Research article

Nonlinear mixed type product $ [\mathscr{K}, \mathscr{F}]_\ast \odot \mathscr{D} $ on $ \ast $-algebras

  • Received: 14 May 2024 Revised: 19 June 2024 Accepted: 26 June 2024 Published: 05 July 2024
  • MSC : 16W10, 46K15, 47B47

  • Let $ \mathcal{A} $ be a unital $ \ast $-algebra containing a non-trivial projection. In this paper, we prove that if a map $ \Omega $ : $ \mathcal{A} $ $ \to $ $ \mathcal{A} $ such that

    $ \begin{equation} \nonumber \Omega( [ \mathscr{K}, \mathscr{F}]_\ast \odot \mathscr{D}) = [\Omega(\mathscr{K}), \mathscr{F}]_\ast \odot \mathscr{D} + [ \mathscr{K}, \Omega (\mathscr{F})]_\ast \odot \mathscr{D} + [ \mathscr{K}, \mathscr{F}]_\ast \odot \Omega (\mathscr{D}), \end{equation} $

    where $ [\mathscr{K}, \mathscr{F}]_{\ast} = \mathscr{K}\mathscr{F}- \mathscr{F}\mathscr{K}^\ast $ and $ \mathscr{K} \odot \mathscr{F} = \mathscr{K}^\ast \mathscr{F}+ \mathscr{F}\mathscr{K}^\ast $ for all $ \mathscr{K}, \mathscr{F}, \mathscr{D} \in \mathcal{A}, $ then $ \Omega $ is an additive $ \ast $-derivation. Furthermore, we extend its results on factor von Neumann algebras, standard operator algebras and prime $ \ast $-algebras. Additionally, we provide an example illustrating the existence of such maps.

    Citation: Junaid Nisar, Turki Alsuraiheed, Nadeem ur Rehman. Nonlinear mixed type product $ [\mathscr{K}, \mathscr{F}]_\ast \odot \mathscr{D} $ on $ \ast $-algebras[J]. AIMS Mathematics, 2024, 9(8): 21596-21608. doi: 10.3934/math.20241049

    Related Papers:

  • Let $ \mathcal{A} $ be a unital $ \ast $-algebra containing a non-trivial projection. In this paper, we prove that if a map $ \Omega $ : $ \mathcal{A} $ $ \to $ $ \mathcal{A} $ such that

    $ \begin{equation} \nonumber \Omega( [ \mathscr{K}, \mathscr{F}]_\ast \odot \mathscr{D}) = [\Omega(\mathscr{K}), \mathscr{F}]_\ast \odot \mathscr{D} + [ \mathscr{K}, \Omega (\mathscr{F})]_\ast \odot \mathscr{D} + [ \mathscr{K}, \mathscr{F}]_\ast \odot \Omega (\mathscr{D}), \end{equation} $

    where $ [\mathscr{K}, \mathscr{F}]_{\ast} = \mathscr{K}\mathscr{F}- \mathscr{F}\mathscr{K}^\ast $ and $ \mathscr{K} \odot \mathscr{F} = \mathscr{K}^\ast \mathscr{F}+ \mathscr{F}\mathscr{K}^\ast $ for all $ \mathscr{K}, \mathscr{F}, \mathscr{D} \in \mathcal{A}, $ then $ \Omega $ is an additive $ \ast $-derivation. Furthermore, we extend its results on factor von Neumann algebras, standard operator algebras and prime $ \ast $-algebras. Additionally, we provide an example illustrating the existence of such maps.



    加载中


    [1] M. Ashraf, M. S. Akhter, M. A. Ansari, Nonlinear bi-skew Lie-type derivations on factor von Neumann algebras, Commun. Algebra, 50 (2022), 4766–4780. https://doi.org/10.1080/00927872.2022.2074027
    [2] D. Huo, B. Zheng, J. Xu, H. Liu, Nonlinear mappings preserving Jordan multiple $\ast$-product on factor von-neumann algebras, Linear Multilinear A., 63 (2015), 1026–1036. https://doi.org/10.1080/03081087.2014.915321 doi: 10.1080/03081087.2014.915321
    [3] L. Kong, J. Zhang, Nonlinear skew Lie derivations on prime $\ast$-rings, Indian J. Pure Appl. Math., 54 (2023), 475–484. https://doi.org/10.1007/s13226-022-00269-y doi: 10.1007/s13226-022-00269-y
    [4] A. N. Khan, Multiplicative biskew Lie triple derivations on factor von Neumann algebras, Rocky Mountain J. Math., 51 (2021), 2103–2114. https://doi.org/10.1216/rmj.2021.51.2103 doi: 10.1216/rmj.2021.51.2103
    [5] C. J. Li, F. Y. Lu, Nonlinear maps preserving the Jordan triple 1 $\ast$-product on von Neumann algebras, Complex Anal. Oper. Theory, 11 (2017), 109–117. https://doi.org/10.1007/s11785-016-0575-y doi: 10.1007/s11785-016-0575-y
    [6] C. J. Li, D. Zhang, Nonlinear mixed Jordan triple $\ast $-derivations on $\ast $-algebras, Sib. Math. J., 63 (2022), 735–742. https://doi.org/10.1134/S0037446622040140 doi: 10.1134/S0037446622040140
    [7] C. J. Li, F. F. Zhao, Q. Y. Chen, Nonlinear skew Lie triple derivations between factors, Acta Math. Sin. English Ser., 32 (2016), 821–830. https://doi.org/10.1007/s10114-016-5690-1 doi: 10.1007/s10114-016-5690-1
    [8] C. J. Li, Y. Zhao, F. Zhao, Nonlinear maps preserving the mixed product $[A \odot B, C]_{\ast}$ on von Neumann algebras, Filomat, 35 (2021), 2775–2781. https://doi.org/10.2298/FIL2108775L doi: 10.2298/FIL2108775L
    [9] C. J. Li, Q. Y. Chen, T. Wang, Nonlinear maps preserving the Jordan triple $\ast$-product on factor von Neumann algebras, Chin. Ann. Math. Ser. B, 39 (2018), 633–642. https://doi.org/10.1007/s11401-018-0086-4 doi: 10.1007/s11401-018-0086-4
    [10] C. J. Li, Y. Zhao, F. F. Zhao, Nonlinear $\ast$-Jordan-type derivations on $\ast$-algebras, Rocky Mountain J. Math., 51 (2021), 601–612. https://doi.org/10.1216/rmj.2021.51.601 doi: 10.1216/rmj.2021.51.601
    [11] Y. Pang, D. Zhang, D. Ma, The second nonlinear mixed Jordan triple derivable mapping on factor von Neumann algebras, Bull. Iran. Math. Soc., 48 (2022), 951–962. https://doi.org/10.1007/s41980-021-00555-1 doi: 10.1007/s41980-021-00555-1
    [12] N. Rehman, J. Nisar, M. Nazim, A note on nonlinear mixed Jordan triple derivation on $\ast$-algebras, Commun. Algebra, 51 (2023), 1334–1343. https://doi.org/10.1080/00927872.2022.2134410 doi: 10.1080/00927872.2022.2134410
    [13] A. Taghavi, M. Nouri, M. Razeghi, V. Darvish, Non-linear $\lambda $-Jordan triple $\ast $-derivation on prime $\ast $-algebras, Rocky Mountain J. Math., 48 (2018), 2705–2716. https://doi.org/10.1216/RMJ-2018-48-8-2705
    [14] L. Y. Xian, Z. J. Hua, Nonlinear mixed Lie triple derivation on factor von neumann algebras, Acta Math. Sin. Chinese Ser., 62 (2019), 13–24. https://doi.org/10.12386/A2019sxxb0002 doi: 10.12386/A2019sxxb0002
    [15] F. Zhang, Nonlinear $\eta$-Jordan triple $\ast$-derivation on prime $\ast$-algebras, Rocky Mountain J. Math., 52 (2022), 323–333. https://doi.org/10.1216/rmj.2022.52.323 doi: 10.1216/rmj.2022.52.323
    [16] F. F. Zhao, C. J. Li, Nonlinear $\ast$-Jordan triple derivations on von Neumann algebras, Math. Slovaca, 68 (2018), 163–170. https://doi.org/10.1515/ms-2017-0089 doi: 10.1515/ms-2017-0089
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(547) PDF downloads(40) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog