses: A unified topological field theory, Phys. Rev. E, 105 (2022), 024602. https://doi.org/10.1103/PhysRevE.105.024602 doi: 10.1103/PhysRevE.105.024602
    [57] J. Frenkel, Kinetic theory of liquids, Oxford: Oxford University Press, 1947.
    [58] M. Grimsditch, R. Bhadra, L. M. Torell, Shear waves through the glass-liquid transformation, Phys. Rev. Lett., 62 (1989), 2616. https://doi.org/10.1103/PhysRevLett.62.2616 doi: 10.1103/PhysRevLett.62.2616
    [59] T. Pezeril, C. Klieber, S. Andrieu, K. A. Nelson, Optical generation of gigahertz-frequency shear acoustic waves in liquid glycerol, Phys. Rev. Lett., 102 (2009), 107402. https://doi.org/10.1103/PhysRevLett.102.107402 doi: 10.1103/PhysRevLett.102.107402
    [60] Y. H. Jeong, S. R. Nagel, S. Bhattacharya, Ultrasonic investigation of the glass transition in glycerol, Phys. Rev. A, 34 (1986), 602. https://doi.org/10.1103/PhysRevA.34.602 doi: 10.1103/PhysRevA.34.602
    [61] S. Hosokawa, M. Inui, Y. Kajihara, K. Matsuda, T. Ichitsubo, W. C. Pilgrim, et al., Transverse acoustic excitations in liquid Ga, Phys. Rev. Lett., 102 (2009), 105502. https://doi.org/10.1103/PhysRevLett.102.105502 doi: 10.1103/PhysRevLett.102.105502
    [62] V. M. Giordano, G. Monaco, Inelastic x-ray scattering study of liquid Ga: Implications for the short-range order, Phys. Rev. B, 84 (2011), 052201. https://doi.org/10.1103/PhysRevB.84.052201 doi: 10.1103/PhysRevB.84.052201
    [63] T. Scopigno, G. Ruocco, F. Sette, Microscopic dynamics in liquid metals: The experimental point of view, Rev. Mod. Phys., 77 (2005), 881–933. https://doi.org/10.1103/RevModPhys.77.881 doi: 10.1103/RevModPhys.77.881
    [64] E. Pontecorvo, M. Krisch, A. Cunsolo, G. Monaco, A. Mermet, R. Verbeni, et al., High-frequency longitudinal and transverse dynamics in water, Phys. Rev. E, 71 (2005), 011501. https://doi.org/10.1103/PhysRevE.71.011501 doi: 10.1103/PhysRevE.71.011501
    [65] W. C. Pilgrim, C. Morkel, State dependent particle dynamics in liquid alkali metals, J. Phys.-Condens. Mat., 18 (2006), R585. https://doi.org/10.1088/0953-8984/18/37/R01 doi: 10.1088/0953-8984/18/37/R01
    [66] M. G. Vasin, V. Ankudinov, Phase-field model of glass transition: Behavior under uniform quenching, Phase Transit., 2024, 1–19. https://dx.doi.org/10.1080/01411594.2024.2353297
    [67] P. Minnhagen, The two-dimensional Coulomb gas, vortex unbinding, and superfluid-superconducting films, Rev. Mod. Phys., 59 (1987), 1001. https://doi.org/10.1103/RevModPhys.59.1001 doi: 10.1103/RevModPhys.59.1001
    [68] M. Vasin, V. Ankudinov, Soft model of solidification with the order-disorder states competition, Math. Method. Appl. Sci., 45 (2022), 8082–8095. https://doi.org/10.1002/mma.8035 doi: 10.1002/mma.8035
    [69] M. Vasin, V. Ankudinov, Competition of glass and crystal: Phase-field model, Math. Method. Appl. Sci., 47 (2024), 6798–6809. https://doi.org/10.1002/mma.9207 doi: 10.1002/mma.9207
    [70] P. C. Hohenberg, B. I. Halperin, Theory of dynamic critical phenomena, Rev. Mod. Phys., 49 (1977), 435–479. https://doi.org/10.1103/RevModPhys.49.435 doi: 10.1103/RevModPhys.49.435
    [71] www.comsol.com, COMSOL Multiphysics® v.6.0, www.comsol.com, COMSOL AB, Stockholm, Sweden.
    [72] R. C. Budhani, T. C. Goel, K. L. Chopra, Melt-spinning technique for preparation of metallic glasses, B. Mater. Sci., 4 (1982), 549–561. https://doi.org/10.1007/BF02824962 doi: 10.1007/BF02824962
    [73] J. Schroers, Processing of bulk metallic glass, Adv. Mater., 22 (2010), 1566–1597. https://doi.org/10.1002/adma.200902776 doi: 10.1002/adma.200902776
    [74] M. Vasin, V. Lebedev, V. Ankudinov, K. Shklyaev, The phase-field model of the glass transition, Chem. Phys. Mesoscopy, 25 (2023), 14. https://doi.org/10.15350/17270529.2023.4.46 doi: 10.15350/17270529.2023.4.46
    [75] P. A. Geslin, C. H. Chen, A. M. Tabrizi, A. Karma, Dendritic needle network modeling of the Columnar-to-Equiaxed transition. Part Ⅰ: Two dimensional formulation and comparison with theory, Acta Mater., 202 (2021), 42–54. https://doi.org/10.1016/j.actamat.2020.10.009 doi: 10.1016/j.actamat.2020.10.009
    [76] W. Kurz, C. Bezençon, M. Gäumann, Columnar to equiaxed transition in solidification processing, Sci. Technol. Adv. Mat., 2 (2001), 185–191. https://doi.org/10.1016/S1468-6996(01)00047-X doi: 10.1016/S1468-6996(01)00047-X
    [77] B. R. Bird, E. S. Warren, N. E. Lightfoot, Transport phenomena, John Wiley & Sons, 2007.
    [78] Z. Wang, B. Riechers, P. M. Derlet, R. Maaß, Atomic cluster dynamics causes intermittent aging of metallic glasses, Acta Mater., 267 (2024), 119730. https://doi.org/10.1016/j.actamat.2024.119730 doi: 10.1016/j.actamat.2024.119730
    [79] V. I. Tkatch, A. M. Grishin, V. V. Maksimov, Estimation of the heat transfer coefficient in melt spinning process, J. Phys., 144 (2009), 012104. https://doi.org/10.1088/1742-6596/144/1/012104 doi: 10.1088/1742-6596/144/1/012104
    [80] R. E. Napolitano, H. Meco, The role of melt pool behavior in free-jet melt spinning, Metall. Mater. Trans. A, 35 A (2004), 1539–1553. https://doi.org/10.1007/s11661-004-0261-y doi: 10.1007/s11661-004-0261-y
    [81] A. B. Lysenko, T. V. Kalinina, A. M. V. Tomina, Y. V. Vishnevskaya, O. Popil, Production conditions and fine structure parameters of metallic glasses based on light rare-earth elements, In: IOP Conference Series: Materials Science and Engineering, IOP Publishing, 1256 (2022), 012011. https://doi.org/10.1088/1757-899X/1256/1/012011
    [82] O. Gusakova, V. Shepelevich, D. Alexandrov, I. Starodumov, Rapid quenching effect on the microstructure of Al-Si eutectic Zn-doped alloy, J. Cryst. Growth, 531 (2020), 125333. https://doi.org/10.1016/j.jcrysgro.2019.125333. doi: 10.1016/j.jcrysgro.2019.125333
    [83] S. A. Tavolzhanskii, I. N. Pashkov, G. A. Aleksanyan, Analysis of the production of ribbons of Copper-Phosphorus solder by the lateral flow of a melt onto a rotating roller mold, Metallurgist, 59 (2016), 843–850. http://link.springer.com/10.1007/s11015-016-0182-1.
    [84] A. A. Shirzadi, T. Kozieł, G. Cios, P. Bała, Development of Auto Ejection Melt Spinning (AEMS) and its application in fabrication of cobalt-based ribbons, J. Mater. Process. Tech., 264 (2019), 377–381. https://doi.org/10.1016/j.jmatprotec.2018.09.028 doi: 10.1016/j.jmatprotec.2018.09.028
    [85] R. Prasad, G. Phanikumar, Martensite and nanocrystalline phase formation in rapidly solidified Ni$_2$MnGa alloy by melt-spinning, Mater. Sci. Forum, 649 (2010), 35–40. https://doi.org/10.4028/www.scientific.net/MSF.649.35 doi: 10.4028/www.scientific.net/MSF.649.35
    [86] A. K. Demyanetz, M. Bamberger, M. Regev, Quantitative microstructure study of melt-spun Mg$_{65}$Cu$_{25}$Y$_{10}$, SN Appl. Sci., 2 (2020), 1–10. https://doi.org/10.1007/s42452-020-03522-3 doi: 10.1007/s42452-020-03522-3
    [87] V. I. Tkatch, A. I. Limanovskii, S. N. Denisenko, S. G. Rassolov, The effect of the melt-spinning processing parameters on the rate of cooling, Mater. Sci. Eng. A, 323 (2002), 91–96. https://doi.org/10.1016/S0921-5093(01)01346-6 doi: 10.1016/S0921-5093(01)01346-6
    [88] N. Liu, T. Ma, C. Liao, G. Liu, R. M. O. Mota, J. Liu, et al., Combinatorial measurement of critical cooling rates in aluminum-base metallic glass forming alloys, Sci. Rep., 11 (2021), 3903. https://doi.org/10.1038/s41598-021-83384-w doi: 10.1038/s41598-021-83384-w
    [89] H. Fiedler, H. Mühlbach, G. Stephani, The effect of the main processing parameters on the geometry of amorphous metal ribbons during planar flow casting (PFC), J. Mater. Sci., 19 (1984), 3229–3235. https://doi.org/10.1007/BF00549809 doi: 10.1007/BF00549809
    [90] H. S. Chen, C. E. Miller, Centrifugal spinning of metallic glass filaments, Mater. Res. Bull., 11 (1976), 49–54. https://doi.org/10.1016/0025-5408(76)90213-0 doi: 10.1016/0025-5408(76)90213-0
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(544) PDF downloads(35) Cited by(1)

Article outline

Figures and Tables

Figures(7)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog