

AIMS Mathematics, 9(8): 21596–21608. DOI: 10.3934/math.20241049 Received: 14 May 2024 Revised: 19 June 2024 Accepted: 26 June 2024 Published: 05 July 2024

https://www.aimspress.com/journal/Math

Research article

Nonlinear mixed type product $[\mathcal{K}, \mathcal{F}]_* \odot \mathcal{D}$ on *-algebras

Junaid Nisar^{1,*}, Turki Alsuraiheed^{2,*} and Nadeem ur Rehman³

- ¹ Department of Applied Sciences, Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Lavale, Pune, India
- ² Department of Mathematics, College of Science, King Saud University P.O. Box 2455 Riyadh 11451, Saudi Arabia
- ³ Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India
- * **Correspondence:** Email: junaidnisar73@gmail.com, talsuraiheed@ksu.edu.sa.

Abstract: Let \mathcal{A} be a unital *-algebra containing a non-trivial projection. In this paper, we prove that if a map $\Omega : \mathcal{A} \to \mathcal{A}$ such that

 $\Omega([\mathcal{K},\mathcal{F}]_*\odot\mathcal{D})=[\Omega(\mathcal{K}),\mathcal{F}]_*\odot\mathcal{D}+[\mathcal{K},\Omega(\mathcal{F})]_*\odot\mathcal{D}+[\mathcal{K},\mathcal{F}]_*\odot\Omega(\mathcal{D}),$

where $[\mathcal{K}, \mathcal{F}]_* = \mathcal{KF} - \mathcal{FK}^*$ and $\mathcal{K} \odot \mathcal{F} = \mathcal{K}^* \mathcal{F} + \mathcal{FK}^*$ for all $\mathcal{K}, \mathcal{F}, \mathcal{D} \in \mathcal{A}$, then Ω is an additive *-derivation. Furthermore, we extend its results on factor von Neumann algebras, standard operator algebras and prime *-algebras. Additionally, we provide an example illustrating the existence of such maps.

Keywords: mixed bi-skew Jordan triple derivation; *-derivation; *- algebra; involution **Mathematics Subject Classification:** 16W10, 46K15, 47B47

1. Introduction

Consider an algebra \mathcal{A} defined over the complex field \mathbb{C} . A map $* : \mathcal{A} \to \mathcal{A}$ is called an involution if the following conditions hold for all $\mathcal{K}, \mathcal{F} \in \mathcal{A}$ and $\alpha \in \mathbb{C}$. (i) $(\mathcal{K} + \mathcal{F})^* = \mathcal{K}^* + \mathcal{F}^*$; (ii) $(\alpha \mathcal{K})^* = \bar{\alpha} \mathcal{K}^*$; (iii) $(\mathcal{K}\mathcal{F})^* = (\mathcal{F})^*(\mathcal{K})^*$ and $(\mathcal{K}^*)^* = \mathcal{K}$. An algebra \mathcal{A} with the involution * is called the *-algebra. For $\mathcal{K}, \mathcal{F} \in \mathcal{A}$, we call $[\mathcal{K}, \mathcal{F}]_* = \mathcal{K}\mathcal{F} - \mathcal{F}\mathcal{K}^*$ the skew Lie product, $[\mathcal{K}, \mathcal{F}]_{\bullet} = \mathcal{K}\mathcal{F}^* - \mathcal{F}\mathcal{K}^*$ denotes the bi-skew Lie product and $\mathcal{K} \odot \mathcal{F} = \mathcal{K}^*\mathcal{F} + \mathcal{F}\mathcal{K}^*$ denotes the bi-skew Jordan product. The skew Lie product, the Jordan product, and the bi-skew Jordan product have become increasingly relevant in various research fields, and numerous authors have shown a keen interest in their exploration. This is evident from the numerous studies by authors (see [1–3, 5, 7–10, 13, 15, 16]). Recall that an additive map $\Omega : \mathcal{A} \to \mathcal{A}$ is called an additive derivation if $\Omega(\mathcal{KF}) = \Omega(\mathcal{K})\mathcal{F} + \mathcal{K}\Omega(\mathcal{F})$ for all $\mathcal{K}, \mathcal{F} \in \mathcal{A}$. If $\Omega(\mathcal{K}^*) = \Omega(\mathcal{K})^*$ for all $\mathcal{K} \in \mathcal{A}$, then Ω is an additive *-derivation. Let $\Omega : \mathcal{A} \to \mathcal{A}$ be a map (without the additivity assumption). We say Ω is a nonlinear skew Lie derivation or nonlinear skew Lie triple derivation if

$$\Omega([\mathcal{K},\mathcal{F}]_*) = [\Omega(\mathcal{K}),\mathcal{F}]_* + [\mathcal{K},\Omega(\mathcal{F})]_*$$

or

$$\Omega([[\mathcal{K},\mathcal{F}]_*,\mathcal{D}]_*) = [[\Omega(\mathcal{K}),\mathcal{F}]_*,\mathcal{D}]_* + [[\mathcal{K},\Omega(\mathcal{F})]_*,\mathcal{D}]_* + [[\mathcal{K},\mathcal{F}]_*,\Omega(\mathcal{D})]_*$$

for all $\mathcal{K}, \mathcal{F}, \mathcal{D} \in \mathcal{A}$. Similarly, a map $\Omega : \mathcal{A} \to \mathcal{A}$ is said to be a nonlinear bi-skew Lie derivation or nonlinear bi-skew Lie triple derivation if

$$\Omega([\mathcal{K},\mathcal{F}]_{\bullet} = [\Omega(\mathcal{K}),\mathcal{F}]_{\bullet} + [\mathcal{K},\Omega(\mathcal{F})]_{\bullet}$$

or

$$\Omega([[\mathcal{K},\mathcal{F}]_{\bullet},\mathcal{D}]_{\bullet}) = [[\Omega(\mathcal{K}),\mathcal{F}]_{\bullet},\mathcal{D}]_{\bullet} + [[\mathcal{K},\Omega(\mathcal{F})]_{\bullet},\mathcal{D}]_{\bullet} + [[\mathcal{K},\mathcal{F}]_{\bullet},\Omega(\mathcal{D})]_{\bullet}$$

for all $\mathcal{K}, \mathcal{F}, \mathcal{D} \in \mathcal{A}$. In 2021, A. Khan [4] established a proof demonstrating that any multiplicative or nonadditive bi-skew Lie triple derivation acting on a factor Von Neumann algebra can be characterized as an additive *-derivation.

Numerous authors have recently explored the derivations and isomorphisms corresponding to the novel products created by combining Lie and skew Lie products, skew Lie and skew Jordan products see [6, 11, 12, 14]. As an illustration, Li and Zhang [6] delved into an investigation focused on understanding the arrangement and properties of the nonlinear mixed Jordan triple *-derivation within the domain of *-algebras. In 2022, Rehman et. al. [12] mixed the concepts of Jordan and Jordan *-product and gave the complete characterization of nonlinear mixed Jordan *-triple derivation on *-algebras. Inspired by the above results, in the present paper, we combined the skew Lie product and bi-skew Jordan product and defined nonlinear mixed bi-skew Jordan triple derivation on *-algebras. A map $\Omega: \mathcal{A} \to \mathcal{A}$ is called nonlinear mixed bi-skew Jordan triple derivations if

$$\Omega([\mathcal{K},\mathcal{F}]_* \odot \mathcal{D}) = [\Omega(\mathcal{K}),\mathcal{F}]_* \odot \mathcal{D} + [\mathcal{K},\Omega(\mathcal{F})]_* \odot \mathcal{D} + [\mathcal{K},\mathcal{F}]_* \odot \Omega(\mathcal{D}),$$

for all $\mathcal{K}, \mathcal{F}, \mathcal{D} \in \mathcal{A}$. Our proof establishes that when Ω represents a nonlinear mixed bi-skew Lie triple derivation acting on *-algebras, it necessarily possesses an additive *-derivation. In simpler terms, the study demonstrates that specific properties, such as additivity and self-adjointness, can be attributed to the nature of nonlinear mixed bi-skew Jordan triple derivations on *-algebras.

2. Main result

Theorem 2.1. Let A be a unital *-algebra with unity I containing a non-trivial projection P. Suppose that A satisfies

$$\mathcal{X}\mathcal{A}P = 0 \implies \mathcal{X} = 0, \tag{(A)}$$

and

$$\mathfrak{X}\mathcal{A}(\mathfrak{I}-P)=0\implies \mathfrak{X}=0. \tag{(\textbf{V})}$$

Define a map $\Omega : \mathcal{A} \to \mathcal{A}$ *such that*

 $\Omega([\mathcal{K},\mathcal{F}]_*\odot\mathcal{D})=[\Omega(\mathcal{K}),\mathcal{F}]_*\odot\mathcal{D}+[\mathcal{K},\Omega(\mathcal{F})]_*\odot\mathcal{D}+[\mathcal{K},\mathcal{F}]_*\odot\Omega(\mathcal{D}),$

AIMS Mathematics

Volume 9, Issue 8, 21596-21608.

then Ω is an additive *-derivation.

Let $P = \mathcal{P}_1$ be a non-trivial projection in \mathcal{A} , and $\mathcal{P}_2 = \mathcal{I} - \mathcal{P}_1$, where \mathcal{I} is the unity of this algebra. Then by Peirce decomposition of \mathcal{A} , we have $\mathcal{A} = \mathcal{P}_1 \mathcal{A} \mathcal{P}_1 \oplus \mathcal{P}_1 \mathcal{A} \mathcal{P}_2 \oplus \mathcal{P}_2 \mathcal{A} \mathcal{P}_1 \oplus \mathcal{P}_2 \mathcal{A} \mathcal{P}_2$ and, denote $\mathcal{A}_{11} = \mathcal{P}_1 \mathcal{A} \mathcal{P}_1, \mathcal{A}_{12} = \mathcal{P}_1 \mathcal{A} \mathcal{P}_2, \mathcal{A}_{21} = \mathcal{P}_2 \mathcal{A} \mathcal{P}_1$ and $\mathcal{A}_{22} = \mathcal{P}_2 \mathcal{A} \mathcal{P}_2$. Note that any $\mathcal{K} \in \mathcal{A}$ can be written as $\mathcal{K} = \mathcal{K}_{11} + \mathcal{K}_{12} + \mathcal{K}_{21} + \mathcal{K}_{22}$, where $\mathcal{K}_{ij} \in \mathcal{A}_{ij}$ and $\mathcal{K}_{ij}^* \in \mathcal{A}_{ji}$ for i, j = 1, 2.

Several lemmas are used to prove Theorem 2.1.

Lemma 2.1. $\Omega(0) = 0$ and $\Omega(\mathcal{I}) = \Omega(\mathcal{I})^*$.

Proof. It is trivial that

$$\Omega(0) = \Omega([0,0]_* \odot 0) = [\Omega(0),0]_* \odot 0 + [0,\Omega(0)]_* \odot 0 + [0,0]_* \odot \Omega(0) = 0.$$

We can easily see that

$$\Omega([\mathcal{I}, i\mathcal{I}]_* \odot \mathcal{I}) = 0.$$

From the other side, we yield

$$\Omega([\mathcal{I}, i\mathcal{I}]_* \odot \mathcal{I}) = [\Omega(\mathcal{I}), i\mathcal{I}]_* \odot \mathcal{I} + [\mathcal{I}, \Omega(i\mathcal{I})]_* \odot \mathcal{I} + [\mathcal{I}, i\mathcal{I}]_* \odot \Omega(\mathcal{I}) = -2i\Omega(\mathcal{I})^* + 2i\Omega(\mathcal{I}).$$

From the equations above, we can deduce

$$\Omega(\mathcal{I}) = \Omega(\mathcal{I})^*.$$

The proof is now concluded.

Lemma 2.2. For any $\mathcal{K}_{12} \in \mathcal{A}_{12}, \mathcal{K}_{21} \in \mathcal{A}_{21}$, we have

$$\Omega(\mathcal{K}_{12} + \mathcal{K}_{21}) = \Omega(\mathcal{K}_{12}) + \Omega(\mathcal{K}_{21}).$$

Proof. Let $M = \Omega(\mathcal{K}_{12}) + \Omega(\mathcal{K}_{21}) - \Omega(\mathcal{K}_{12}) - \Omega(\mathcal{K}_{21})$. We have

$$\begin{aligned} \Omega([\mathcal{K}_{12} + \mathcal{K}_{21}, \mathcal{P}_1]_* \odot \mathcal{P}_2) &= & [\Omega(\mathcal{K}_{12} + \mathcal{K}_{21}), \mathcal{P}_1]_* \odot \mathcal{P}_2 + [\mathcal{K}_{12} + \mathcal{K}_{21}, \Omega(\mathcal{P}_1)]_* \odot \mathcal{P}_2 \\ &+ [\mathcal{K}_{12} + \mathcal{K}_{21}, \mathcal{P}_1]_* \odot \Omega(\mathcal{P}_2). \end{aligned}$$

Alternatively, it follows from $[\mathcal{K}_{12}, \mathcal{P}_1]_* \odot \mathcal{P}_2 = 0$ that

$$\begin{split} \Omega([\mathcal{K}_{12} + \mathcal{K}_{21}, \mathcal{P}_1]_* \odot \mathcal{P}_2) &= & \Omega([\mathcal{K}_{12}, \mathcal{P}_1]_* \odot \mathcal{P}_2) + \Omega([\mathcal{K}_{21}, \mathcal{P}_1]_* \odot \mathcal{P}_2) \\ &= & [\Omega(\mathcal{K}_{12}), \mathcal{P}_1]_* \odot \mathcal{P}_2 + [\mathcal{K}_{12}, \Omega(\mathcal{P}_1)]_* \odot \mathcal{P}_2 \\ &+ [\mathcal{K}_{12}, \mathcal{P}_1]_* \odot \Omega(\mathcal{P}_2) + [\Omega(\mathcal{K}_{21}), \mathcal{P}_1]_* \odot \mathcal{P}_2 \\ &+ [\mathcal{K}_{21}, \Omega(\mathcal{P}_1)]_* \odot \mathcal{P}_2 + [\mathcal{K}_{21}, \mathcal{P}_1]_* \odot \Omega(\mathcal{P}_2). \end{split}$$

From the last two expressions, we conclude $[M, \mathcal{P}_1]_* \odot \mathcal{P}_2 = 0$. That means $\mathcal{P}_1 M^* \mathcal{P}_2 - \mathcal{P}_2 M \mathcal{P}_1 = 0$. By multiplying \mathcal{P}_2 from the left, we find $\mathcal{P}_2 M \mathcal{P}_1 = 0$. In similar way, we can easily show that $\mathcal{P}_1 M \mathcal{P}_2 = 0$. Also, $[i(\mathcal{P}_1 - \mathcal{P}_2), \mathcal{I}]_* \odot \mathcal{K}_{12} = 0$. Thus,

$$\Omega([i(\mathcal{P}_1 - \mathcal{P}_2), \mathcal{I}]_* \odot (\mathcal{K}_{12} + \mathcal{K}_{21}))$$

AIMS Mathematics

Volume 9, Issue 8, 21596-21608.

$$= \Omega([i(\mathcal{P}_1 - \mathcal{P}_2), \mathcal{I}]_* \odot \mathcal{K}_{12}) + \Omega([i(\mathcal{P}_1 - \mathcal{P}_2), \mathcal{I}]_* \odot \mathcal{K}_{21})$$

$$= [\Omega(i(\mathcal{P}_1 - \mathcal{P}_2)), \mathcal{I}]_* \odot \mathcal{K}_{12} + [i(\mathcal{P}_1 - \mathcal{P}_2), \Omega(\mathcal{I})]_* \odot \mathcal{K}_{12}$$

$$+ [i(\mathcal{P}_1 - \mathcal{P}_2), \mathcal{I}]_* \odot \Omega(\mathcal{K}_{12}) + [\Omega(i(\mathcal{P}_1 - \mathcal{P}_2)), \mathcal{I}]_* \odot \mathcal{K}_{21}$$

$$+ [i(\mathcal{P}_1 - \mathcal{P}_2), \Omega(\mathcal{I})]_* \odot \mathcal{K}_{21} + [i(\mathcal{P}_1 - \mathcal{P}_2), \mathcal{I}]_* \odot \Omega(\mathcal{K}_{21}).$$

On the other side, we have

$$\begin{aligned} \Omega([i(\mathcal{P}_1 - \mathcal{P}_2), \mathcal{I}]_* \odot (\mathcal{K}_{12} + \mathcal{K}_{21})) &= & [\Omega(i(\mathcal{P}_1 - \mathcal{P}_2)), \mathcal{I}]_* \odot (\mathcal{K}_{12} + \mathcal{K}_{21}) \\ &+ [i(\mathcal{P}_1 - \mathcal{P}_2), \Omega(\mathcal{I})]_* \odot (\mathcal{K}_{12} + \mathcal{K}_{21}) \\ &+ [i(\mathcal{P}_1 - \mathcal{P}_2), \mathcal{I}]_* \odot \Omega(\mathcal{K}_{12} + \mathcal{K}_{21}). \end{aligned}$$

From the last two expressions, we obtain $[i(\mathcal{P}_1 - \mathcal{P}_2), \mathcal{I}]_* \odot M = 0$. That means $-2i\mathcal{P}_1M + 2i\mathcal{P}_2M - 2iM\mathcal{P}_1 + 2iM\mathcal{P}_2 = 0$. By pre and post multiplying by \mathcal{P}_1 from both sides, we get $\mathcal{P}_1M\mathcal{P}_1 = 0$. In the similar way, we can show that $\mathcal{P}_2M\mathcal{P}_2 = 0$. Hence, M = 0, i.e.,

$$\Omega(\mathcal{K}_{12} + \mathcal{K}_{21}) = \Omega(\mathcal{K}_{12}) + \Omega(\mathcal{K}_{21}).$$

The proof is now concluded.

Lemma 2.3. For any $\mathcal{K}_{ii} \in \mathcal{A}_{ii}, \mathcal{K}_{ij} \in \mathcal{A}_{ij}, 1 \leq i, j \leq 2$, we have

$$\Omega(\mathcal{K}_{ii} + \mathcal{K}_{ij} + \mathcal{K}_{ji}) = \Omega(\mathcal{K}_{ii}) + \Omega(\mathcal{K}_{ij}) + \Omega(\mathcal{K}_{ji}).$$

Proof. First, we will demonstrate the case when i = 1 and j = 2. Let $M = \Omega(\mathcal{K}_{11} + \mathcal{K}_{12} + \mathcal{K}_{21}) - \Omega(\mathcal{K}_{11}) - \Omega(\mathcal{K}_{12}) - \Omega(\mathcal{K}_{21})$. Since $[\mathcal{K}_{11}, \mathcal{P}_1]_* \odot \mathcal{P}_2 = 0$ and using Lemma 2.2, we have

$$\begin{split} \Omega([(\mathcal{K}_{11} + \mathcal{K}_{12} + \mathcal{K}_{21}), \mathcal{P}_{1}]_{*} \odot \mathcal{P}_{2}) &= & \Omega([\mathcal{K}_{11}, \mathcal{P}_{1}]_{*} \odot \mathcal{P}_{2}) + \Omega([\mathcal{K}_{12}, \mathcal{P}_{1}]_{*} \odot \mathcal{P}_{2}) \\ &+ \Omega([\mathcal{K}_{21}, \mathcal{P}_{1}]_{*} \odot \mathcal{P}_{2}) \\ &= & [\Omega(\mathcal{K}_{11}), \mathcal{P}_{1}]_{*} \odot \mathcal{P}_{2} + [\mathcal{K}_{11}, \Omega(\mathcal{P}_{1})]_{*} \odot \mathcal{P}_{2} \\ &+ [\mathcal{K}_{11}, \mathcal{P}_{1}]_{*} \odot \Omega(\mathcal{P}_{2}) + [\Omega(\mathcal{K}_{12}), \mathcal{P}_{1}]_{*} \odot \mathcal{P}_{2} \\ &+ [\mathcal{K}_{12}, \Omega(\mathcal{P}_{1})]_{*} \odot \mathcal{P}_{2} + [\mathcal{K}_{12}, \mathcal{P}_{1}]_{*} \odot \Omega(\mathcal{P}_{2}) \\ &+ [\Omega(\mathcal{K}_{21}), \mathcal{P}_{1}]_{*} \odot \mathcal{P}_{2} + [\mathcal{K}_{21}, \Omega(\mathcal{P}_{1})]_{*} \odot \mathcal{P}_{2} \\ &+ [\mathcal{K}_{21}, \mathcal{P}_{1}]_{*} \odot \Omega(\mathcal{P}_{2}). \end{split}$$

On the other side, we have

$$\Omega([(\mathcal{K}_{11} + \mathcal{K}_{12} + \mathcal{K}_{21}), \mathcal{P}_1]_* \odot \mathcal{P}_2) = [\Omega(\mathcal{K}_{11} + \mathcal{K}_{12} + \mathcal{K}_{21}), \mathcal{P}_1]_* \odot \mathcal{P}_2 + [(\mathcal{K}_{11} + \mathcal{K}_{12} + \mathcal{K}_{21}), \Omega(\mathcal{P}_1)]_* \odot \mathcal{P}_2 + [(\mathcal{K}_{11} + \mathcal{K}_{12} + \mathcal{K}_{21}), \mathcal{P}_1]_* \odot \Omega(\mathcal{P}_2).$$

From the above two expressions, we find $[M, \mathcal{P}_1]_* \odot \mathcal{P}_2 = 0$, and so, $\mathcal{P}_2 M \mathcal{P}_1 = 0$. Similarly, $\mathcal{P}_1 M \mathcal{P}_2 = 0$. Now, for all $\mathcal{X}_{12} \in \mathcal{A}_{12}$, we have

$$\Omega([\mathcal{X}_{12}, (\mathcal{K}_{11} + \mathcal{K}_{12} + \mathcal{K}_{21})]_* \odot \mathcal{P}_2) = [\Omega(\mathcal{X}_{12}), (\mathcal{K}_{11} + \mathcal{K}_{12} + \mathcal{K}_{21})]_* \odot \mathcal{P}_2$$

AIMS Mathematics

Volume 9, Issue 8, 21596-21608.

+
$$[\mathfrak{X}_{12}, \Omega(\mathfrak{K}_{11} + \mathfrak{K}_{12} + \mathfrak{K}_{21})]_* \odot \mathfrak{P}_2$$

+ $[\mathfrak{X}_{12}, (\mathfrak{K}_{11} + \mathfrak{K}_{12} + \mathfrak{K}_{21})]_* \odot \Omega(\mathfrak{P}_2).$

Also, $[\mathfrak{X}_{12}, \mathfrak{K}_{11}]_* \odot \mathfrak{P}_2 = 0$ and using Lemma 2.2, we get

$$\begin{aligned} \Omega([\mathcal{X}_{12}, (\mathcal{K}_{11} + \mathcal{K}_{12} + \mathcal{K}_{21})]_* \odot \mathcal{P}_2) &= & \Omega([\mathcal{X}_{12}, \mathcal{K}_{11}]_* \odot \mathcal{P}_2) + \Omega([\mathcal{X}_{12}, \mathcal{K}_{12}]_* \odot \mathcal{P}_2) \\ &+ \Omega([\mathcal{X}_{12}, \mathcal{K}_{21}]_* \odot \mathcal{P}_2) \end{aligned} \\ &= & [\Omega(\mathcal{X}_{12}), \mathcal{K}_{11}]_* \odot \mathcal{P}_2 + [\mathcal{X}_{12}, \Omega(\mathcal{K}_{11})]_* \odot \mathcal{P}_2 \\ &+ [\mathcal{X}_{12}, \mathcal{K}_{11}]_* \odot \Omega(\mathcal{P}_2) + [\Omega(\mathcal{X}_{12}), \mathcal{K}_{12}]_* \odot \mathcal{P}_2 \\ &+ [\mathcal{X}_{12}, \Omega(\mathcal{K}_{12})]_* \odot \mathcal{P}_2 + [\mathcal{X}_{12}, \mathcal{K}_{12}]_* \odot \Omega(\mathcal{P}_2) \\ &+ [\Omega(\mathcal{X}_{12}), \mathcal{K}_{21}]_* \odot \mathcal{P}_2 + [\mathcal{X}_{12}, \Omega(\mathcal{K}_{21})]_* \odot \mathcal{P}_2 \\ &+ [\mathcal{X}_{12}, \mathcal{K}_{21}]_* \odot \Omega(\mathcal{P}_2). \end{aligned}$$

From the above two relations, we get $[\mathcal{X}_{12}, M]_* \odot \mathcal{P}_2 = 0$. That means $-\mathcal{X}_{12}M^*\mathcal{P}_2 + \mathcal{P}_2M^*\mathcal{X}_{12}^* = 0$. By post-multiplying by \mathcal{P}_2 on both sides, we get $-\mathcal{X}_{12}M^*\mathcal{P}_2 = 0$. Therefore, by using (\blacktriangle) and (\blacktriangledown), we get $\mathcal{P}_2M\mathcal{P}_2 = 0$. Similarly, $\mathcal{P}_1M\mathcal{P}_1 = 0$. Hence, M = 0. i.e.,

$$\Omega(\mathcal{K}_{11} + \mathcal{K}_{12} + \mathcal{K}_{21}) = \Omega(\mathcal{K}_{11}) + \Omega(\mathcal{K}_{12}) + \Omega(\mathcal{K}_{21})$$

By using the same technique, we can also show for i = 2, j = 1. The proof is now concluded. **Lemma 2.4.** For any $\mathcal{K}_{ij} \in \mathcal{A}_{ij}, 1 \le i, j \le 2$, we have

$$\Omega(\sum_{i,j=1}^{2} \mathcal{K}_{ij}) = \sum_{i,j=1}^{2} \Omega(\mathcal{K}_{ij}).$$

Proof. Let $M = \Omega(\mathcal{K}_{11} + \mathcal{K}_{12} + \mathcal{K}_{21} + \mathcal{K}_{22}) - \Omega(\mathcal{K}_{11}) - \Omega(\mathcal{K}_{12}) - \Omega(\mathcal{K}_{21}) - \Omega(\mathcal{K}_{22})$. Since, $[\mathcal{K}_{11}, \mathcal{P}_1]_* \odot \mathcal{P}_2 = 0$ and using Lemma 2.3 that

$$\begin{split} \Omega([(\mathcal{K}_{11} + \mathcal{K}_{12} + \mathcal{K}_{21} + \mathcal{K}_{22}), \mathcal{P}_1]_* \odot \mathcal{P}_2) \\ &= & \Omega([\mathcal{K}_{11}, \mathcal{P}_1]_* \odot \mathcal{P}_2) + \Omega([\mathcal{K}_{12}, \mathcal{P}_1]_* \odot \mathcal{P}_2) \\ &+ \Omega([\mathcal{K}_{21}, \mathcal{P}_1]_* \odot \mathcal{P}_2) + \Omega([\mathcal{K}_{22}, \mathcal{P}_1]_* \odot \mathcal{P}_2) \\ &= & [\Omega(\mathcal{K}_{11}) + \Omega(\mathcal{K}_{12}) + \Omega(\mathcal{K}_{21}) + \Omega(\mathcal{K}_{22}), \mathcal{P}_1]_* \odot \mathcal{P}_2 \\ &+ & [\mathcal{K}_{11} + \mathcal{K}_{12} + \mathcal{K}_{21} + \mathcal{K}_{22}, \Omega(\mathcal{P}_1)]_* \odot \mathcal{P}_2 \\ &+ & [\mathcal{K}_{11} + \mathcal{K}_{12} + \mathcal{K}_{21} + \mathcal{K}_{22}, \mathcal{P}_1]_* \odot \Omega(\mathcal{P}_2). \end{split}$$

Alternatively, we have

$$\Omega([(\mathcal{K}_{11} + \mathcal{K}_{12} + \mathcal{K}_{21} + \mathcal{K}_{22}), \mathcal{P}_1]_* \odot \mathcal{P}_2) = [\Omega(\mathcal{K}_{11} + \mathcal{K}_{12} + \mathcal{K}_{21} + \mathcal{K}_{22}), \mathcal{P}_1]_* \odot \mathcal{P}_2 + [(\mathcal{K}_{11} + \mathcal{K}_{12} + \mathcal{K}_{21} + \mathcal{K}_{22}), \Omega(\mathcal{P}_1)]_* \odot \mathcal{P}_2 + [(\mathcal{K}_{11} + \mathcal{K}_{12} + \mathcal{K}_{21} + \mathcal{K}_{22}), \mathcal{P}_1]_* \odot \Omega(\mathcal{P}_2).$$

From the last two relations, we get $[M, \mathcal{P}_1]_* \odot \mathcal{P}_2 = 0$. Thus, $\mathcal{P}_1 M^* \mathcal{P}_2 - \mathcal{P}_2 M \mathcal{P}_1 = 0$. Hence, $\mathcal{P}_2 M \mathcal{P}_1 = 0$. Similarly, $\mathcal{P}_1 M \mathcal{P}_2 = 0$.

AIMS Mathematics

Volume 9, Issue 8, 21596-21608.

Now, for any $X_{12} \in \mathcal{A}_{12}$, we have

$$\begin{split} \Omega([\mathcal{X}_{12}, \mathcal{K}_{11} + \mathcal{K}_{12} + \mathcal{K}_{21} + \mathcal{K}_{22}]_* \odot \mathcal{P}_2) &= & [\Omega(\mathcal{X}_{12}), \mathcal{K}_{11} + \mathcal{K}_{12} + \mathcal{K}_{21} + \mathcal{K}_{22}]_* \odot \mathcal{P}_2 \\ &+ [\mathcal{X}_{12}, \Omega(\mathcal{K}_{11} + \mathcal{K}_{12} + \mathcal{K}_{21} + \mathcal{K}_{22})]_* \odot \mathcal{P}_2 \\ &+ [\mathcal{X}_{12}, \mathcal{K}_{11} + \mathcal{K}_{12} + \mathcal{K}_{21} + \mathcal{K}_{22}]_* \odot \Omega(\mathcal{P}_2). \end{split}$$

Also, $[\mathcal{X}_{12}, \mathcal{K}_{11}]_* \odot \mathcal{P}_2 = 0$, and using Lemma 2.3, we find

$$\begin{aligned} \Omega([\mathcal{X}_{12}, \mathcal{K}_{11} + \mathcal{K}_{12} + \mathcal{K}_{21} + \mathcal{K}_{22}]_* \odot \mathcal{P}_2) \\ &= \Omega([\mathcal{X}_{12}, \mathcal{K}_{11}]_* \odot \mathcal{P}_2) + \Omega([\mathcal{X}_{12}, \mathcal{K}_{12}]_* \odot \mathcal{P}_2) \\ &+ \Omega([\mathcal{X}_{12}, \mathcal{K}_{21}]_* \odot \mathcal{P}_2) + \Omega([\mathcal{X}_{12}, \mathcal{K}_{22}]_* \odot \mathcal{P}_2) \\ &= [\Omega(\mathcal{X}_{12}), \mathcal{K}_{11} + \mathcal{K}_{12} + \mathcal{K}_{21} + \mathcal{K}_{22}]_* \odot \mathcal{P}_2 \\ &+ [\mathcal{X}_{12}, \Omega(\mathcal{K}_{11}) + \Omega(\mathcal{K}_{12}) + \Omega(\mathcal{K}_{21}) + \Omega(\mathcal{K}_{22})]_* \odot \mathcal{P}_2 \\ &+ [\mathcal{X}_{12}, \mathcal{K}_{11} + \mathcal{K}_{12} + \mathcal{K}_{21} + \mathcal{K}_{22}]_* \odot \Omega(\mathcal{P}_2). \end{aligned}$$

Upon comparing the aforementioned two equations, we observe that $[\mathcal{X}_{12}, M]_* \odot \mathcal{P}_2 = 0$. On solving, we get $\mathcal{P}_2 M \mathcal{P}_2 = 0$. Similarly, we can show that $\mathcal{P}_1 M \mathcal{P}_1 = 0$. Hence, M = 0, i.e.,

$$\Omega(\mathcal{K}_{11} + \mathcal{K}_{12} + \mathcal{K}_{21} + \mathcal{K}_{22}) = \Omega(\mathcal{K}_{11}) + \Omega(\mathcal{K}_{12}) + \Omega(\mathcal{K}_{21}) + \Omega(\mathcal{K}_{22}).$$

This ends the proof.

Lemma 2.5. For each $\mathcal{K}_{12}, \mathcal{F}_{12} \in \mathcal{A}_{12}$ and $\mathcal{K}_{21}, \mathcal{F}_{21} \in \mathcal{A}_{21}$, we have

(1) $\Omega(\mathcal{K}_{12} + \mathcal{F}_{12}) = \Omega(\mathcal{K}_{12}) + \Omega(\mathcal{F}_{12}).$ (2) $\Omega(\mathcal{K}_{21} + \mathcal{F}_{21}) = \Omega(\mathcal{K}_{21}) + \Omega(\mathcal{F}_{21}).$

Proof. (1) Let $M = \Omega(\mathcal{K}_{12} + \mathcal{F}_{12}) - \Omega(\mathcal{K}_{12}) - \Omega(\mathcal{F}_{12})$. We have,

$$\Omega([\mathcal{K}_{12} + \mathcal{F}_{12}, \mathcal{P}_1]_* \odot \mathcal{P}_2) = [\Omega(\mathcal{K}_{12} + \mathcal{F}_{12}), \mathcal{P}_1)]_* \odot \mathcal{P}_2 + [\mathcal{K}_{12} + \mathcal{F}_{12}, \Omega(\mathcal{P}_1)]_* \odot \mathcal{P}_2 + [\mathcal{K}_{12} + \mathcal{F}_{12}, \mathcal{P}_1]_* \odot \Omega(\mathcal{P}_2).$$

On the other hand, it follows from $[\mathcal{K}_{12}, \mathcal{P}_1]_* \odot \mathcal{P}_2 = 0$ that

$$\begin{aligned} \Omega([\mathcal{K}_{12} + \mathcal{F}_{12}, \mathcal{P}_1]_* \odot \mathcal{P}_2) &= & \Omega([\mathcal{K}_{12}, \mathcal{P}_1]_* \odot \mathcal{P}_2) + \Omega([\mathcal{F}_{12}, \mathcal{P}_1]_* \odot \mathcal{P}_2) \\ &= & [\Omega(\mathcal{K}_{12}) + \Omega(\mathcal{F}_{12}), \mathcal{P}_1]_* \odot \mathcal{P}_2 + [\mathcal{K}_{12} + \mathcal{F}_{12}, \Omega(\mathcal{P}_1)]_* \odot \mathcal{P}_2 \\ &+ [\mathcal{K}_{12} + \mathcal{F}_{12}, \mathcal{P}_1]_* \odot \Omega(\mathcal{P}_2). \end{aligned}$$

From the last two relations, we get $[M, \mathcal{P}_1]_* \odot \mathcal{P}_2 = 0$. This means that $\mathcal{P}_1 M^* \mathcal{P}_2 - \mathcal{P}_2 M \mathcal{P}_1 = 0$. By pre-multiplying \mathcal{P}_2 on both sides, we get $\mathcal{P}_2 M \mathcal{P}_1 = 0$. Similarly, we can show that $\mathcal{P}_1 M \mathcal{P}_2 = 0$. Now, for any $\chi_{12} \in \mathcal{A}_{12}$, we have

$$\Omega([\mathcal{X}_{12}, \mathcal{K}_{12} + \mathcal{F}_{12}]_* \odot \mathcal{P}_2) = [\Omega(\mathcal{X}_{12}), \mathcal{K}_{12} + \mathcal{F}_{12}]_* \odot \mathcal{P}_2 + [\mathcal{X}_{12}, \Omega(\mathcal{K}_{12} + \mathcal{F}_{12})]_* \odot \mathcal{P}_2 + [\mathcal{X}_{12}, \mathcal{K}_{12} + \mathcal{F}_{12}]_* \odot \Omega(\mathcal{P}_2).$$

AIMS Mathematics

Volume 9, Issue 8, 21596-21608.

On the other hand, it follows from $[\mathfrak{X}_{12}, \mathfrak{K}_{12}]_* \odot \mathfrak{P}_2 = 0$ that

$$\begin{aligned} \Omega([\mathcal{X}_{12}, \mathcal{K}_{12} + \mathcal{F}_{12}]_* \odot \mathcal{P}_2) \\ &= \Omega([\mathcal{X}_{12}, \mathcal{K}_{12}]_* \odot \mathcal{P}_2) + \Omega([\mathcal{X}_{12}, \mathcal{F}_{12}]_* \odot \mathcal{P}_2) \\ &= [[\Omega(\mathcal{X}_{12}), \mathcal{K}_{12} + \mathcal{F}_{12}]_* \odot \mathcal{P}_2 + [\mathcal{X}_{12}, \Omega(\mathcal{K}_{12}) + \Omega(\mathcal{F}_{12})]_* \odot \mathcal{P}_2 \\ &+ [\mathcal{X}_{12}, \mathcal{K}_{12} + \mathcal{F}_{12}]_* \odot \Omega(\mathcal{P}_2). \end{aligned}$$

On comparing the above two relations, we get $[X_{12}, M]_* \odot \mathcal{P}_2 = 0$. On solving, we get $\mathcal{P}_2 M \mathcal{P}_2 = 0$. Similarly, we can show that $\mathcal{P}_1 M \mathcal{P}_1 = 0$. Hence, M = 0, i.e.,

$$\Omega(\mathcal{K}_{12} + \mathcal{F}_{12}) = \Omega(\mathcal{K}_{12}) + \Omega(\mathcal{F}_{12})$$

(2) By using the same technique, we can show that

$$\Omega(\mathcal{K}_{21} + \mathcal{F}_{21}) = \Omega(\mathcal{K}_{21}) + \Omega(\mathcal{F}_{21}).$$

The proof is now concluded.

Lemma 2.6. For each \mathcal{K}_{ii} , $\mathcal{F}_{ii} \in \mathcal{A}_{ii}$ such that $1 \leq i \leq 2$, we have

$$\Omega(\mathcal{K}_{ii} + \mathcal{F}_{ii}) = \Omega(\mathcal{K}_{ii}) + \Omega(\mathcal{F}_{ii}).$$

Proof. First, it is prove for i = 1. Let $M = \Omega(\mathcal{K}_{11} + \mathcal{F}_{11}) - \Omega(\mathcal{K}_{11}) - \Omega(\mathcal{F}_{11})$. Since, $[\mathcal{K}_{11}, \mathcal{P}_1]_* \odot \mathcal{P}_2 = 0$, we have

$$\begin{aligned} \Omega([\mathcal{K}_{11} + \mathcal{F}_{11}, \mathcal{P}_1]_* \odot \mathcal{P}_2) &= & \Omega([\mathcal{K}_{11}, \mathcal{P}_1]_* \odot \mathcal{P}_2) + \Omega([\mathcal{F}_{11}, \mathcal{P}_1]_* \odot \mathcal{P}_2) \\ &= & [\Omega(\mathcal{K}_{11}) + \Omega(\mathcal{F}_{11}), \mathcal{P}_1]_* \odot \mathcal{P}_2 + [\mathcal{K}_{11} + \mathcal{F}_{11}, \Omega(\mathcal{P}_1)]_* \odot \mathcal{P}_2 \\ &+ [\mathcal{K}_{11} + \mathcal{F}_{11}, \mathcal{P}_1]_* \odot \Omega(\mathcal{P}_2). \end{aligned}$$

On the other hand, we have

$$\Omega([\mathcal{K}_{11} + \mathcal{F}_{11}, \mathcal{P}_1]_* \odot \mathcal{P}_2) = [\Omega(\mathcal{K}_{11} + \mathcal{F}_{11}), \mathcal{P}_1]_* \odot \mathcal{P}_2 + [\mathcal{K}_{11} + \mathcal{F}_{11}, \Omega(\mathcal{P}_1)]_* \odot \mathcal{P}_2 + [\mathcal{K}_{11} + \mathcal{F}_{11}, \mathcal{P}_1]_* \odot \Omega(\mathcal{P}_2).$$

Upon comparing the aforementioned two equations, we observe that $[M, \mathcal{P}_1]_* \odot \mathcal{P}_2 = 0$. On solving, we get $\mathcal{P}_1 M^* \mathcal{P}_2 - \mathcal{P}_2 M \mathcal{P}_1 = 0$. By pre-multiplying by \mathcal{P}_2 on both sides, we get $\mathcal{P}_2 M \mathcal{P}_1 = 0$. Similarly, $\mathcal{P}_1 M \mathcal{P}_2 = 0$. Now, for any $\mathcal{X}_{12} \in \mathcal{A}_{12}$, we have

$$\Omega([\mathcal{X}_{12}, \mathcal{K}_{11} + \mathcal{F}_{11}]_* \odot \mathcal{P}_2) = [\Omega(\mathcal{X}_{12}), \mathcal{K}_{11} + \mathcal{F}_{11}]_* \odot \mathcal{P}_2 + [\mathcal{X}_{12}, \Omega(\mathcal{K}_{11} + \mathcal{F}_{11})]_* \odot \mathcal{P}_2 + [\mathcal{X}_{12}, \mathcal{K}_{11} + \mathcal{F}_{11}]_* \odot \Omega(\mathcal{P}_2).$$

It follows from $[\mathfrak{X}_{12}, \mathfrak{K}_{11}]_* \odot \mathfrak{P}_1 = 0$ that

$$\Omega([\mathcal{X}_{12}, \mathcal{K}_{11} + \mathcal{F}_{11}]_* \odot \mathcal{P}_2) = [\Omega(\mathcal{X}_{12}), \mathcal{K}_{11} + \mathcal{F}_{11}]_* \odot \mathcal{P}_2 + [\mathcal{X}_{12}, \Omega(\mathcal{K}_{11}) + \Omega(\mathcal{F}_{11})]_* \odot \mathcal{P}_2 + [\mathcal{X}_{12}, \mathcal{K}_{11} + \mathcal{F}_{11}]_* \odot \Omega(\mathcal{P}_2).$$

By comparing, we get $[\mathcal{X}_{12}, M]_* \odot \mathcal{P}_2 = 0$. That means $-\mathcal{X}_{12}M^*P_2 + P_2M^*\mathcal{X}_{12}^* = 0$. By pre-multiplying P_2 on both sides, we get $P_2M^*\mathcal{X}_{12}^* = 0$. Thus, by using (\blacktriangle) and (\blacktriangledown), we get $P_2MP_2 = 0$. Similarly, $P_1MP_1 = 0$. Hence, M = 0. This completes the proof.

AIMS Mathematics

Volume 9, Issue 8, 21596–21608.

Lemma 2.7. Ω is an additive map.

Proof. For any $\mathcal{K}, \mathcal{F} \in \mathcal{A}$, we write $\mathcal{K} = \mathcal{K}_{11} + \mathcal{K}_{12} + \mathcal{K}_{21} + \mathcal{K}_{22}$ and $\mathcal{F} = \mathcal{F}_{11} + \mathcal{F}_{12} + \mathcal{F}_{21} + \mathcal{F}_{22}$. By using Lemmas 2.4–2.6, we get

$$\begin{aligned} \Omega(\mathcal{K} + \mathcal{F}) &= & \Omega(\mathcal{K}_{11} + \mathcal{K}_{12} + \mathcal{K}_{21} + \mathcal{K}_{22} + \mathcal{F}_{11} + \mathcal{F}_{12} + \mathcal{F}_{21} + \mathcal{F}_{22}) \\ &= & \Omega(\mathcal{K}_{11} + \mathcal{F}_{11}) + \Omega(\mathcal{K}_{12} + \mathcal{F}_{12}) + \Omega(\mathcal{K}_{21} + \mathcal{F}_{21}) + \Omega(\mathcal{K}_{22} + \mathcal{F}_{22}) \\ &= & \Omega(\mathcal{K}_{11}) + \Omega(\mathcal{F}_{11}) + \Omega(\mathcal{K}_{12}) + \Omega(\mathcal{F}_{12}) \\ &+ \Omega(\mathcal{K}_{21}) + \Omega(\mathcal{F}_{21}) + \Omega(\mathcal{K}_{22}) + \Omega(\mathcal{F}_{22}) \\ &= & \Omega(\mathcal{K}_{11} + \mathcal{K}_{12} + \mathcal{K}_{21} + \mathcal{F}_{22}) + \Omega(\mathcal{F}_{11} + \mathcal{F}_{12} + \mathcal{F}_{21} + \mathcal{F}_{22}) \\ &= & \Omega(\mathcal{K}) + \Omega(\mathcal{F}). \end{aligned}$$

Hence, Ω is additive.

Lemma 2.8. The following conditions holds:

(i) $\Omega(i\mathfrak{I})^* = \Omega(i\mathfrak{I}) = 0.$ (ii) $\Omega(\mathfrak{I}) = 0.$

Proof. (i) It follows from Lemma 2.7 that

$$\Omega([i\mathcal{I}, i\mathcal{I}]_* \odot \mathcal{I}) = \Omega(-4\mathcal{I}) = -4\Omega(\mathcal{I})$$

and

$$\begin{aligned} \Omega([i\mathcal{I}, i\mathcal{I}]_* \odot \mathcal{I}) &= [\Omega(i\mathcal{I}), i\mathcal{I}]_* \odot \mathcal{I} + [i\mathcal{I}, \Omega(i\mathcal{I})]_* \odot \mathcal{I} + [i\mathcal{I}, i\mathcal{I}]_* \odot \Omega(\mathcal{I}) \\ &= (i\Omega(i\mathcal{I}) - i\Omega(i\mathcal{I})^*) \odot \mathcal{I} + 2i\Omega(i\mathcal{I}) \odot \mathcal{I} - 2\mathcal{I} \odot \Omega(\mathcal{I}) \\ &= -6i\Omega(i\mathcal{I})^* + 2i\Omega(i\mathcal{I}) - 4\Omega(\mathcal{I}). \end{aligned}$$

From the last two expressions, we get

$$-3\Omega(i\mathfrak{I})^* + \Omega(i\mathfrak{I}) = 0. \tag{2.1}$$

Also, we can evaluate

 $\Omega([i\mathcal{I},\mathcal{I}]_* \odot i\mathcal{I}) = \Omega(2i\mathcal{I} \odot i\mathcal{I}) = 4\Omega(\mathcal{I}).$

Alternatively, we can write

$$\Omega([i\mathcal{I},\mathcal{I}]_* \odot i\mathcal{I}) = [\Omega(i\mathcal{I}),\mathcal{I}]_* \odot i\mathcal{I} + [i\mathcal{I},\Omega(\mathcal{I})]_* \odot i\mathcal{I} + [i\mathcal{I},\mathcal{I}]_* \odot \Omega(i\mathcal{I})$$

= $2i\Omega(i\mathcal{I})^* - 6i\Omega(i\mathcal{I}) + 4\Omega(\mathcal{I})^*.$

By comparing above two equations, and also using Lemma 2.1, we find

$$\Omega(i\mathcal{I})^* - 3\Omega(i\mathcal{I}) = 0. \tag{2.2}$$

By using Eqs (2.1) and (2.2), we have

$$\Omega(i\mathcal{I})^* = \Omega(i\mathcal{I}) = 0.$$

(ii) In the similar way, we can show that $\Omega(\mathcal{I}) = 0$.

AIMS Mathematics

Volume 9, Issue 8, 21596–21608.

Lemma 2.9. Ω preserves star, i.e., $\Omega(\mathcal{K}^*) = \Omega(\mathcal{K})^*$ for all $\mathcal{K} \in \mathcal{A}$.

Proof. From Lemma 2.7, we have

$$\Omega([\mathcal{K}, i\mathcal{I}]_* \odot i\mathcal{I}) = \Omega(i\mathcal{K} - i\mathcal{K}^*) \odot i\mathcal{I}) = 2\Omega(\mathcal{K}^*) - 2\Omega(\mathcal{K}).$$

Alternatively, it follows from Lemma 2.8 that

$$\Omega([\mathcal{K}, i\mathcal{I}]_* \odot i\mathcal{I}) = [\Omega(\mathcal{K}), i\mathcal{I}]_* \odot i\mathcal{I} = (i\Omega(\mathcal{K}) - i\Omega(\mathcal{K})^*) \odot i\mathcal{I} = 2\Omega(\mathcal{K})^* - 2\Omega(\mathcal{K}).$$

From the above two equations, we obtain

$$\Omega(\mathcal{K}^*) = \Omega(\mathcal{K})^*$$

for all $\mathcal{K} \in \mathcal{A}$. This completes the proof.

Lemma 2.10. We prove that $\Omega(i\mathcal{K}) = i\Omega(\mathcal{K})$ for all $\mathcal{K} \in \mathcal{A}$.

Proof. For any $\mathcal{K} \in \mathcal{A}$, we have

$$\Omega([i\mathcal{I},\mathcal{I}]_*\odot\mathcal{K})=\Omega(2i\mathcal{I}\odot\mathcal{K})=-4\Omega(i\mathcal{K}).$$

Alternatively, it follows from Lemma 2.8 that

$$\Omega([i\mathcal{I},\mathcal{I}]_* \odot \mathcal{K}) = [i\mathcal{I},\mathcal{I}]_* \odot \Omega(\mathcal{K}) = (2i\mathcal{I}) \odot \mathcal{K} = -4i\Omega(\mathcal{K}).$$

From the above two expressions, we obtain

$$\Omega(i\mathcal{K}) = i\Omega(\mathcal{K}).$$

Proof of Theorem 2.1. For any $\mathcal{K}, \mathcal{F} \in \mathcal{A}$, it follows from Lemmas 2.7 that

$$\Omega(\mathcal{K} + \mathcal{F}) = \Omega(\mathcal{K}) + \Omega(\mathcal{F}).$$
(2.3)

Also, by using Lemma 2.9 that

$$\Omega(\mathcal{K}^*) = \Omega(\mathcal{K})^* \tag{2.4}$$

for all $\mathcal{K} \in \mathcal{A}$. Now, we only have to show that Ω is an derivation.

Now, for any $\mathcal{K}, \mathcal{F} \in \mathcal{A}$, and using Lemma 2.7, we have

$$\Omega([\mathcal{K},\mathcal{I}]_*\odot\mathcal{F})=\Omega((\mathcal{K}-\mathcal{K}^*)\odot\mathcal{F})=\Omega(\mathcal{K}^*\mathcal{F})-\Omega(\mathcal{K}\mathcal{F})+\Omega(\mathcal{F}\mathcal{K}^*)-\Omega(\mathcal{F}\mathcal{K}).$$

Also, using Lemma 2.8 that

$$\begin{aligned} \Omega([\mathcal{K},\mathcal{I}]_*\odot\mathcal{F}) &= & [\Omega(\mathcal{K}),\mathcal{I}]_*\odot\mathcal{F} + [\mathcal{K},\mathcal{I}]_*\odot\Omega(\mathcal{F}) \\ &= & \Omega(\mathcal{K})^*\mathcal{F} - \Omega(\mathcal{K})\mathcal{F} + \mathcal{F}\Omega(\mathcal{K})^* - \mathcal{F}\Omega(\mathcal{K}) \\ &+ \mathcal{K}^*\Omega(\mathcal{F}) - \mathcal{K}\Omega(\mathcal{F}) + \Omega(\mathcal{F})\mathcal{K}^* - \Omega(\mathcal{F})\mathcal{K}. \end{aligned}$$

AIMS Mathematics

Volume 9, Issue 8, 21596-21608.

By comparing the two equations above, we obtain

$$\begin{split} \Omega(\mathcal{K}^*\mathcal{F}) &- \Omega(\mathcal{K}\mathcal{F}) + \Omega(\mathcal{F}\mathcal{K}^*) - \Omega(\mathcal{F}\mathcal{K}) &= \Omega(\mathcal{K})^*\mathcal{F} - \Omega(\mathcal{K})\mathcal{F} + \mathcal{F}\Omega(\mathcal{K})^* - \mathcal{F}\Omega(\mathcal{K}) \\ &+ \mathcal{K}^*\Omega(\mathcal{F}) - \mathcal{K}\Omega(\mathcal{F}) + \Omega(\mathcal{F})\mathcal{K}^* - \Omega(\mathcal{F})\mathcal{K}. \end{split}$$
(2.5)

On the other hand, according to Lemma 2.7, we can infer that

$$\begin{aligned} \Omega([i\mathcal{K},\mathcal{I}]_* \odot i\mathcal{F}) &= \Omega((i\mathcal{K}+i\mathcal{K}^*) \odot i\mathcal{F}) \\ &= \Omega(\mathcal{K}^*\mathcal{F}) + \Omega(\mathcal{K}\mathcal{F}) + \Omega(\mathcal{F}\mathcal{K}^*) + \Omega(\mathcal{F}\mathcal{K}). \end{aligned}$$

Alternatively, by using Lemma 2.8, we find

$$\begin{split} \Omega([i\mathcal{K},\mathcal{I}]_* \odot i\mathcal{F}) &= [\Omega(i\mathcal{K}),\mathcal{I}]_* \odot i\mathcal{F} + [i\mathcal{K},\mathcal{I}]_* \odot \Omega(i\mathcal{F}) \\ &= \Omega(\mathcal{K})^*\mathcal{F} + \Omega(\mathcal{K})\mathcal{F} + \mathcal{F}\Omega(\mathcal{K})^* + \mathcal{F}\Omega(\mathcal{K}) \\ &+ \mathcal{K}^*\Omega(\mathcal{F}) + \mathcal{K}\Omega(\mathcal{F}) + \Omega(\mathcal{F})\mathcal{K}^* + \Omega(\mathcal{F})\mathcal{K}. \end{split}$$

From the above two expressions, we find

$$\Omega(\mathcal{K}^*\mathcal{F}) + \Omega(\mathcal{K}\mathcal{F}) + \Omega(\mathcal{F}\mathcal{K}^*) + \Omega(\mathcal{F}\mathcal{K}) = \Omega(\mathcal{K})^*\mathcal{F} + \Omega(\mathcal{K})\mathcal{F} + \mathcal{F}\Omega(\mathcal{K})^* + \mathcal{F}\Omega(\mathcal{K}) + \mathcal{K}^*\Omega(\mathcal{F}) + \mathcal{K}\Omega(\mathcal{F}) + \Omega(\mathcal{F})\mathcal{K}^* + \Omega(\mathcal{F})\mathcal{K}.$$
(2.6)

Subtracting Eq (2.5) to Eq (2.6), we get

$$\Omega(\mathcal{KF} + \mathcal{FK}) = \Omega(\mathcal{K})\mathcal{F} + \mathcal{K}\Omega(\mathcal{F}) + \mathcal{F}\Omega(\mathcal{K}) + \Omega(\mathcal{F})\mathcal{K}.$$
(2.7)

By using Lemma 2.10 and the above equation, we find

$$\Omega(\mathcal{KF} - \mathcal{FK}) = i\Omega((-i\mathcal{K})(\mathcal{F}) + (i\mathcal{F})\mathcal{K})$$

= $\Omega(\mathcal{K})\mathcal{F} + \mathcal{K}\Omega(\mathcal{F}) - \mathcal{F}\Omega(\mathcal{K}) - \Omega(\mathcal{F})\mathcal{K}$ (2.8)

Adding Eqs (2.7) and (2.8), we get

$$\Omega(\mathcal{KF}) = \Omega(\mathcal{K})\mathcal{F} + \mathcal{K}\Omega(\mathcal{F}). \tag{2.9}$$

From Eqs (2.3), (2.4) and (2.9), we get Ω is an additive *-derivation. This completes the proof.

Now, we provide an example to demonstrate the necessity of the conditions (\blacktriangle) and (∇) in Theorem 2.1.

Example 2.1. Consider $\mathcal{A} = \{ \begin{pmatrix} a & 0 \\ c & d \end{pmatrix} \}$, the algebra of all lower triangular matrix of order 2 over the field of complex numbers \mathbb{C} and $\mathcal{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ be the unity of \mathcal{A} . The map $* : \mathcal{A} \to \mathcal{A}$ given by $*(\mathcal{K}) = \mathcal{K}^{\theta}$, where \mathcal{K}^{θ} denotes the conjugate transpose of matrix \mathcal{A} , is an involution. Hence, \mathcal{A} is a unital *-algebra with unity \mathcal{I} . Now, define a map $\Omega : \mathcal{A} \to \mathcal{A}$ such that $\Omega \begin{pmatrix} a & 0 \\ c & d \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ -ic & 0 \end{pmatrix}$. Note that Ω is a derivation on \mathcal{A} . So, it also satisfies

$$\Omega([[\mathcal{K},\mathcal{F}]_{\odot},\mathcal{D}]_{*}) = [[\Omega(\mathcal{K}),\mathcal{F}]_{\odot},\mathcal{D}]_{*} + [[\mathcal{K},\Omega(\mathcal{F})]_{\odot},\mathcal{D}]_{*} + [[\mathcal{K},\mathcal{F}]_{\odot},\Omega(\mathcal{D})]_{*}$$

for all $\mathfrak{K}, \mathfrak{F}, \mathfrak{D} \in \mathfrak{A}$. Let $P = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ is a non-trivial projection, so $P^2 = P$ and $P^* = P$. For $W = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \neq 0 \in \mathfrak{A}$ and hence $W\mathcal{A}P = (0)$ but $0 \neq W \in \mathfrak{A}$. However, Ω is not an additive *-derivation because $\Omega(\mathfrak{K}^*) \neq (\Omega(\mathfrak{K}))^*$ for some $\mathfrak{K} \in \mathfrak{A}$.

AIMS Mathematics

3. Corollaries

The following corollaries arise directly from Theorem 2.1: The algebra of all bounded linear operators on \mathcal{H} is denoted by $\mathcal{B}(\mathcal{H})$. Let \mathcal{H} be a Hilbert space over the field \mathbb{F} of real or complex numbers. The dimension of an operator's range is known as its rank. An operator with a finite dimensional range is therefore said to have a finite rank. $\mathcal{F}(\mathcal{H})$ is the subalgebra of all bounded linear operators of finite rank on \mathcal{H} .

Let \mathcal{H} be a Banach space over the real or complex number field \mathbb{F} . In the case of $\mathcal{F}(\mathcal{H}) \subseteq \mathcal{K}(\mathcal{H})$, a subalgebra $\mathcal{K}(\mathcal{H})$ of $\mathcal{B}(\mathcal{H})$ is referred to as a standard operator algebra.

Corollary 3.1. Let \mathcal{A} be a standard operator algebra on an infinite dimensional complex Hilbert space \mathcal{H} containing an identity operator \mathcal{I} . Suppose that \mathcal{A} is closed under adjoint operation. Define $\Omega : \mathcal{A} \to \mathcal{A}$ such that

 $\Omega([\mathcal{K},\mathcal{F}]_*\odot\mathcal{D})=[\Omega(\mathcal{K}),\mathcal{F}]_*\odot\mathcal{D}+[\mathcal{K},\Omega(\mathcal{F})]_*\odot\mathcal{D}+[\mathcal{K},\mathcal{F}]_*\odot\Omega(\mathcal{D}),$

for all $\mathcal{K}, \mathcal{F}, \mathcal{D} \in \mathcal{A}$, then Ω is an additive *-derivation.

Proof. Every standard operator algebra \mathcal{A} being a prime algebra is a direct consequence of the Hahn-Banach theorem. As a prime algebra, \mathcal{A} naturally fulfills the conditions specified in (\blacktriangle) and (\triangledown). Consequently, according to Theorem 2.1, it follows that the map Ω described earlier is an additive *-derivation.

A von Neumann algebra is defined as a weakly closed self-adjoint subalgebra of $\mathcal{B}(\mathcal{H})$ that includes the identity operator, where $\mathcal{B}(\mathcal{H})$ is the space of all bounded linear operators on a complex Hilbert space \mathcal{H} . In other words, a self-adjoint subalgebra of $\mathcal{B}(\mathcal{H})$ that satisfies the double commutant property, that is, $\mathcal{M}'' = \mathcal{M}$, is considered a von Neumann algebra. In this context, a factor von Neumann algebra is one with a trivial center, which is equal to the intersection of \mathcal{M} and its double commutant, $\mathcal{M} \cap \mathcal{M}' = \mathbb{CI}$. Additionally, an abelian von Neumann algebra is one where the center is equal to the algebra itself, that is, $\mathcal{Z}(\mathcal{M}) = \mathcal{M}$.

Corollary 3.2. Let \mathcal{M} be a factor von Neumann algebra with dim $\mathcal{M} \ge 2$. Define $\Omega : \mathcal{M} \to \mathcal{M}$ such that

$$\Omega([\mathcal{K},\mathcal{F}]_* \odot \mathcal{D}) = [\Omega(\mathcal{K}),\mathcal{F}]_* \odot \mathcal{D} + [\mathcal{K},\Omega(\mathcal{F})]_* \odot \mathcal{D} + [\mathcal{K},\mathcal{F}]_* \odot \Omega(\mathcal{D}),$$

for all $\mathcal{K}, \mathcal{F}, \mathcal{D} \in \mathcal{A}$, then Ω is an *-derivation.

Proof. By using [16, Lemma 2.2], it is established that every factor von Neumann algebra \mathcal{M} satisfies the conditions outlined in (\blacktriangle) and (\triangledown). Therefore, applying Theorem 2.1, we conclude that the map Ω described earlier is an additive *-derivation within the context of factor von Neumann algebras. \Box

An algebra \mathcal{A} is called prime algebra, if $\mathcal{KAK} = \{0\}$ for $\mathcal{K}, \mathcal{F} \in \mathcal{A}$ implies either $\mathcal{K} = 0$ or $\mathcal{F} = 0$.

Corollary 3.3. Let \mathcal{A} be a prime *-algebra with unit \mathcal{I} containing non-trivial projection P. A map $\Omega : \mathcal{A} \to \mathcal{A}$ satisfies

 $\Omega([\mathcal{K},\mathcal{F}]_*\odot\mathcal{D})=[\Omega(\mathcal{K}),\mathcal{F}]_*\odot\mathcal{D}+[\mathcal{K},\Omega(\mathcal{F})]_*\odot\mathcal{D}+[\mathcal{K},\mathcal{F}]_*\odot\Omega(\mathcal{D}),$

for all $\mathcal{K}, \mathcal{F}, \mathcal{D} \in \mathcal{A}$, then Ω is an additive *-derivation.

Proof. By the definition of primeness of \mathcal{A} , it is straightforward to observe that \mathcal{A} also satisfies (\blacktriangle) and (\triangledown). Therefore, by Theorem 2.1, we conclude that Ω is an additive *-derivation.

AIMS Mathematics

Author contributions

All authors are contributed equally.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This study was carried out with financial support from Researchers Supporting Project Number (RSPD2024R934), King Saud University, Riyadh, Saudi Arabia.

Conflict of interest

The authors declare that they have no conflicts of interest.

References

- 1. M. Ashraf, M. S. Akhter, M. A. Ansari, Nonlinear bi-skew Lie-type derivations on factor von Neumann algebras, *Commun. Algebra*, **50** (2022), 4766–4780. https://doi.org/10.1080/00927872.2022.2074027
- 2. D. Huo, B. Zheng, J. Xu, H. Liu, Nonlinear mappings preserving Jordan multiple *product on factor von-neumann algebras, *Linear Multilinear A.*, **63** (2015), 1026–1036. https://doi.org/10.1080/03081087.2014.915321
- 3. L. Kong, J. Zhang, Nonlinear skew Lie derivations on prime *-rings, *Indian J. Pure Appl. Math.*, **54** (2023), 475–484. https://doi.org/10.1007/s13226-022-00269-y
- 4. A. N. Khan, Multiplicative biskew Lie triple derivations on factor von Neumann algebras, *Rocky Mountain J. Math.*, **51** (2021), 2103–2114. https://doi.org/10.1216/rmj.2021.51.2103
- 5. C. J. Li, F. Y. Lu, Nonlinear maps preserving the Jordan triple 1 *-product on von Neumann algebras, *Complex Anal. Oper. Theory*, **11** (2017), 109–117. https://doi.org/10.1007/s11785-016-0575-y
- C. J. Li, D. Zhang, Nonlinear mixed Jordan triple *-derivations on *-algebras, *Sib. Math. J.*, 63 (2022), 735–742. https://doi.org/10.1134/S0037446622040140
- 7. C. J. Li, F. F. Zhao, Q. Y. Chen, Nonlinear skew Lie triple derivations between factors, *Acta Math. Sin. English Ser.*, **32** (2016), 821–830. https://doi.org/10.1007/s10114-016-5690-1
- 8. C. J. Li, Y. Zhao, F. Zhao, Nonlinear maps preserving the mixed product $[A \odot B, C]_*$ on von Neumann algebras, *Filomat*, **35** (2021), 2775–2781. https://doi.org/10.2298/FIL2108775L
- C. J. Li, Q. Y. Chen, T. Wang, Nonlinear maps preserving the Jordan triple *-product on factor von Neumann algebras, *Chin. Ann. Math. Ser. B*, **39** (2018), 633–642. https://doi.org/10.1007/s11401-018-0086-4

- C. J. Li, Y. Zhao, F. F. Zhao, Nonlinear *-Jordan-type derivations on *-algebras, *Rocky Mountain J. Math.*, **51** (2021), 601–612. https://doi.org/10.1216/rmj.2021.51.601
- 11. Y. Pang, D. Zhang, D. Ma, The second nonlinear mixed Jordan triple derivable mapping on factor von Neumann algebras, *Bull. Iran. Math. Soc.*, 48 (2022), 951–962. https://doi.org/10.1007/s41980-021-00555-1
- 12. N. Rehman, J. Nisar, M. Nazim, A note on nonlinear mixed Jordan triple derivation on *-algebras, *Commun. Algebra*, **51** (2023), 1334–1343. https://doi.org/10.1080/00927872.2022.2134410
- 13. A. Taghavi, M. Nouri, M. Razeghi, V. Darvish, Non-linear λ-Jordan triple *-derivation on prime *-algebras, *Rocky Mountain J. Math.*, 48 (2018), 2705–2716. https://doi.org/10.1216/RMJ-2018-48-8-2705
- 14. L. Y. Xian, Z. J. Hua, Nonlinear mixed Lie triple derivation on factor von neumann algebras, *Acta Math. Sin. Chinese Ser.*, **62** (2019), 13–24. https://doi.org/10.12386/A2019sxxb0002
- 15. F. Zhang, Nonlinear η-Jordan triple *-derivation on prime *-algebras, *Rocky Mountain J. Math.*, **52** (2022), 323–333. https://doi.org/10.1216/rmj.2022.52.323
- F. F. Zhao, C. J. Li, Nonlinear *-Jordan triple derivations on von Neumann algebras, *Math. Slovaca*, 68 (2018), 163–170. https://doi.org/10.1515/ms-2017-0089

 \bigcirc 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0)