In this paper, we presented the geometrical properties of Smarandache curves on 3-pseudo-spheres. These curves were examined in the context of the lightcone, de Sitter space, and anti-de Sitter space. By leveraging the curvature relationships between the null curve and its corresponding Smarandache curves, we established necessary and sufficient conditions. Additionally, we illustrated our main results through two examples.
Citation: Huina Zhang, Yanping Zhao, Jianguo Sun. The geometrical properties of the Smarandache curves on 3-dimension pseudo-spheres generated by null curves[J]. AIMS Mathematics, 2024, 9(8): 21703-21730. doi: 10.3934/math.20241056
In this paper, we presented the geometrical properties of Smarandache curves on 3-pseudo-spheres. These curves were examined in the context of the lightcone, de Sitter space, and anti-de Sitter space. By leveraging the curvature relationships between the null curve and its corresponding Smarandache curves, we established necessary and sufficient conditions. Additionally, we illustrated our main results through two examples.
[1] | M. D. Carmo, Differential geometry of curves and surfaces: Revised and updated second edition, Courier Dover Publications, 2016. |
[2] | J. Walrave, Curves and surfaces in Minkowski space, Fac. Sci. K. U. Leuven, 1995. |
[3] | A. Bejancu, Lightlike curves in Lorentz manifolds, Publ. Math. Debrecen, 44 (1994), 145–155. https://doi.org/10.1007/BF02830893 doi: 10.1007/BF02830893 |
[4] | H. Martini, K. J. Swanepoel, G. Wei ß, The geometry of Minkowski spaces-A survey. Part Ⅰ, Expo. Math., 19 (2001), 97–142. https://doi.org/10.1016/S0723-0869(01)80025-6 doi: 10.1016/S0723-0869(01)80025-6 |
[5] | Á. G. Horváth, Generalized Minkowski space with changing shape, Aequat. Math., 87 (2014), 337–377. https://doi.org/10.1007/s00010-013-0250-6 doi: 10.1007/s00010-013-0250-6 |
[6] | M. Turgut, S. Yilmaz, Smarandache curves in Minkowski space-time, Int. J. Math. Combin., 3 (2008), 51–55. https://doi.org/10.5281/ZENODO.9681 doi: 10.5281/ZENODO.9681 |
[7] | H. S. Abdel-Aziza, M. K. Saad, Computation of Smarandache curves according to Darboux frame in Minkowski 3-space, J. Egy. Math. Soc., 25 (2017), 382–390. https://doi.org/10.1016/j.joems.2017.05.004 doi: 10.1016/j.joems.2017.05.004 |
[8] | E. M. Solouma, Special equiform Smarandache curves in Minkowski space-time, J. Egy. Math. Soc., 25 (2017), 319–325. https://doi.org/10.1016/j.joems.2017.04.003 doi: 10.1016/j.joems.2017.04.003 |
[9] | A. Yavuz, M. Erdoǧdu, Congruence of degenerate surface along pseudo null curve and Landau-Lifshitz equation, J. Geom. Phys., 178 (2022), 104553. https://doi.org/10.1016/j.geomphys.2022.104553 doi: 10.1016/j.geomphys.2022.104553 |
[10] | X. Song, E. Li, D. H. Pei, Legendrian dualities and evolute-involute curve pairs of space-like fronts in null sphere, J. Geom. Phys., 178 (2022), 104543. https://doi.org/10.1016/j.geomphys.2022.104543 doi: 10.1016/j.geomphys.2022.104543 |
[11] | A. Ferrandez, A. Gimenez, P. Lucas, Geometrical particle models on 3D null curves, Phys. Lett. B, 543 (2002), 311–317. https://doi.org/10.1016/s0370-2693(02)02450-4 doi: 10.1016/s0370-2693(02)02450-4 |
[12] | T. Tunahan, N. Ayyildiz, Some results on the differential geometry of spacelike curves in de-sitter space, J. Appl. Math. Phys., 1 (2013), 55–59. https://doi.org/10.4236/JAMP.2013.13009 doi: 10.4236/JAMP.2013.13009 |
[13] | Y. L. Li, Y. S. Zhu, Q. Y. Sun, Singularities and dualities of pedal curves in pseudo-hyperbolic and de Sitter space, Int. J. Geom. Methods M., 18 (2021), 2150008. https://doi.org/10.1142/S0219887821500080 doi: 10.1142/S0219887821500080 |
[14] | N. Abazari, M. Bohner, I. Sager, A. Sedaghatdoost, Spacelike curves in the lightlike cone, Appl. Math. Inf. Sci., 12 (2018), 1227–1236. https://doi.org/10.18576/amis/120618 doi: 10.18576/amis/120618 |
[15] | J. G. Sun, D. H. Pei, Null surfaces of null curves on 3-null cone, Phys. Lett. A, 378 (2014), 1010–1016. https://doi.org/10.1016/j.physleta.2014.02.002 doi: 10.1016/j.physleta.2014.02.002 |
[16] | A. T. Ali, Special Smarandache curves in the Euclidean space, Int. J. Math. Combin., 2 (2010), 30–36. |
[17] | K. Wolfgang, H. Burce, Differential geometry: Curves surfaces manifolds, American Mathematical Society, 2002. |
[18] | Ö. Bektaş, S. Y$\ddot{\rm{u}} $ce, Special Smarandache curves according to Darboux frames in $E^{3}$, arXiv Preprint, 2012. |
[19] | S. Ouarab, Smarandache ruled surfaces according to Darboux Frame in $E^{3}$, J. Math., 1 (2021), 9912624. https://doi.org/10.1155/2021/9912624 doi: 10.1155/2021/9912624 |
[20] | T. Kahraman, H. H. Uǧurlu, Smarandache curves of curves lying on lightlike cone in $\mathbb{R}^{3}_{1}$, Infinite Study, 3 (2017). |
[21] | S. Ouarab, Smarandache ruled surfaces according to Frenet-Serret frame of a regular curve in $E^{3}$, Abstr. Appl. Anal., 1 (2021), 5526536. https://doi.org/10.1155/2021/5526536 doi: 10.1155/2021/5526536 |
[22] | S. Şenyurt, K. Erens, Smarandache curves of spacelike Salkowski curve with a spacelike principal normal according to Frenet frame, J. Sci. Technol., 13 (2020), 7–17. https://doi.org/10.17714/gumusfenbil.621363 doi: 10.17714/gumusfenbil.621363 |
[23] | Y. L. Li, Z. G. Wang, T. H. Zhao, Geometric algebra of singular ruled surfaces, Adv. Appl. Clifford Algebras., 31 (2021), 1–19. https://doi.org/10.1007/s00006-020-01097-1 doi: 10.1007/s00006-020-01097-1 |
[24] | S. Yilmaz, M. Turgut, On the differential geometry of the curves in Minkowski spacetime I, Int. J. Contemp. Math. Sciences, 3 (2008), 1343–1349. |
[25] | J. H. Qian, Y. H. Kim, Null helix and $k$-type null slant helices in $\mathbb E^{4}_1$, Rev. Un. Mat. Argentina, 57 (2016), 71–83. |
[26] | A. T. Ali, R. L$\acute{\rm{o}}$pez, M. Turgut, $k$-type partially null and pseudo null slant helices in Minkowski 4-space, Math. Commun., 17 (2012), 93–103. |
[27] | N. Mai-Duy, Solving high order ordinary differential equations with radial basis function networks, Int. J. Numer. Meth. Eng., 62 (2005), 824–852. https://doi.org/10.1002/nme.1220 doi: 10.1002/nme.1220 |