Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Chaos and stability of a fractional model of the cyber ecosystem

  • Received: 29 April 2024 Revised: 17 June 2024 Accepted: 01 July 2024 Published: 16 July 2024
  • MSC : 65P20, 92D40, 26A33, 34D08

  • The widespread use of computer hardware and software in society has led to the emergence of a type of criminal conduct known as cybercrime, which has become a major worldwide concern in the 21st century spanning multiple domains. As a result, in the present setting, academics and practitioners are showing a great deal of interest in conducting research on cybercrime. In this work, a fractional-order model was replaced by involving three sorts of human populations: online computer users, hackers, and cyber security professionals, in order to examine the online computer user-hacker system. The existence, uniqueness and boundedness were studied. To support our theoretical conclusions, a numerical analysis of the influence of the various logical parameters was conducted and we derived the necessary conditions for the different equilibrium points to be locally stable. We examined the effects of the fear level and refuge factor on the equilibrium densities of prey and predators in order to explore and understand the dynamics of the system in a better way. Using some special circumstances, the model was examined. Our theoretical findings and logical parameters were validated through a numerical analysis utilizing the generalized Adams-Bashforth-Moulton technique.

    Citation: José F. Gómez-Aguilar, Manisha Krishna Naik, Reny George, Chandrali Baishya, İbrahim Avcı, Eduardo Pérez-Careta. Chaos and stability of a fractional model of the cyber ecosystem[J]. AIMS Mathematics, 2024, 9(8): 22146-22173. doi: 10.3934/math.20241077

    Related Papers:

    [1] Cuiying Li, Rui Wu, Ranzhuo Ma . Existence of solutions for Caputo fractional iterative equations under several boundary value conditions. AIMS Mathematics, 2023, 8(1): 317-339. doi: 10.3934/math.2023015
    [2] Ahmed Alsaedi, Fawziah M. Alotaibi, Bashir Ahmad . Analysis of nonlinear coupled Caputo fractional differential equations with boundary conditions in terms of sum and difference of the governing functions. AIMS Mathematics, 2022, 7(5): 8314-8329. doi: 10.3934/math.2022463
    [3] Murat A. Sultanov, Vladimir E. Misilov, Makhmud A. Sadybekov . Numerical method for solving the subdiffusion differential equation with nonlocal boundary conditions. AIMS Mathematics, 2024, 9(12): 36385-36404. doi: 10.3934/math.20241726
    [4] Naimi Abdellouahab, Keltum Bouhali, Loay Alkhalifa, Khaled Zennir . Existence and stability analysis of a problem of the Caputo fractional derivative with mixed conditions. AIMS Mathematics, 2025, 10(3): 6805-6826. doi: 10.3934/math.2025312
    [5] Xinwei Su, Shuqin Zhang, Lixin Zhang . Periodic boundary value problem involving sequential fractional derivatives in Banach space. AIMS Mathematics, 2020, 5(6): 7510-7530. doi: 10.3934/math.2020481
    [6] Ayub Samadi, Chaiyod Kamthorncharoen, Sotiris K. Ntouyas, Jessada Tariboon . Mixed Erdélyi-Kober and Caputo fractional differential equations with nonlocal non-separated boundary conditions. AIMS Mathematics, 2024, 9(11): 32904-32920. doi: 10.3934/math.20241574
    [7] Karim Guida, Lahcen Ibnelazyz, Khalid Hilal, Said Melliani . Existence and uniqueness results for sequential ψ-Hilfer fractional pantograph differential equations with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(8): 8239-8255. doi: 10.3934/math.2021477
    [8] Nichaphat Patanarapeelert, Thanin Sitthiwiratthame . On nonlocal fractional symmetric Hanh integral boundary value problems for fractional symmetric Hahn integrodifference equation. AIMS Mathematics, 2020, 5(4): 3556-3572. doi: 10.3934/math.2020231
    [9] Abdelkader Amara . Existence results for hybrid fractional differential equations with three-point boundary conditions. AIMS Mathematics, 2020, 5(2): 1074-1088. doi: 10.3934/math.2020075
    [10] Yige Zhao, Yibing Sun, Zhi Liu, Yilin Wang . Solvability for boundary value problems of nonlinear fractional differential equations with mixed perturbations of the second type. AIMS Mathematics, 2020, 5(1): 557-567. doi: 10.3934/math.2020037
  • The widespread use of computer hardware and software in society has led to the emergence of a type of criminal conduct known as cybercrime, which has become a major worldwide concern in the 21st century spanning multiple domains. As a result, in the present setting, academics and practitioners are showing a great deal of interest in conducting research on cybercrime. In this work, a fractional-order model was replaced by involving three sorts of human populations: online computer users, hackers, and cyber security professionals, in order to examine the online computer user-hacker system. The existence, uniqueness and boundedness were studied. To support our theoretical conclusions, a numerical analysis of the influence of the various logical parameters was conducted and we derived the necessary conditions for the different equilibrium points to be locally stable. We examined the effects of the fear level and refuge factor on the equilibrium densities of prey and predators in order to explore and understand the dynamics of the system in a better way. Using some special circumstances, the model was examined. Our theoretical findings and logical parameters were validated through a numerical analysis utilizing the generalized Adams-Bashforth-Moulton technique.



    In graph theory, graph labeling is an assignment of labels or weights to the vertices and edges of a graph. Graph labeling plays an important role in many fields such as computer science, coding theory and physics [32]. Baca et al. [10] have introduced the definition of an edge irregular total -labeling of any graph as a labeling L:VE{1,2,3,,} in which every two distinct edges fh and fh of a graph G have distinct weights, this means that wL(fh)wL(fh) where wL(fh)=L(f)+L(h)+L(fh). They have deduced inequality which gives a lower bound of tes(G) for a graph G,

    tes(G)max{|E(G)|+23,Δ+12} (1)

    Also, they have introduced the exact value of TEIS, tes(G) for some families of graphs like fan graph Fn and wheel graph Wn,

    tes(Fn)=3n+23
    tes(Wn)=2n+23.

    In [15] authors have proved that for any tree T

    tes(T)=max{k+13,Δ+12},

    where Δ is maximum degree on k vertices. In addition, Salama [26] investigated the exact value of TEIS for a polar grid graph,

    tes(Pm,n)=2mn+23.

    Authors in [1] determined TEIS for zigzag graphs. Also, the exact value of TEIS of the generalized web graph Wn,m and some families has been determined, see [14]. Tilukay et al. [31] have investigated total irregularity strength for a wheel graph, a fan graph, a triangular Book graph and a friendship graph. On the other hand, in [2,3,8,17,20,24,29] the total edge irregularity strengths for hexagonal grid graphs, centralized uniform theta graphs, generalized helm graph, series parallel graphs, disjoint union of isomorphic copies of generalized Petersen graph, disjoint union of wheel graphs, subdivision of star Sn and categorical product of two cycles have been investigated. For more details, see [4,5,6,7,9,11,12,13,16,18,19,21,23,25,27,28,30].

    A generalized theta graph θ(t1,t2,,tn) is a pair of n internal disjoint paths with lengths at least two joined by end vertices where the end vertices are named south pole S and north pole N and ti is the number of vertices in the nth path. Uniform theta graph θ(t,m) is a generalized theta graph in which all paths have the same numbers of internal vertices, for more details see [22].

    In this paper, we have defined a new type of family of graph called uniform theta snake graph, θn(t,m). Also, the exact value of TEIS for some special types of the new family has been determined.

    In the following, we define a new type of graph which is called uniform theta snake graph.

    Definition 1. If we replace each edge of a path Pn by a uniform theta graph θ(t,m), we have a uniform theta snake graph θn(t,m). See Figure 1.

    Figure 1.  Uniform theta snake graph θ(t, m).

    It is clear that for a uniform theta snake graph |E(θn(t,m))|=t(m+1)n and |V(θn(t,m))|=(tm+1)n+1. In this section, we determine the exact value of TEIS for uniform theta snake graph θn(3,3), θn(3,m), θn(t,3), θn(4,m), and θn(t,4).

    Theorem 1. For a uniform theta snake graph θn(3,3) with 10n+1 vertices and 12n edges, we have

    tes(θn(3,3))=4n+1.

    Proof. Since a uniform theta snake graph θn(3,3) has 12n edges and (θn(3,3))=6, then from (1) we have:

    tes(θn(3,3))4n+1.

    To prove the invers inequality, we show that ħ labeling is an edge irregular total for θn(3,3), see Figure 2, and ħ=4n+1. Let ħ=4n+1 and a total ħ labeling α:V(θn(3,3))E(θn(3,3)){1,2,3,,ħ} is defined as:

    Figure 2.  Uniform theta snake graph θ(3, 3).
    α(c0)=1,
    α(cs)=4sfor1sn1
    α(cn)=ħ,
    α(xi,j)={jfor1j3j+1for4j6....j+n1for3n2j3n1,i=1,2,3
    α(xi,3n)=ħ1fori=1,2,3
    α(c0xi,1)=ifori=i1,2,3
    α(cSxi,3S)=4S+ifor1Sn1,i=1,2,3
    α(cSxi,3S+1)=4S+i+1for1Sn1,i=1,2,3
    α(cnxi,3n)={ħ2fori=1ħ1fori=2ħfori=3
    α(xi,jxi,j+1i)={j+i+1for1j2j+i+2for4j5....j+i+nI1for3n5j3n4ħ+i3for3n2j3n1,i=1,2,3.

    It is clear that ħ is the greatest used label. The weights of edges of θn(3,3) are given by:

    wα(c0xi,1)=i+2fori=1,2,3
    wα(cSxi,3S)=12S+i1for1Sn1,i=1,2,3
    wα(cSxi,3S+1)=12S+i+2for1Sn1,i=1,2,3,
    wα(cnxi,3n)={3(ħ1)fori=13ħ2fori=23ħ1fori=3
    wα(xi,jxi,j+1)={3j+i+2for1j23j+i+5for4j5....3j+i+3n4for3n5j3n43ħ+i10forj=3n23ħ+i7forj=3n1,i=1,2,3

    Obviously, the weights of edges are distinct. So α is an edge irregular total ħ labeling. Hence

    tes(θn(3,3))=4n+1.

    Theorem 2. For θn(3,m),m>3 be a uniform theta snake graph. Then

    tes(θn(3,m))=(m+1)n+1.

    Proof. Since |E(θn(3,m))|=3(m+1)n and Δ(θn(3,m))=6. Substituting in (1), we find

    tes(θn(3,m))(m+1)n+1.

    The existence of an edge irregular total ƛ labeling for θn(3,m), See Figure 3, m>3 will be shown, with ƛ=(m+1)n+1. Define a total ƛ labeling β:V(θn(3,m))E(θn(3,m)){1,2,3,,ƛ} for θn(3,m) as:

    Figure 3.  Uniform theta snake graph θ(3, m).
    β(c0)=1,
    β(cs)=(m+1)sfor1sn1
    β(cn)=ƛ
    β(xi,j)={jfor1jmj+1form+1j2m....j+n1form(n1)+1jmn1
    β(xi,mn)=ƛ1fori=1,2,3
    β(c0xi,1)=1fori=1,2,3
    β(cSxi,mS)=(m+1)S+ifor1Sn1,i=1,2,3
    β(cSxi,mS+1)=(m+1)S+i+1for1Sn1,i=1,2,3
    β(cnxi,mn)={ƛ2fori=1ƛ1fori=2ƛfori=3
    β(xi,jxi,j+1)={j+i+1for1jm1j+i+2form+1j2m1....j+i+nform(n1)+1jmn2j+i+n1forj=mn1.

    Clearly, ƛ is the most label of edges and vertices. The edges weights are given as follows:

    wβ(c0xi,1)=i+2fori=1,2,3
    wβ(cSxi,mS)=3(m+1)S+i1for1Sn1,i=1,2,3
    wβ(cSxi,mS+1)=3(m+1)S+i+2for1Sn1,i=1,2,3
    wβ(cnxi,mn)={3ƛ3fori=13ƛ2fori=23ƛ1fori=3
    wβ(xi,jxi,j+1)={3j+i+2for1jm13j+i+5form+1j2m1....3jI+i+3n1form(n1)+1jmn23ƛ+i7forj=mn1,

    It is obvious that the weights of edges are different, thus β is an edge irregular total ƛ labeling of θn(3,m). Hence

    tes(θn(3,m))=(m+1)n+1.

    Theorem 3. Let θn(t,3) be a theta snake graph for t>3. Then

    tes(θn(t,3))=4tn+23.

    Proof. A size of the graph θn(t,3) equals 4tn and Δ(θn(t,3))=2t, then from (1) we have

    tes(θn(t,3))4tn+23.

    We define an edge irregular total ħ labeling for θn(t,3) to get upper bound. So, let ħ=4tn+23 and a total ħ labeling γ:V(θn(t,3))E(θn(t,3)){1,2,3,,ħ} is defined in the following three cases:

    Case 1. 4tn+20(mod3)

    γ is defined as:

    γ(c0)=1,
    γ(cS)=(t+1)Sfor1Sn1
    γ(cn)=ħ
    γ(xi,j)I={ifor1j3,i=1,2,,ti+t+1for4j6,i=1,2,,ti+2(t+1)for7j9,i=1,2,,t......i+(n1)(t+1)for3n5j3n3,i=1,2,,tħ1for3n2j3n,i=1ħfor3n2j3n,i=2,3,,t
    γ(c0xi,1)=1fori=1,2,,t
    γ(cSxi,3S)=2St2S+3for1Sn1,i=1,2,,t
    γ(cnxi,3n)={ħt+2fori=1ħt+ifori=2,3,,t
    γ(cSxi,3S+1)=2St2S+2for1Sn1,i=1,2,,t
    γ(cn1xi,3n2)={{(t+2)nt5fori=1(t+2)nt+i7fori=2,3,,t,n=2,3{(t+1)nt1fori=1(t+1)nt+i3fori=2,3,,t,n2,3
    γ(xi,jxi,j+1)={{t+jfor1j23t+j5for4j55t+j10for7j8......(2n3)t+j5(n2)for3n5j3n4,i=1,2,,tħ3(t+n)+j+5for3n2j3n1,i=1ħ3(t+n)+j+5+2(i2)for3n2j3n1,i=2,3,,t

    Obviously, ħ is the greatest label. The edges weights of θn(t,3) can be expressed as:

    wγ(c0xi,1)=i+2fori=1,2,,t
    wγ(cSxi,3S)=t(4S1)+i+2for1Sn1,i=1,2,,t
    wγ(cSxi,3S+1)=4St+i+2for1Sn1,i=1,2,,t
    wγ(cn1xi,3n2)={2nt+3n2t+ħ+i8forn=2,32nt+2n2t+ħ+i4forn2,3,i=1,2,,t
    wγ(xi,jxi,j+1)={{t+j+2ifor1j25t+j+2i4for4j59t+j+2i6for7j8......(4n5)t+j+2i3n+8for3ni5j3n4,i=1,2,,t3ħ3(t+in)+j+3for3n2j3n1,i=13ħ3(t+in)+j+2i+3for3n2j3n1,i=2,3,,t

    It implies that the edges weights have distinct values. So γ is the desired edge irregular total ħ labeling, ħ=4tn+23. Hence

    tes(θn(t,3))=4tn+23.

    Case 2. 4tn+21(mod3)

    Defineγ as:

    γ(c0)=1,
    γ(cS)=(t+1)Sfor1Sn1
    γ(cn)=ħ
    γ(xi,j)={ifor1j3,i=1,2,,ti+t+1for4j6,i=1,2,,ti+2(t+1)for7j9,i=1,2,,t......i+(n+1)(t+1)for3n5j3n3,i=1,2,,tħ1for3n2j3n,i=1ħfor3n2j3n,i=2,3,,t
    γ(c0xi,1)=1fori=1,2,,t
    γ(cSxi,3S)=2St2S+3for1Sn1,i=1,2,,t
    γ(cnxi,3n)={ħtfori=1ħt+i2fori=2,3,,t
    γ(cSxi,3S+1)=2St2S+2for1ISn1,i=1,2,t
    γ(cn1xi3n2)={{(t+2)nt5fori=1(t+2)nt+i7fori=2,3,,t,n=2,3{(t+1)nt1fori=1(It+I1)nt+i3fori=2,3,,t,n2,3
    γ(xi,jxi,j+1)={{t+jfor1j23t+j5for4j55t+j10for7j8......(2n3)t+j5(n2)for3n5j3n4,i=1,2,,tħ3(t+n)+j+3for3n2j3n1,i=1ħ3(t+n)+j+2(i2)for3n2j3n1,i=2,3,,t

    It is clear that the greatest label is ħ. We define the weights of edges of θn(t,3) as:

    wγ(c0xi,1)=i+2fori=1,2,,t
    wγ(cSxi,3S)=t(4S1)+i+2for1Sn1,i=1,2,,twγ(cnxi,3n)=3ħt+i2for1Sn1,i=1,2,,t
    wγ(cSxi,3S+1)=4St+i+2for1Sn1,i=1,2,,t
    wγ(cn1xi,3n2)={2nt+3n2t+ħ+i8forn=2,32nt+2n2t+ħ+i4forn2,3,i=1,2,,t
    wγ(xi,jxi,j+1)={{t+j+2ifor1j25t+j+2i4for4j59t+j+2i6for7j8......(4n5)t+j+2i3n+8for3n5j3n4,i=1,2,,t3ħ3(t+n)+j+1for3n2j3n1,i=13ħ3(t+n)+j+2(i2)for3n2j3n1,i=2,3,,t

    It is obvious that the edges weights are different. Then

    tes(θn(t,3))=4tn+23.

    Case 3. 4tn+22(mod3)

    γ is defined as follows:

    γ(c0)=1,
    γ(cS)=(t+1)Sfor1Sn1
    γ(cn)=ħ
    γ(xi,j)={ifor1j3,i=1,2,,ti+t+1for4j6,i=1,2,,ti+2(t+1)for7j9,i=1,2,,t......i+(n1)(t+1)for3n5j3n3,i=1,2,,tħ1for3n2j3n,i=1ħfor3n2j3n,i=2,3,,t,
    γ(c0xi,1)=1fori=1,2,,t
    γ(cSxi,3S)=2St2S+3for1Sn1,i=1,2,,t
    γ(cnxi,3n)={ħt+1fori=1ħt+i1fori=2,3,,t
    γ(cSxi,3S+1)=2St2S+2for1Sn2,i=1,2,,t
    γ(cn1xi,3n2)={{(t+2)nt5fori=1(t+2)nt+i7fori=2,3,,t,n=2,3{(t+1)nt1fori=1(t+1)nt+i3fori=2,3,,t,n2,3
    γ(xi,jxi,j+1)={{t+jfor1j23t+j5for4j55t+j10for7j8......(2n3)t+j5(n2)for3n5j3n4,i=1,2,tħ3(t+i)+j+4for3n2j3ni1,i=1ħ3(t+n)+j+2ifor3n2j3n1,i=2,3,,t

    We can see that ħ is the greatest label. For edges weights of θn(t,3), we have

    wγ(c0xi,1)=i+2fori=1,2,,t
    wγ(c0xi,3S)=t(4S1)+i+2for1Sn1,i=1,2,,twγ(cnxi,3n)=3ħt+i1for1Sn1,i=1,2,,t
    wγ(cSxi,3S+1)=4St+i+2for1Sn1,i=1,2,,t
    wγ(cnxi,3n2)={2nt3n2t+ħ+i8forn=2,32nt+2n2t+ħ+i4forn2,3,i=1,2,,t
    wγ(xi,jxi,j+1)={{t+j+2ifor1j25t+j+2i4for4j59t+j+2i6for7j8......(4n5)t+j+2i3n+8for3n5j3n4,i=1,2,,t3ħ3(t+n)+j+2for3n2j3n1,i=13ħ3(t+n)+j+2ifor3n2j3n1,i=2,3,,t

    It clears that the edges weights are i distinct. So γ is the desired edge irregular total ħ labeling, ħ=4tn+23. Hence

    tes(θn(t,3))=4tn+23.

    Theorem 4. For θn(4,m) be a theta snake graph for t>3. Then

    tes(θn(4,m))=4(m+1)n+23.

    Proof. Since |E(θn(4,m))|=4(m+1)n and Δ(θn(4,m))=8, then from (1) we have

    tes(θn(4,m))4(m+1)n+23.

    The existence of an edge irregular total ƛ labeling for θn(4,m), m>3 will be shown, with ƛ=4(m+1)n+23. Define a total ƛ labeling β:V(θn(4,m))E(θn(4,m)){1,2,3,,ƛ} for θn(4,m) in the following three cases as:

    Case 1. 4(m+1)n+20(mod3), i=1,2,3,4

    β is defined as:

    β(cs)={1fors=0(m+1)sfor1sn2ƛ+snforn2sn
    β(xi,j)={jfor1jmj+1form+1j2m....j+n21ƛj+22ƛform(n21)+1jmn2+1formn2+2jm(n1)form(n1)+1jmn1,
    β(c0xi,1)=1fori=1,2,3,4
    β(cSxi,mS)={2cS+i1for1Sn21cS+i4(m+1)forn2sn1ƛ4+ifors=n,i=1,2,3,4
    β(cSxi,mS+1)={2cS+i+1for1Sn2,i=1,2,3,4cS+i4(m+1)+2forn2+1sn1
    β(cnxi,mn)={ƛ3fori=1ƛ2fori=2ƛ1ƛfori=3fori=4
    β(xi,jxi,j+1)={j+i+1for1jm1j+i+2form+1j2m1....j+i+n2forj=m(n21)+12j+i2[nm(n21)+1]form(n21)+2jmn1.

    It is clear that ƛ is the greatest used label. The weights of edges of θn(4,m) are given by:

    wβ(c0xi,1)=i+2fori=1,2,3,4
    wβ(cSxi,mS)={2ms+s+2cS+i1for1Sn21,cS+i+ƛ+(s4)(m+1)n+n21forn2sn13ƛ4+i+snfors=n,i=1,2,3,4
    wβ(cSxi,mS+1)={(2m+1)s+2cS+i+1for1Sn2,2ƛ+sn+cS+i4(m+1)+2forn2sn1i=1,2,3,4,
    wβ(cnxi,mn)={3ƛ+sn3fori=13ƛ+sn2fori=23ƛ+sn13ƛ+snfori=3fori=4
    wβ(xi,jxi,j+1)={3j+i+2for1jm13j+i+4form+1j2m1....3j+i+3n21forj=m(n21)+14j+2ƛ+45+i2[nm(n21)+1]2j+2ƛ+i2[nm(n21)+1]formn2+2jm(n1)form(n1)+1jmn1,

    It is obvious that the weights of edges are different, thus β is an edge irregular total ƛ labeling of θn(4,m). Hence

    tes(θn(4,m))=4(m+1)n+23.

    Case 2. 4(m+1)n+21(mod3), i=1,2,3,4

    β is defined as:

    β(cs)={1fors=0(m+1)sfor1sn2ƛ+snforn2sn
    β(xi,j)={jfor1jmj+1form+1j2m....j+n21ƛj+22ƛform(n21)+1jmn2formn2+1jm(n1)form(n1)+1jmn1,
    β(c0xi,1)=1fori=1,2,3,4
    β(cSxi,mS)={2cS+i1for1Sn21,ƛ7+ifors=n2cS+i4m2forn2+1sn1ƛ6+ifors=n,i=1,2,3,4
    β(cSxi,mS+1)={2cS+i+1for1Sn2cS+i4mforn2sn1,i=1,2,3,4
    β(cnxi,mn)={ƛ5fori=1ƛ4fori=2ƛ3ƛ2fori=3fori=4
    β(xi,jxi,j+1)={j+i+1for1jm1j+i+2form+1j2m1....j+i+n2forj=m(n21)+12j+i2[nm(n21)+1]form(n21)+2jmn1.

    It is clear that ƛ is the greatest used label. The weights of edges of θn(4,m) are given by:

    wβ(c0xi,1)=i+2fori=1,2,3,4
    wβ(cSxi,mS)={2ms+s+2cS+i1for1Sn21,2ƛmn2+(m+1)s+i+15fors=n2cS+i+ƛ+(s4)(m+1)n+n21forn2sn13ƛ4+i+snfors=n
    wβ(cSxi,mS+1)={(2m+1)s+2cS+i+1for1Sn2,i=1,2,3,42ƛ+sn+cS+i4mforn2sn1i=1,2,3,4,
    wβ(cnxi,mn)={3ƛ+sn5fori=13ƛ+sn4fori=23ƛ+sn33ƛ+sn2fori=3fori=4
    wβ(xi,jxi,j+1)={3j+i+2for1jm13j+i+4form+1j2m1....3j+i+3n21forj=m(n21)+14j+2ƛ+45+i2[nm(n21)+1]2j+2ƛ+i2[nm(n21)+1]formn2+2jm(n1)form(n1)+1jmn1,

    It is obvious that the weights of edges are different, thus β is an edge irregular total ƛ labeling of θn(4,m). Hence

    tes(θn(4,m))=4(m+1)n+23.

    Case 3. 4(m+1)n+22(mod3), i=1,2,3,4

    β is defined as:

    β(cs)={1fors=0(m+1)sfor1sn2ƛ+snforn2sn
    β(xi,j)={jfor1jmj+1form+1j2m....j+n21ƛj+22ƛform(n22)+1jm(n21)form(n21)+1jm(n1)form(n1)+1jmn1,
    β(c0xi,1)=1fori=1,2,3,4
    β(cSxi,mS)={2cS+i1for1Sn21,i=1,2,3,4ƛ7+ifors=n2cS+i4m2forn2+1sn1ƛ5+ifors=n
    β(cSxi,mS+1)={2cS+i+1for1Sn21,i=1,2,3,4cS+1+ifors=n2cS+i4m+1forn2+1sn1
    β(cnxi,mn)={ƛ4fori=1ƛ3fori=2ƛ2ƛ1fori=3fori=4
    β(xi,jxi,j+1)={j+i+1for1jm1j+i+2form+1j2m1....j+i+n2forj=m(n21)+12j+i2[nm(n21)+1]+1form(n21)+2jmn1.

    It is clear that ƛ is the greatest used label. The weights of edges of θn(4,m) are given by:

    wβ(c0xi,1)=i+2fori=1,2,3,4
    wβ(cSxi,mS)={2ms+s+2cS+i1for1Sn21,2ƛmn2+(m+1)s+i+15fors=n2cS+i+ƛ+(s4)(m+1)n+n21forn2sn13ƛ3+i+snfors=n
    wβ(cSxi,mS+1)={(2m+1)s+2cS+i+1for1Sn2,i=1,2,3,42ƛ+sn+cS+i4m+1forn2sn1,
    wβ(cnxi,mn)={3ƛ+sn3fori=13ƛ+sn2fori=23ƛ+sn13ƛ+snfori=3fori=4
    wβ(xi,jxi,j+1)={3j+i+2for1jm13j+i+4form+1j2m1....3j+i+3n21forj=m(n21)+14j+2ƛ+45+i2[nm(n21)+1]2j+2ƛ+i2[nm(n21)+1]formn2+2jm(n1)form(n1)+1jmn1,

    It is obvious that the weights of edges are different, thus β is an edge irregular total ƛ labeling of θn(4,m). Hence

    tes(θn(4,m))=4(m+1)n+23

    Theorem 5. If θn(t,4) is theta snake graph for t>3. Then

    tes(θn(t,4))=5tn+23.

    Proof. Since |E(θn(t,4))|=5tn and Δ(θn(t,4))=2t. Substituting in (1), we have

    tes(θn(t,4))5tn+23.

    We define an edge irregular total ħ labeling for θn(t,4) to get upper bound. Let ħ=5tn+23 and a total ħ labeling γ:V(θn(t,4))E(θn(t,4)){1,2,3,,ħ} is defined in the following three cases:

    Case 1. 5tn+20(mod3)

    Defineγ as:

    γ(c0)=1,
    γ(cS)=(t+1)Sfor1Sn1
    γ(cn)=ħ
    γ(xi,j)={ifor1j4,i=1,2,,ti+t+1for5j8,i=1,2,,ti+2(t+1)for9j12,i=1,2,,t......i+(n1)(t+1)for4n7j4n4,i=1,2,,tħ1for4n3j4n,i=1ħfor4n3j4n,i=2,3,,t
    γ(c0xi,1)=1fori=1,2,,t
    γ(cSxi,4S)=3St2S+3for1Sn1,i=1,2,,t
    γ(cnxi,4n)={ħt+2fori=1ħt+ifori=2,3,,t
    γ(cSxi,4S+1)=3St2S+2for1Sn1,i=1,2,,t
    γ(cn1xi,4n3)={{(t+2)nt5fori=1(t+2)nt+i7fori=2,3,,t,n=2,3(t+1)nt+i3fori=2,3,,t,n2,3
    γ(xi,jxi,j+1)={{t+jfor1j23t+j5for4j55t+j10for7j8......(2n3)t+j5(n2)for4n5j4n4,i=1,2,,tħ3(t+n)+j+5for4n2j4n,i=1ħ3(t+n)+j+5+2(i2)for4n2j4n,i=2,3,,t

    It is clear that, ħ is the greatest label. The edges weights of θn(t,4) can be expressed as:

    wγ(c0xi,1)=i+2fori=1,2,,t
    wγ(cSxi,4S)=t(5S1)+i+2for1Sn1,i=1,2,,twγ(cnxi,4n)=3ħt+ifori=1,2,,t
    wγ(cSxi,4S+1)=5St+i+2for1Sn1,i=1,2,,t
    wγ(cn1xi,4n2)={2nt+3n2t+ħ+i8forn=2,32nt+2n2t+ħ+i6forn2,3,i=1,2,,t
    wγ(xi,jxi,j+1)={{t+j+2ifor1j25t+j+2i4for4j59t+j+2i6for7j8......(4n5)t+j+2i3n+8for4n5j4n4,i=1,2,,t3ħ3(t+n)+j+3for4n2j4n1,i=13ħ3(t+n)+j+2i+3for4n2j4n1,i=2,3,,t

    It implies that the edges weights have distinct values. So γ is the desired edge irregular total ħ labeling, ħ=5tn+23. Hence

    tes(θn(t,4))=5tn+23.

    Case 2. 5tn+21(mod3)

    Defineγ as:

    γ(c0)=1,
    γ(cS)=(t+1)Sfor1Sn1
    γ(cn)=ħ
    γ(xi,j)={ifor1j4,i=1,2,,ti+t+1for5j8,i=1,2,,ti+2(t+1)for9j12,i=1,2,,t......i+(n+1)(t+1)for4n7j4n4,i=1,2,,tħ1for4n3j4n,i=1ħfor4n3j4n,i=2,3,,t
    γ(c0xi,1)=1fori=1,2,,t
    γ(cSxi,4S)=3St2S+3for1Sn1,i=1,2,,t
    γ(cnxi,4n)={ħtfori=1ħt+i2fori=2,3,,t
    γ(cSxi,4S+1)=3St2S+2
    for1Sn1,i=1,2,t
    γ(cn1xi,4n3)={{(t+2)nt5fori=1(t+2)nt+i7fori=2,3,,t,n=2,3{(t+1)nt1fori=1(t+1)nt+i3fori=2,3,,t,n2,3
    γ(xi,jxi,j+1)={{t+jfor1j33t+j5for5j75t+j10for9j11......(2n3)t+j5(n2)for4n7j4n5,i=1,2,,tħ4(t+n)+j+3for4n3j4n1,i=1ħ4(t+n)+j+2(i2)for4n3j4n1,i=2,3,,t

    It is clear that the i greatest label is ħ. We define the weights of edges of θn(t,4) as:

    wγ(c0xi,1)=i+2fori=1,2,,t
    wγ(cSxi,4S)=t(5S1)+i+2for1Sn1,i=1,2,,twγ(cnxi,4n)=3ħt+i2for1Sn1,i=1,2,,t
    wγ(cSxi,4S+1)=5St+i+2for1Sn1,i=1,2,,t
    wγ(cn1xi,4n3)={3nt+3n2t+ħ+i8forn=2,33nt+2n2t+ħ+i6forn2,3,i=1,2,,t
    wγ(xi,jxi,j+1)={{t+j+2ifor1j35t+j+2i4fori5j79t+j+2i6for9j11......(4n5)t+j+2i3n+8for4n7j4n5,i=1,2,,t3ħ4(t+n)+j+1for4n3j4n1,i=13ħ4(t+n)+j+2(i2)for4n3j4n1,i=2,3,,t

    It is obvious that the edges weights are different. Then

    tes(θn(t,4))=5tn+23.

    Case 3. 5tn+22(mod3)

    Defineγ as:

    γ(c0)=1,
    γ(cS)=(t+1)Sfor1Sn1
    γ(cn)=ħ
    γ(xi,j)={ifor1j4,i=1,2,,ti+t+1for5j8,i=1,2,,ti+2(t+1)for9j12,i=1,2,,t......i+(in1)(t+1)for4n7j4n4,i=1,2,,tħ1for4n3j4n,i=1ħfor4n3j4n,i=2,3,,t,
    γ(c0xi,1)=1fori=1,2,,t
    γ(cSxi,4S)=3St2S+3for1Sn1,i=1,2,,t
    γ(cnxi,4n)={ħt+1fori=1ħt+i1fori=2,3,,t
    γ(cSxi,4S+1)=3St2S+2for1Sn2,i=1,2,,t
    γ(cn1xi,4n3)={{(t+2)nt5fori=1(t+2)nt+i7fori=2,3,,t,n=2,3{(t+1)nt1fori=1(t+1)nt+i3fori=2,3,,t,n2,3
    γ(xi,jxi,j+1)={{t+jfor1j33t+j5for5j75t+j10for9j11......(2n3)t+j5(n2)for4n7j4n5,i=1,2,tħ4(t+n)+j+4for4n3j4n1,i=1ħ4(t+n)+j+2ifor4n3j4n1,i=2,3,,t

    We can see that ħ is the greatest label. For edges weights of θn(t,4), we have:

    wγ(c0xi,1)=i+2fori=1,2,,t
    wγ(c0xi,4S)=t(5S1)+i+2for1Sn1,i=1,2,,twγ(cnxi,4n)=3ħt+i1for1Sin1,i=1,2,,t
    wγ(cSxi,4S+1)=5St+i+2for1Sn1,i=1,2,,t
    wγ(cnxi,4n3)={2nt3n2t+ħ+i8forn=2,32nt+2n2t+ħ+i6forn2,3,i=1,2,,t
    wγ(xi,jxi,j+1)={{t+j+2ifor1j35t+j+2i4for5j79t+j+2i6for9j11......(4n5)t+j+2i3n+8for4n7j4n5,i=1,2,,t3ħ4(t+n)+j+2for4n3j3n1,i=13ħ4(t+n)+j+2ifor4n3j4n1,i=2,3,,t

    It is obvious that the edges weights are distinct. So γ is the desired edge irregular total ħ labeling, ħ=5tn+23. Hence

    tes(θn(t,4))=5tn+23.

    The previous results lead us to introduce the following conjecture for a general case of a uniform theta snake graph θn(t,m).

    The previous results lead us to introduce the following conjecture for a general case of a uniform theta snake graph θn(t,m).

    Conjecture. For uniform theta snake graph θn(t,m), n2,t3,andm3 we have

    tes(θn(t,m))=(m+1)tn+23.

    In the current paper, we have defined a new type of a family of graph called uniform theta snake graph, θn(t,m). Also, the exact i value of TEISs for θn(3,3), θn(3,m) and θn(t,3) has been determined. Finally, we have generalized for t, m and found TEIS of a uniform theta snake graph θn(t,m) for m3, t3.

    tes(θn(3,3))=4n+1.
    tes(θn(3,im))=(im+1)in+1.
    tes(θn(t,3))=4tn+23
    tes(θn(t,m))=(m+1)tn+23.

    All authors declare no conflict of interest in this paper.

    We are so grateful to the reviewer for his many valuable suggestions and comments that significantly improved the paper.



    [1] Y. Li, Q. Liu, A comprehensive review study of cyber-attacks and cyber security, Emerging trends and recent developments, Energy Rep., 7 (2021), 8176–8186. https://doi.org/10.1016/j.egyr.2021.08.126 doi: 10.1016/j.egyr.2021.08.126
    [2] S. Chng, H. Y. Lu, A. Kumar, D. Yau, Hacker types, motivations and strategies: A comprehensive framework, Comput. Hum. Behav. Rep., 5 (2022), 100167. https://doi.org/10.1016/j.chbr.2022.100167 doi: 10.1016/j.chbr.2022.100167
    [3] M. Grobler, R. Gaire, S. Nepal, User, usage and usability: Redefining human centric cyber security, Front. Big Data, 4 (2021). https://doi.org/10.3389/fdata.2021.583723
    [4] A. A. Moustafa, A. Bello, The role of user behaviour in improving cyber security management, Front. Psychol., 12 (2021). https://doi.org/10.3389/fpsyg.2021.561011
    [5] J. Wang, H. Li, Surpassing the fractional derivative: Concept of the memory dependent derivative, Comput. Math. Appl., 62 (2011), 1562–1567. https://doi.org/10.1016/j.camwa.2011.04.028 doi: 10.1016/j.camwa.2011.04.028
    [6] L. Zanette, A. White, A. C. Allen, M. Clinchy, Perceived predation risk reduces the number of offspring songbirds produce per year, Science, 334 (2011), 1398–1401. https://dx.doi.org/10.1126/science.1210908 doi: 10.1126/science.1210908
    [7] L. Y. Zanette, M. Clinchy, Ecology of fear, Curr. Biol., 29 (2019), 309–313. https://doi.org/10.1016/j.cub.2019.02.042
    [8] J. P. Tripathi, P. S. Mandal, A. Poonia, V. P. Bajiya, A widespread interaction between generalist and specialist enemies: The role of intraguild predation and allee effect, Appl. Math. Model., 89 (2021), 105–135. https://doi.org/10.1016/j.apm.2020.06.074 doi: 10.1016/j.apm.2020.06.074
    [9] R. K. Upadhyay, Chaotic dynamics in a three species aquatic population model with holling type Ⅱ functional response, Nonlinear Anal-Model., 13 (2008), 103–115. https://doi.org/10.15388/NA.2008.13.1.14592 doi: 10.15388/NA.2008.13.1.14592
    [10] R. K. Upadhyay, R. D. Parshad, K. Antwi-Fordjour, E. Quansah, S. Kumari, Global dynamics of stochastic predator–prey model with mutual interference and prey defense, J. Appl. Math. Comput., 60 (2019), 169–190. https://doi.org/10.1007/s12190-018-1207-7 doi: 10.1007/s12190-018-1207-7
    [11] S. Kim, K. Antwi-Fordjour, Prey group defense to predator aggregated induced fear, Eur. Phys. J. Plus, 137 (2022), 1–17. https://doi.org/10.1140/epjp/s13360-022-02926-x doi: 10.1140/epjp/s13360-022-02926-x
    [12] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, 2006.
    [13] B. Ross, Fractional Calculus and Its Applications, Proceedings of the International Conference held at the University of New Haven, Springer, 2014.
    [14] A. Atangana, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [15] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular Kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. https://doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
    [16] M. K. Naik, C. Baishya, P. Veeresha, D. Baleanu, Design of a fractional-order atmospheric model via a class of ACT-like chaotic system and its sliding mode chaos control, Chaos, 33 (2023). https://doi.org/10.1063/5.0130403
    [17] R. N. Premakumari, C. Baishya, M. Sajid, M. K. Naik, Modeling the dynamics of a marine system using the fractional order approach to assess its susceptibility to global warming, Results Nonlinear Anal., 7 (2024), 89–109.
    [18] S. N Raw, P. Mishra, B. P. Sarangi, B. Tiwari, Appearance of temporal and spatial chaos in an ecological system: A mathematical modeling study, Iranian Journal of Science and Technology, Transactions A: Science, 45 (2021) 1417–1436. https://doi.org/10.1007/s40995-021-01139-8
    [19] S. Gao, H. Lu, M. Wang, D. Jiang, A. A. Abd El-Latif, R. Wu, et al., Design, hardware implementation, and application in video encryption of the 2D memristive cubic map, IEEE Int. Things, 11 (2024). https://doi.org/10.1109/JIOT.2024.3376572
    [20] S. Gao, R. Wu, X. Wang, J. iu, Q. Li, X. Tang, EFR-CSTP: Encryption for face recognition based on the chaos and semi-tensor product theory, Inf. Sci., 621 (2023) 766–781. https://doi.org/10.1016/j.ins.2022.11.121
    [21] N. Malleson, A. Evans, Agent-based models to predict crime at places, Encyclopedia of Criminology Criminal Justice, 12 (2013) 41–48. https://doi.org/10.1007/978-1-4614-5690-2_208
    [22] M. K. Naik, C. Baishya, P. Veeresha, A chaos control strategy for the fractional 3D Lotka- Volterra like attractor, Math. Comput. Simul., 211 (2023), 1–22. https://doi.org/10.1016/j.matcom.2023.04.001 doi: 10.1016/j.matcom.2023.04.001
    [23] T. Bosse, C. Gerritsen, M. Hoogendoorn, S. W. Jaffry, J. Treur, Agent-based vs. population-based simulation of displacement of crime: A comparative study, Web Intelligence and Agent Systems: An International Journal, 9 (2011), 147–160. https://dx.doi.org/10.3233/WIA-2011-0212 doi: 10.3233/WIA-2011-0212
    [24] P. A. Jones, P. J. Brantingham, L. R. Chayes, Statistical models of criminal behavior: The effects of law enforcement actions, Math. Mod. Meth. Appl. S., 20 (2010), 1397–1423. https://doi.org/10.1142/S0218202510004647 doi: 10.1142/S0218202510004647
    [25] S. Gao, R. Wu, X. Wang, J. Liu, Q. Li, X. Tang, Asynchronous updating Boolean network encryption algorithm, IEEE T. Circ. Syst. Vid., (2023). https://dx.doi.org/10.1109/TCSVT.2023.3237136
    [26] S. Gao, H. H. Iu, J. Mou, U. Erkan, J. Liu, R Wu, et al., Temporal action segmentation for video encryption, Chaos, Soliton. Fract., 183 (2024), 114958. https://doi.org/10.1016/j.chaos.2024.114958 doi: 10.1016/j.chaos.2024.114958
    [27] S. Raw, B. Mishra, B. Tiwari, Mathematical study about a predator–prey model with antipredator behavior, Int. J. Appl. Comput. Math., 6 (2020), 1–22. https://doi.org/10.1007/s40819-020-00822-5 doi: 10.1007/s40819-020-00822-5
    [28] K. Diethelm, N. J. Ford, A. D. Freed, A Predictor-Corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynam., 29 (2002) 3–22. https://doi.org/10.1023/A: 1016592219341
    [29] I. Podlubny, Fractional Differential Equations, Elsevier, 1999.
    [30] X. Wang, Y. j. He, M. j. Wang, Chaos control of a fractional order modified coupled dynamos system, Nonlinear Anal-Theory, 71 (2009), 6126–6134. https://doi.org/10.1016/j.na.2009.06.065 doi: 10.1016/j.na.2009.06.065
    [31] H. Li, L. Zhang, C. Hu, Y. Jiang, Z. Teng, Dynamical analysis of a fractional-order predatorprey model incorporating a prey refuge, J. Appl. Math. Comput., 54 (2017), 435–449. https://doi.org/10.1007/s12190-016-1017-8 doi: 10.1007/s12190-016-1017-8
    [32] E. Ahmed, A. S. Elgazzar, On fractional order differential equations model for nonlocal epidemics, Physica A., 379 (2007), 607–614. https://doi.org/10.1016/j.physa.2007.01.010 doi: 10.1016/j.physa.2007.01.010
    [33] N. Sene, Introduction to the fractional-order chaotic system under fractional operator in Caputo sense, Alex. Eng. J., 60 (2021), 3997–4014. https://doi.org/10.1016/j.aej.2021.02.056 doi: 10.1016/j.aej.2021.02.056
    [34] C. Baishya, M. K. Naik, R. N. Premakumari, Design and implementation of a sliding mode controller and adaptive sliding mode controller for a novel fractional chaotic class of equations, Results Control Optim., 14 (2024). https://doi.org/10.1016/j.rico.2023.100338
    [35] M. Sandri, Numerical calculation of Lyapunov exponents, Math. J., 6 (1996), 78–84.
    [36] A. Sharp, J. Pastor, Stable limit cycles and the paradox of enrichment in a model of chronic wasting disease, Ecolog. Appl., 21 (2011), 1024–1030. https://doi.org/10.1890/10-1449.1 doi: 10.1890/10-1449.1
    [37] E. Gonzalez-Olivares, H. Meneses-Alcay, B. Gonzalez-Yanez, J. Mena-Lorca, A. Rojas-Palma, R. Ramos-Jiliberto, Multiple stability and uniqueness of the limit cycle in a Gause-type predator-prey model considering the Allee effect on prey, Nonlinear Anal-Real, 12 (2011), 2931–2942. https://doi.org/10.1016/j.nonrwa.2011.04.003 doi: 10.1016/j.nonrwa.2011.04.003
    [38] G. Williams, Chaos Theory Tamed, CRC press, 1997.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1049) PDF downloads(77) Cited by(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog