Research article Special Issues

Chaos and stability of a fractional model of the cyber ecosystem

  • Received: 29 April 2024 Revised: 17 June 2024 Accepted: 01 July 2024 Published: 16 July 2024
  • MSC : 65P20, 92D40, 26A33, 34D08

  • The widespread use of computer hardware and software in society has led to the emergence of a type of criminal conduct known as cybercrime, which has become a major worldwide concern in the 21st century spanning multiple domains. As a result, in the present setting, academics and practitioners are showing a great deal of interest in conducting research on cybercrime. In this work, a fractional-order model was replaced by involving three sorts of human populations: online computer users, hackers, and cyber security professionals, in order to examine the online computer user-hacker system. The existence, uniqueness and boundedness were studied. To support our theoretical conclusions, a numerical analysis of the influence of the various logical parameters was conducted and we derived the necessary conditions for the different equilibrium points to be locally stable. We examined the effects of the fear level and refuge factor on the equilibrium densities of prey and predators in order to explore and understand the dynamics of the system in a better way. Using some special circumstances, the model was examined. Our theoretical findings and logical parameters were validated through a numerical analysis utilizing the generalized Adams-Bashforth-Moulton technique.

    Citation: José F. Gómez-Aguilar, Manisha Krishna Naik, Reny George, Chandrali Baishya, İbrahim Avcı, Eduardo Pérez-Careta. Chaos and stability of a fractional model of the cyber ecosystem[J]. AIMS Mathematics, 2024, 9(8): 22146-22173. doi: 10.3934/math.20241077

    Related Papers:

  • The widespread use of computer hardware and software in society has led to the emergence of a type of criminal conduct known as cybercrime, which has become a major worldwide concern in the 21st century spanning multiple domains. As a result, in the present setting, academics and practitioners are showing a great deal of interest in conducting research on cybercrime. In this work, a fractional-order model was replaced by involving three sorts of human populations: online computer users, hackers, and cyber security professionals, in order to examine the online computer user-hacker system. The existence, uniqueness and boundedness were studied. To support our theoretical conclusions, a numerical analysis of the influence of the various logical parameters was conducted and we derived the necessary conditions for the different equilibrium points to be locally stable. We examined the effects of the fear level and refuge factor on the equilibrium densities of prey and predators in order to explore and understand the dynamics of the system in a better way. Using some special circumstances, the model was examined. Our theoretical findings and logical parameters were validated through a numerical analysis utilizing the generalized Adams-Bashforth-Moulton technique.



    加载中


    [1] Y. Li, Q. Liu, A comprehensive review study of cyber-attacks and cyber security, Emerging trends and recent developments, Energy Rep., 7 (2021), 8176–8186. https://doi.org/10.1016/j.egyr.2021.08.126 doi: 10.1016/j.egyr.2021.08.126
    [2] S. Chng, H. Y. Lu, A. Kumar, D. Yau, Hacker types, motivations and strategies: A comprehensive framework, Comput. Hum. Behav. Rep., 5 (2022), 100167. https://doi.org/10.1016/j.chbr.2022.100167 doi: 10.1016/j.chbr.2022.100167
    [3] M. Grobler, R. Gaire, S. Nepal, User, usage and usability: Redefining human centric cyber security, Front. Big Data, 4 (2021). https://doi.org/10.3389/fdata.2021.583723
    [4] A. A. Moustafa, A. Bello, The role of user behaviour in improving cyber security management, Front. Psychol., 12 (2021). https://doi.org/10.3389/fpsyg.2021.561011
    [5] J. Wang, H. Li, Surpassing the fractional derivative: Concept of the memory dependent derivative, Comput. Math. Appl., 62 (2011), 1562–1567. https://doi.org/10.1016/j.camwa.2011.04.028 doi: 10.1016/j.camwa.2011.04.028
    [6] L. Zanette, A. White, A. C. Allen, M. Clinchy, Perceived predation risk reduces the number of offspring songbirds produce per year, Science, 334 (2011), 1398–1401. https://dx.doi.org/10.1126/science.1210908 doi: 10.1126/science.1210908
    [7] L. Y. Zanette, M. Clinchy, Ecology of fear, Curr. Biol., 29 (2019), 309–313. https://doi.org/10.1016/j.cub.2019.02.042
    [8] J. P. Tripathi, P. S. Mandal, A. Poonia, V. P. Bajiya, A widespread interaction between generalist and specialist enemies: The role of intraguild predation and allee effect, Appl. Math. Model., 89 (2021), 105–135. https://doi.org/10.1016/j.apm.2020.06.074 doi: 10.1016/j.apm.2020.06.074
    [9] R. K. Upadhyay, Chaotic dynamics in a three species aquatic population model with holling type Ⅱ functional response, Nonlinear Anal-Model., 13 (2008), 103–115. https://doi.org/10.15388/NA.2008.13.1.14592 doi: 10.15388/NA.2008.13.1.14592
    [10] R. K. Upadhyay, R. D. Parshad, K. Antwi-Fordjour, E. Quansah, S. Kumari, Global dynamics of stochastic predator–prey model with mutual interference and prey defense, J. Appl. Math. Comput., 60 (2019), 169–190. https://doi.org/10.1007/s12190-018-1207-7 doi: 10.1007/s12190-018-1207-7
    [11] S. Kim, K. Antwi-Fordjour, Prey group defense to predator aggregated induced fear, Eur. Phys. J. Plus, 137 (2022), 1–17. https://doi.org/10.1140/epjp/s13360-022-02926-x doi: 10.1140/epjp/s13360-022-02926-x
    [12] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, 2006.
    [13] B. Ross, Fractional Calculus and Its Applications, Proceedings of the International Conference held at the University of New Haven, Springer, 2014.
    [14] A. Atangana, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [15] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular Kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. https://doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
    [16] M. K. Naik, C. Baishya, P. Veeresha, D. Baleanu, Design of a fractional-order atmospheric model via a class of ACT-like chaotic system and its sliding mode chaos control, Chaos, 33 (2023). https://doi.org/10.1063/5.0130403
    [17] R. N. Premakumari, C. Baishya, M. Sajid, M. K. Naik, Modeling the dynamics of a marine system using the fractional order approach to assess its susceptibility to global warming, Results Nonlinear Anal., 7 (2024), 89–109.
    [18] S. N Raw, P. Mishra, B. P. Sarangi, B. Tiwari, Appearance of temporal and spatial chaos in an ecological system: A mathematical modeling study, Iranian Journal of Science and Technology, Transactions A: Science, 45 (2021) 1417–1436. https://doi.org/10.1007/s40995-021-01139-8
    [19] S. Gao, H. Lu, M. Wang, D. Jiang, A. A. Abd El-Latif, R. Wu, et al., Design, hardware implementation, and application in video encryption of the 2D memristive cubic map, IEEE Int. Things, 11 (2024). https://doi.org/10.1109/JIOT.2024.3376572
    [20] S. Gao, R. Wu, X. Wang, J. iu, Q. Li, X. Tang, EFR-CSTP: Encryption for face recognition based on the chaos and semi-tensor product theory, Inf. Sci., 621 (2023) 766–781. https://doi.org/10.1016/j.ins.2022.11.121
    [21] N. Malleson, A. Evans, Agent-based models to predict crime at places, Encyclopedia of Criminology Criminal Justice, 12 (2013) 41–48. https://doi.org/10.1007/978-1-4614-5690-2_208
    [22] M. K. Naik, C. Baishya, P. Veeresha, A chaos control strategy for the fractional 3D Lotka- Volterra like attractor, Math. Comput. Simul., 211 (2023), 1–22. https://doi.org/10.1016/j.matcom.2023.04.001 doi: 10.1016/j.matcom.2023.04.001
    [23] T. Bosse, C. Gerritsen, M. Hoogendoorn, S. W. Jaffry, J. Treur, Agent-based vs. population-based simulation of displacement of crime: A comparative study, Web Intelligence and Agent Systems: An International Journal, 9 (2011), 147–160. https://dx.doi.org/10.3233/WIA-2011-0212 doi: 10.3233/WIA-2011-0212
    [24] P. A. Jones, P. J. Brantingham, L. R. Chayes, Statistical models of criminal behavior: The effects of law enforcement actions, Math. Mod. Meth. Appl. S., 20 (2010), 1397–1423. https://doi.org/10.1142/S0218202510004647 doi: 10.1142/S0218202510004647
    [25] S. Gao, R. Wu, X. Wang, J. Liu, Q. Li, X. Tang, Asynchronous updating Boolean network encryption algorithm, IEEE T. Circ. Syst. Vid., (2023). https://dx.doi.org/10.1109/TCSVT.2023.3237136
    [26] S. Gao, H. H. Iu, J. Mou, U. Erkan, J. Liu, R Wu, et al., Temporal action segmentation for video encryption, Chaos, Soliton. Fract., 183 (2024), 114958. https://doi.org/10.1016/j.chaos.2024.114958 doi: 10.1016/j.chaos.2024.114958
    [27] S. Raw, B. Mishra, B. Tiwari, Mathematical study about a predator–prey model with antipredator behavior, Int. J. Appl. Comput. Math., 6 (2020), 1–22. https://doi.org/10.1007/s40819-020-00822-5 doi: 10.1007/s40819-020-00822-5
    [28] K. Diethelm, N. J. Ford, A. D. Freed, A Predictor-Corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynam., 29 (2002) 3–22. https://doi.org/10.1023/A: 1016592219341
    [29] I. Podlubny, Fractional Differential Equations, Elsevier, 1999.
    [30] X. Wang, Y. j. He, M. j. Wang, Chaos control of a fractional order modified coupled dynamos system, Nonlinear Anal-Theory, 71 (2009), 6126–6134. https://doi.org/10.1016/j.na.2009.06.065 doi: 10.1016/j.na.2009.06.065
    [31] H. Li, L. Zhang, C. Hu, Y. Jiang, Z. Teng, Dynamical analysis of a fractional-order predatorprey model incorporating a prey refuge, J. Appl. Math. Comput., 54 (2017), 435–449. https://doi.org/10.1007/s12190-016-1017-8 doi: 10.1007/s12190-016-1017-8
    [32] E. Ahmed, A. S. Elgazzar, On fractional order differential equations model for nonlocal epidemics, Physica A., 379 (2007), 607–614. https://doi.org/10.1016/j.physa.2007.01.010 doi: 10.1016/j.physa.2007.01.010
    [33] N. Sene, Introduction to the fractional-order chaotic system under fractional operator in Caputo sense, Alex. Eng. J., 60 (2021), 3997–4014. https://doi.org/10.1016/j.aej.2021.02.056 doi: 10.1016/j.aej.2021.02.056
    [34] C. Baishya, M. K. Naik, R. N. Premakumari, Design and implementation of a sliding mode controller and adaptive sliding mode controller for a novel fractional chaotic class of equations, Results Control Optim., 14 (2024). https://doi.org/10.1016/j.rico.2023.100338
    [35] M. Sandri, Numerical calculation of Lyapunov exponents, Math. J., 6 (1996), 78–84.
    [36] A. Sharp, J. Pastor, Stable limit cycles and the paradox of enrichment in a model of chronic wasting disease, Ecolog. Appl., 21 (2011), 1024–1030. https://doi.org/10.1890/10-1449.1 doi: 10.1890/10-1449.1
    [37] E. Gonzalez-Olivares, H. Meneses-Alcay, B. Gonzalez-Yanez, J. Mena-Lorca, A. Rojas-Palma, R. Ramos-Jiliberto, Multiple stability and uniqueness of the limit cycle in a Gause-type predator-prey model considering the Allee effect on prey, Nonlinear Anal-Real, 12 (2011), 2931–2942. https://doi.org/10.1016/j.nonrwa.2011.04.003 doi: 10.1016/j.nonrwa.2011.04.003
    [38] G. Williams, Chaos Theory Tamed, CRC press, 1997.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(594) PDF downloads(64) Cited by(0)

Article outline

Figures and Tables

Figures(9)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog