Research article Special Issues

Solutions of initial and boundary value problems using invariant curves

  • Received: 26 January 2024 Revised: 31 March 2024 Accepted: 11 April 2024 Published: 15 July 2024
  • MSC : 22E70, 34B60, 34C45

  • The purpose of this study is to investigate the solutions of initial and boundary value problems of ordinary differential equations by employing Lie symmetry generators. In this investigation, it shown that invariant curves, which obtained by symmetry generators, also be utilized to find solutions to initial and boundary value problems. A method, involving invariant curves, presented to find solutions to initial and boundary value problems. Solutions to many linear and nonlinear initial and boundary value problems discussed by applying the proposed method.

    Citation: Khudija Bibi. Solutions of initial and boundary value problems using invariant curves[J]. AIMS Mathematics, 2024, 9(8): 22057-22066. doi: 10.3934/math.20241072

    Related Papers:

  • The purpose of this study is to investigate the solutions of initial and boundary value problems of ordinary differential equations by employing Lie symmetry generators. In this investigation, it shown that invariant curves, which obtained by symmetry generators, also be utilized to find solutions to initial and boundary value problems. A method, involving invariant curves, presented to find solutions to initial and boundary value problems. Solutions to many linear and nonlinear initial and boundary value problems discussed by applying the proposed method.



    加载中


    [1] T. Y. Na, Computational methods in engineering boundary value problems, Princeton University Press, 1979. https://doi.org/10.1016/s0076-5392(08)x6096-5
    [2] G. Choudhury, P. Korman, Computation of solutions of nonlinear boundary value problems, Comput. Math. Appl., 22 (1991), 49–55. https://doi.org/10.1016/0898-1221(91)90012-S doi: 10.1016/0898-1221(91)90012-S
    [3] J. Boyd, Pade approximation algorithm for solving nonlinear ordinary differential boundary value problems on an unbounded domain, Comput. Phys., 11 (1997), 299–303. https://doi.org/10.1063/1.16860 doi: 10.1063/1.16860
    [4] W. Al-Hayani, L. Casasús, Approximate analytical solution of fourth order boundary value problems, Numer. Algorithms, 40 (2005), 67–78. https://doi.org/10.1007/s11075-005-3569-9 doi: 10.1007/s11075-005-3569-9
    [5] M. A. Rufai, An efficient third derivative hybrid block technique for the solution of second-order BVPs, Mathematics, 10 (2022), 3692. https://doi.org/10.3390/math10193692 doi: 10.3390/math10193692
    [6] A. Sarsenbi, A. Sarsenbi, Boundary value problems for a second-order differential equation with involution in the second derivative and their solvability, AIMS Math., 8 (2023), 26275–26289. https://doi.org/10.3934/math.20231340 doi: 10.3934/math.20231340
    [7] Y. Zhang, L. Chen, Positive solution for a class of nonlinear fourth-order boundary value problem, AIMS Math., 8 (2023), 1014–1021. https://doi.org/10.3934/math.2023049 doi: 10.3934/math.2023049
    [8] Z. Bai, W. Lian, Y. Wei, S. Sun, Solvability for some fourth-order two-point boundary value problems, AIMS Math., 5 (2020), 4983–4994. https://doi.org/10.3934/math.2020319 doi: 10.3934/math.2020319
    [9] N. H. Ibragimov, CRC Handbook of Lie group analysis of differential equations, CRC Press, 1996. https://doi.org/10.1201/9781003419808
    [10] N. H. Ibragimov, Elementary Lie group analysis and ordinary differential equations, John Wiley & Sons, Inc., 1999.
    [11] H. Stephani, Differential equations: their solutions using symmetries, Cambridge University Press, 1989. https://doi.org/10.1017/cbo9780511599941
    [12] D. J. Arrigo, Symmetry analysis of differential equations: an introduction, John Wiley & Sons, Inc., 2014.
    [13] G. W. Bluman, S. Kumei, Symmetries and differential equations, Springer-Verlag, 1989. https://doi.org/10.1007/978-1-4757-4307-4
    [14] P. J. Olver, Applications of Lie groups to differential equations, Springer-Verlag, 1989. https://doi.org/10.1007/978-1-4612-4350-2
    [15] A. Danilo, O. M. L. Duque, Y. Acevedo, Optimal system, invariant solutions and complete classification of Lie group symmetries for a generalized Kummer-Schwarz equation and its Lie algebra representation, Rev. Integracion, 39 (2021), 257–274. https://doi.org/10.18273/revint.v39n2-2021007 doi: 10.18273/revint.v39n2-2021007
    [16] K. Bibi, Particular solutions of ordinary differential equations using discrete symmetry group, Symmetry, 12 (2020), 180. https://doi.org/10.3390/sym12010180 doi: 10.3390/sym12010180
    [17] K. Bibi, K. Ahmad, New exact solutions of date Jimbo Kashiwara Miwa equation using Lie symmetry groups, Math. Probl. Eng., 2021 (2021), 1–8. https://doi.org/10.1155/2021/5533983 doi: 10.1155/2021/5533983
    [18] R. Qi, M. M. Mubeen, N. Younas, M. Younas, M. Idress, J. B. Liu, Lie symmetry analysis for the general classes of generalized modified Kuramoto-Sivashinsky equation, J. Funct. Spaces, 2021 (2021), 4936032. https://doi.org/10.1155/2021/4936032 doi: 10.1155/2021/4936032
    [19] D. Hashan, D. Gallage, Solution methods for nonlinear ordinary differential equations using Lie symmetry groups, Adv. J. Grad. Res., 13 (2023), 37–61. https://doi.org/10.21467/ajgr.13.1.37-61 doi: 10.21467/ajgr.13.1.37-61
    [20] R. L. Burden, J. D. Faires, Numerical analysis, 9 Eds., Boston, 2011.
    [21] F. Haq, A. Ali, Numerical solutions of fourth order boundary value problems using Haar wavelets, Appl. Math. Sci., 5 (2011), 3131–3146.
    [22] G. Adomian, A review of the decomposition method in applied mathematics, J. Math. Anal. Appl., 135 (1998), 501–544. https://doi.org/10.1016/0022-247X(88)90170-9 doi: 10.1016/0022-247X(88)90170-9
    [23] A. M. Wazwaz, Analytical approximations and Padé approximants for Volterra's population model, Appl. Math. Comput., 100 (1999), 13–25. https://doi.org/10.1016/S0096-3003(98)00018-6 doi: 10.1016/S0096-3003(98)00018-6
    [24] J. Toomore, Stellar convection theory II: a single-mode study of the second convection zone in A-type stars, J. Astrophys., 1976.
    [25] M. Sohaib, S. Haq, S. Mukhtar, I. Khan, Numerical solution of sixth-order boundary-value problems using Legendre wavelet collocation method, Results Phys., 8 (2018), 1204–1208. https://doi.org/10.1016/j.rinp.2018.01.065 doi: 10.1016/j.rinp.2018.01.065
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(53) PDF downloads(12) Cited by(0)

Article outline

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog