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Abstract: LetA be a unital ∗-algebra containing a non-trivial projection. In this paper, we prove that
if a map Ω : A→A such that

Ω([K,F]∗ ⊙D) = [Ω(K),F]∗ ⊙D + [K,Ω(F)]∗ ⊙D + [K,F]∗ ⊙Ω(D),

where [K,F]∗ = KF − FK∗ and K ⊙ F = K∗F + FK∗ for all K,F,D ∈ A, then Ω is an additive
∗-derivation. Furthermore, we extend its results on factor von Neumann algebras, standard operator
algebras and prime ∗-algebras. Additionally, we provide an example illustrating the existence of such
maps.
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1. Introduction

Consider an algebraA defined over the complex field C. A map ∗ : A → A is called an involution
if the following conditions hold for all K,F ∈ A and α ∈ C. (i) (K+F)∗ = K∗ +F∗; (ii) (αK)∗ = ᾱK∗;
(iii) (KF)∗ = (F)∗(K)∗ and (K∗)∗ = K. An algebra A with the involution ∗ is called the ∗-algebra.
For K,F ∈ A, we call [K,F]∗ = KF − FK∗ the skew Lie product, [K,F]• = KF∗ − FK∗ denotes
the bi-skew Lie product and K ⊙ F = K∗F + FK∗ denotes the bi-skew Jordan product. The skew
Lie product, the Jordan product, and the bi-skew Jordan product have become increasingly relevant in
various research fields, and numerous authors have shown a keen interest in their exploration. This is
evident from the numerous studies by authors (see [1–3, 5, 7–10, 13, 15, 16]). Recall that an additive

https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.20241049


21597

map Ω : A → A is called an additive derivation if Ω(KF) = Ω(K)F + KΩ(F) for all K,F ∈ A. If
Ω(K∗) = Ω(K)∗ for all K ∈ A, then Ω is an additive ∗-derivation. Let Ω : A → A be a map (without
the additivity assumption). We say Ω is a nonlinear skew Lie derivation or nonlinear skew Lie triple
derivation if

Ω([K,F]∗) = [Ω(K),F]∗ + [K,Ω(F)]∗

or
Ω([[K,F]∗,D]∗) = [[Ω(K),F]∗,D]∗ + [[K,Ω(F)]∗,D]∗ + [[K,F]∗,Ω(D)]∗

for all K,F,D ∈ A. Similarly, a map Ω : A → A is said to be a nonlinear bi-skew Lie derivation or
nonlinear bi-skew Lie triple derivation if

Ω([K,F]• = [Ω(K),F]• + [K,Ω(F)]•

or
Ω([[K,F]•,D]•) = [[Ω(K),F]•,D]• + [[K,Ω(F)]•,D]• + [[K,F]•,Ω(D)]•

for all K,F,D ∈ A. In 2021, A. Khan [4] established a proof demonstrating that any multiplicative or
nonadditive bi-skew Lie triple derivation acting on a factor Von Neumann algebra can be
characterized as an additive ∗-derivation.

Numerous authors have recently explored the derivations and isomorphisms corresponding to the
novel products created by combining Lie and skew Lie products, skew Lie and skew Jordan products
see [6, 11, 12, 14]. As an illustration, Li and Zhang [6] delved into an investigation focused on
understanding the arrangement and properties of the nonlinear mixed Jordan triple ∗-derivation within
the domain of ∗-algebras. In 2022, Rehman et. al. [12] mixed the concepts of Jordan and Jordan
∗-product and gave the complete characterization of nonlinear mixed Jordan ∗-triple derivation on
∗-algebras. Inspired by the above results, in the present paper, we combined the skew Lie product and
bi-skew Jordan product and defined nonlinear mixed bi-skew Jordan triple derivation on ∗-algebras. A
map Ω: A→A is called nonlinear mixed bi-skew Jordan triple derivations if

Ω([K,F]∗ ⊙D) = [Ω(K),F]∗ ⊙D + [K,Ω(F)]∗ ⊙D + [K,F]∗ ⊙Ω(D),

for all K,F,D ∈ A. Our proof establishes that when Ω represents a nonlinear mixed bi-skew Lie triple
derivation acting on ∗-algebras, it necessarily possesses an additive ∗-derivation. In simpler terms, the
study demonstrates that specific properties, such as additivity and self-adjointness, can be attributed to
the nature of nonlinear mixed bi-skew Jordan triple derivations on ∗-algebras.

2. Main result

Theorem 2.1. LetA be a unital ∗-algebra with unity I containing a non-trivial projection P. Suppose
thatA satisfies

XAP = 0 =⇒ X = 0, (▲)

and
XA(I − P) = 0 =⇒ X = 0. (▼)

Define a map Ω : A → A such that

Ω([K,F]∗ ⊙D) = [Ω(K),F]∗ ⊙D + [K,Ω(F)]∗ ⊙D + [K,F]∗ ⊙Ω(D),
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then Ω is an additive ∗-derivation.

Let P = P1 be a non-trivial projection in A, and P2 = I − P1, where I is the unity of this algebra.
Then by Peirce decomposition of A, we have A = P1AP1 ⊕ P1AP2 ⊕ P2AP1 ⊕ P2AP2 and, denote
A11 = P1AP1,A12 = P1AP2,A21 = P2AP1 andA22 = P2AP2. Note that any K ∈ A can be written
as K = K11 +K12 +K21 +K22, where Ki j ∈ Ai j and K∗i j ∈ A ji for i, j = 1, 2.

Several lemmas are used to prove Theorem 2.1.

Lemma 2.1. Ω(0) = 0 and Ω(I) = Ω(I)∗.

Proof. It is trivial that

Ω(0) = Ω([0, 0]∗ ⊙ 0) = [Ω(0), 0]∗ ⊙ 0 + [0,Ω(0)]∗ ⊙ 0 + [0, 0]∗ ⊙Ω(0) = 0.

We can easily see that

Ω([I, iI]∗ ⊙ I) = 0.

From the other side, we yield

Ω([I, iI]∗ ⊙ I) = [Ω(I), iI]∗ ⊙ I + [I,Ω(iI)]∗ ⊙ I + [I, iI]∗ ⊙Ω(I) = −2iΩ(I)∗ + 2iΩ(I).

From the equations above, we can deduce

Ω(I) = Ω(I)∗.

The proof is now concluded. □

Lemma 2.2. For any K12 ∈ A12,K21 ∈ A21, we have

Ω(K12 +K21) = Ω(K12) + Ω(K21).

Proof. Let M = Ω(K12) + Ω(K21) −Ω(K12) −Ω(K21). We have

Ω([K12 +K21,P1]∗ ⊙ P2) = [Ω(K12 +K21),P1]∗ ⊙ P2 + [K12 +K21,Ω(P1)]∗ ⊙ P2

+[K12 +K21,P1]∗ ⊙Ω(P2).

Alternatively, it follows from [K12,P1]∗ ⊙ P2 = 0 that

Ω([K12 +K21,P1]∗ ⊙ P2) = Ω([K12,P1]∗ ⊙ P2) + Ω([K21,P1]∗ ⊙ P2)
= [Ω(K12),P1]∗ ⊙ P2 + [K12,Ω(P1)]∗ ⊙ P2

+[K12,P1]∗ ⊙Ω(P2) + [Ω(K21),P1]∗ ⊙ P2

+[K21,Ω(P1)]∗ ⊙ P2 + [K21,P1]∗ ⊙Ω(P2).

From the last two expressions, we conclude [M,P1]∗ ⊙P2 = 0. That means P1M∗P2 −P2MP1 = 0. By
multiplying P2 from the left, we find P2MP1 = 0. In similar way, we can easily show that P1MP2 = 0.

Also, [i(P1 − P2), I]∗ ⊙K12 = 0. Thus,

Ω([i(P1 − P2), I]∗ ⊙ (K12 +K21))
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= Ω([i(P1 − P2), I]∗ ⊙K12) + Ω([i(P1 − P2), I]∗ ⊙K21)
= [Ω(i(P1 − P2)), I]∗ ⊙K12 + [i(P1 − P2),Ω(I)]∗ ⊙K12

+[i(P1 − P2), I]∗ ⊙Ω(K12) + [Ω(i(P1 − P2)), I]∗ ⊙K21

+[i(P1 − P2),Ω(I)]∗ ⊙K21 + [i(P1 − P2), I]∗ ⊙Ω(K21).

On the other side, we have

Ω([i(P1 − P2), I]∗ ⊙ (K12 +K21)) = [Ω(i(P1 − P2)), I]∗ ⊙ (K12 +K21)
+[i(P1 − P2),Ω(I)]∗ ⊙ (K12 +K21)
+[i(P1 − P2), I]∗ ⊙Ω(K12 +K21).

From the last two expressions, we obtain [i(P1 − P2), I]∗ ⊙ M = 0. That means −2iP1M + 2iP2M −
2iMP1 + 2iMP2 = 0. By pre and post multiplying by P1 from both sides, we get P1MP1 = 0. In the
similar way, we can show that P2MP2 = 0. Hence, M = 0, i.e.,

Ω(K12 +K21) = Ω(K12) + Ω(K21).

The proof is now concluded. □

Lemma 2.3. For any Kii ∈ Aii,Ki j ∈ Ai j, 1 ≤ i, j ≤ 2, we have

Ω(Kii +Ki j +K ji) = Ω(Kii) + Ω(Ki j) + Ω(K ji).

Proof. First, we will demonstrate the case when i = 1 and j = 2. Let M = Ω(K11 + K12 + K21) −
Ω(K11) −Ω(K12) −Ω(K21). Since [K11,P1]∗ ⊙ P2 = 0 and using Lemma 2.2, we have

Ω([(K11 +K12 +K21),P1]∗ ⊙ P2) = Ω([K11,P1]∗ ⊙ P2) + Ω([K12,P1]∗ ⊙ P2)
+Ω([K21,P1]∗ ⊙ P2)

= [Ω(K11),P1]∗ ⊙ P2 + [K11,Ω(P1)]∗ ⊙ P2

+[K11,P1]∗ ⊙Ω(P2) + [Ω(K12),P1]∗ ⊙ P2

+[K12,Ω(P1)]∗ ⊙ P2 + [K12,P1]∗ ⊙Ω(P2)
+[Ω(K21),P1]∗ ⊙ P2 + [K21,Ω(P1)]∗ ⊙ P2

+[K21,P1]∗ ⊙Ω(P2).

On the other side, we have

Ω([(K11 +K12 +K21),P1]∗ ⊙ P2) = [Ω(K11 +K12 +K21),P1]∗ ⊙ P2

+[(K11 +K12 +K21),Ω(P1)]∗ ⊙ P2

+[(K11 +K12 +K21),P1]∗ ⊙Ω(P2).

From the above two expressions, we find [M,P1]∗⊙P2 = 0, and so, P2MP1 = 0. Similarly, P1MP2 = 0.
Now, for all X12 ∈ A12, we have

Ω([X12, (K11 +K12 +K21)]∗ ⊙ P2) = [Ω(X12), (K11 +K12 +K21)]∗ ⊙ P2
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+[X12,Ω(K11 +K12 +K21)]∗ ⊙ P2

+[X12, (K11 +K12 +K21)]∗ ⊙Ω(P2).

Also, [X12,K11]∗ ⊙ P2 = 0 and using Lemma 2.2, we get

Ω([X12, (K11 +K12 +K21)]∗ ⊙ P2) = Ω([X12,K11]∗ ⊙ P2) + Ω([X12,K12]∗ ⊙ P2)
+Ω([X12,K21]∗ ⊙ P2)

= [Ω(X12),K11]∗ ⊙ P2 + [X12,Ω(K11)]∗ ⊙ P2

+[X12,K11]∗ ⊙Ω(P2) + [Ω(X12),K12]∗ ⊙ P2

+[X12,Ω(K12)]∗ ⊙ P2 + [X12,K12]∗ ⊙Ω(P2)
+[Ω(X12),K21]∗ ⊙ P2 + [X12,Ω(K21)]∗ ⊙ P2

+[X12,K21]∗ ⊙Ω(P2).

From the above two relations, we get [X12,M]∗ ⊙ P2 = 0. That means −X12M∗P2 + P2M∗X∗12 = 0. By
post-multiplying by P2 on both sides, we get −X12M∗P2 = 0. Therefore, by using (▲) and (▼), we get
P2MP2 = 0. Similarly, P1MP1 = 0. Hence, M = 0. i.e.,

Ω(K11 +K12 +K21) = Ω(K11) + Ω(K12) + Ω(K21).

By using the same technique, we can also show for i = 2, j = 1. The proof is now concluded. □

Lemma 2.4. For any Ki j ∈ Ai j, 1 ≤ i, j ≤ 2, we have

Ω(
2∑

i, j=1

Ki j) =
2∑

i, j=1

Ω(Ki j).

Proof. Let M = Ω(K11+K12+K21+K22)−Ω(K11)−Ω(K12)−Ω(K21)−Ω(K22). Since, [K11,P1]∗⊙P2 = 0
and using Lemma 2.3 that

Ω([(K11 +K12 +K21 +K22),P1]∗ ⊙ P2)
= Ω([K11,P1]∗ ⊙ P2) + Ω([K12,P1]∗ ⊙ P2)
+Ω([K21,P1]∗ ⊙ P2) + Ω([K22,P1]∗ ⊙ P2)

= [Ω(K11) + Ω(K12) + Ω(K21) + Ω(K22),P1]∗ ⊙ P2

+[K11 +K12 +K21 +K22,Ω(P1)]∗ ⊙ P2

+[K11 +K12 +K21 +K22,P1]∗ ⊙Ω(P2).

Alternatively, we have

Ω([(K11 +K12 +K21 +K22),P1]∗ ⊙ P2) = [Ω(K11 +K12 +K21 +K22),P1]∗ ⊙ P2

+[(K11 +K12 +K21 +K22),Ω(P1)]∗ ⊙ P2

+[(K11 +K12 +K21 +K22),P1]∗ ⊙Ω(P2).

From the last two relations, we get [M,P1]∗⊙P2 = 0. Thus, P1M∗P2−P2MP1 = 0. Hence, P2MP1 = 0.
Similarly, P1MP2 = 0.
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Now, for any X12 ∈ A12, we have

Ω([X12,K11 +K12 +K21 +K22]∗ ⊙ P2) = [Ω(X12),K11 +K12 +K21 +K22]∗ ⊙ P2

+[X12,Ω(K11 +K12 +K21 +K22)]∗ ⊙ P2

+[X12,K11 +K12 +K21 +K22]∗ ⊙Ω(P2).

Also, [X12,K11]∗ ⊙ P2 = 0, and using Lemma 2.3, we find

Ω([X12,K11 +K12 +K21 +K22]∗ ⊙ P2)
= Ω([X12,K11]∗ ⊙ P2) + Ω([X12,K12]∗ ⊙ P2)
+Ω([X12,K21]∗ ⊙ P2) + Ω([X12,K22]∗ ⊙ P2)

= [Ω(X12),K11 +K12 +K21 +K22]∗ ⊙ P2

+[X12,Ω(K11) + Ω(K12) + Ω(K21) + Ω(K22)]∗ ⊙ P2

+[X12,K11 +K12 +K21 +K22]∗ ⊙Ω(P2).

Upon comparing the aforementioned two equations, we observe that [X12,M]∗ ⊙ P2 = 0. On solving,
we get P2MP2 = 0. Similarly, we can show that P1MP1 = 0. Hence, M = 0, i.e.,

Ω(K11 +K12 +K21 +K22) = Ω(K11) + Ω(K12) + Ω(K21) + Ω(K22).

This ends the proof. □

Lemma 2.5. For each K12,F12 ∈ A12 and K21,F21 ∈ A21, we have

(1) Ω(K12 + F12) = Ω(K12) + Ω(F12).
(2) Ω(K21 + F21) = Ω(K21) + Ω(F21).

Proof. (1) Let M = Ω(K12 + F12) −Ω(K12) −Ω(F12).We have,

Ω([K12 + F12,P1]∗ ⊙ P2) = [Ω(K12 + F12),P1)]∗ ⊙ P2

+[K12 + F12,Ω(P1)]∗ ⊙ P2

+[K12 + F12,P1]∗ ⊙Ω(P2).

On the other hand, it follows from [K12,P1]∗ ⊙ P2 = 0 that

Ω([K12 + F12,P1]∗ ⊙ P2) = Ω([K12,P1]∗ ⊙ P2) + Ω([F12,P1]∗ ⊙ P2)
= [Ω(K12) + Ω(F12),P1]∗ ⊙ P2 + [K12 + F12,Ω(P1)]∗ ⊙ P2

+[K12 + F12,P1]∗ ⊙Ω(P2).

From the last two relations, we get [M,P1]∗ ⊙ P2 = 0. This means that P1M∗P2 − P2MP1 = 0. By
pre-multiplying P2 on both sides, we get P2MP1 = 0. Similarly, we can show that P1MP2 = 0. Now,
for any X12 ∈ A12, we have

Ω([X12,K12 + F12]∗ ⊙ P2) = [Ω(X12),K12 + F12]∗ ⊙ P2 + [X12,Ω(K12 + F12)]∗ ⊙ P2

+[X12,K12 + F12]∗ ⊙Ω(P2).
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On the other hand, it follows from [X12,K12]∗ ⊙ P2 = 0 that

Ω([X12,K12 + F12]∗ ⊙ P2)
= Ω([X12,K12]∗ ⊙ P2) + Ω([X12,F12]∗ ⊙ P2)
= [[Ω(X12),K12 + F12]∗ ⊙ P2 + [X12,Ω(K12) + Ω(F12)]∗ ⊙ P2

+[X12,K12 + F12]∗ ⊙Ω(P2).

On comparing the above two relations, we get [X12,M]∗ ⊙ P2 = 0. On solving, we get P2MP2 = 0.
Similarly, we can show that P1MP1 = 0. Hence, M = 0, i.e.,

Ω(K12 + F12) = Ω(K12) + Ω(F12).

(2) By using the same technique, we can show that

Ω(K21 + F21) = Ω(K21) + Ω(F21).

The proof is now concluded. □

Lemma 2.6. For each Kii,Fii ∈ Aii such that 1 ≤ i ≤ 2, we have

Ω(Kii + Fii) = Ω(Kii) + Ω(Fii).

Proof. First, it is prove for i = 1. Let M = Ω(K11+F11)−Ω(K11)−Ω(F11). Since, [K11,P1]∗⊙P2 = 0,
we have

Ω([K11 + F11,P1]∗ ⊙ P2) = Ω([K11,P1]∗ ⊙ P2) + Ω([F11,P1]∗ ⊙ P2)
= [Ω(K11) + Ω(F11),P1]∗ ⊙ P2 + [K11 + F11,Ω(P1)]∗ ⊙ P2

+[K11 + F11,P1]∗ ⊙Ω(P2).

On the other hand, we have

Ω([K11 + F11,P1]∗ ⊙ P2) = [Ω(K11 + F11),P1]∗ ⊙ P2 + [K11 + F11,Ω(P1)]∗ ⊙ P2

+[K11 + F11,P1]∗ ⊙Ω(P2).

Upon comparing the aforementioned two equations, we observe that [M,P1]∗ ⊙ P2 = 0. On solving,
we get P1M∗P2 − P2MP1 = 0. By pre-multiplying by P2 on both sides, we get P2MP1 = 0. Similarly,
P1MP2 = 0. Now, for any X12 ∈ A12, we have

Ω([X12,K11 + F11]∗ ⊙ P2) = [Ω(X12),K11 + F11]∗ ⊙ P2 + [X12,Ω(K11 + F11)]∗ ⊙ P2

+[X12,K11 + F11]∗ ⊙Ω(P2).

It follows from [X12,K11]∗ ⊙ P1 = 0 that

Ω([X12,K11 + F11]∗ ⊙ P2) = [Ω(X12),K11 + F11]∗ ⊙ P2 + [X12,Ω(K11) + Ω(F11)]∗ ⊙ P2

+[X12,K11 + F11]∗ ⊙Ω(P2).

By comparing, we get [X12,M]∗ ⊙P2 = 0. That means −X12M∗P2 +P2M∗X∗12 = 0. By pre-multiplying
P2 on both sides, we get P2M∗X∗12 = 0. Thus, by using (▲) and (▼), we get P2MP2 = 0. Similarly,
P1MP1 = 0. Hence, M = 0. This completes the proof. □
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Lemma 2.7. Ω is an additive map.

Proof. For any K,F ∈ A, we write K = K11 +K12 +K21 +K22 and F = F11 + F12 + F21 + F22. By
using Lemmas 2.4–2.6, we get

Ω(K + F) = Ω(K11 +K12 +K21 +K22 + F11 + F12 + F21 + F22)
= Ω(K11 + F11) + Ω(K12 + F12) + Ω(K21 + F21) + Ω(K22 + F22)
= Ω(K11) + Ω(F11) + Ω(K12) + Ω(F12)
+Ω(K21) + Ω(F21) + Ω(K22) + Ω(F22)

= Ω(K11 +K12 +K21 + F22) + Ω(F11 + F12 + F21 + F22)
= Ω(K) + Ω(F).

Hence, Ω is additive. □

Lemma 2.8. The following conditions holds:

(i) Ω(iI)∗ = Ω(iI) = 0.
(ii) Ω(I) = 0.

Proof. (i) It follows from Lemma 2.7 that

Ω([iI, iI]∗ ⊙ I) = Ω(−4I) = −4Ω(I)

and

Ω([iI, iI]∗ ⊙ I) = [Ω(iI), iI]∗ ⊙ I + [iI,Ω(iI)]∗ ⊙ I + [iI, iI]∗ ⊙Ω(I)
= (iΩ(iI) − iΩ(iI)∗) ⊙ I + 2iΩ(iI) ⊙ I − 2I ⊙Ω(I)
= −6iΩ(iI)∗ + 2iΩ(iI) − 4Ω(I).

From the last two expressions, we get

−3Ω(iI)∗ + Ω(iI) = 0. (2.1)

Also, we can evaluate

Ω([iI, I]∗ ⊙ iI) = Ω(2iI ⊙ iI) = 4Ω(I).

Alternatively, we can write

Ω([iI, I]∗ ⊙ iI) = [Ω(iI), I]∗ ⊙ iI + [iI,Ω(I)]∗ ⊙ iI + [iI, I]∗ ⊙Ω(iI)
= 2iΩ(iI)∗ − 6iΩ(iI) + 4Ω(I)∗.

By comparing above two equations, and also using Lemma 2.1, we find

Ω(iI)∗ − 3Ω(iI) = 0. (2.2)

By using Eqs (2.1) and (2.2), we have

Ω(iI)∗ = Ω(iI) = 0.

(ii) In the similar way, we can show that Ω(I) = 0. □
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Lemma 2.9. Ω preserves star, i.e., Ω(K∗) = Ω(K)∗ for all K ∈ A.

Proof. From Lemma 2.7, we have

Ω([K, iI]∗ ⊙ iI) = Ω(iK − iK∗) ⊙ iI) = 2Ω(K∗) − 2Ω(K).

Alternatively, it follows from Lemma 2.8 that

Ω([K, iI]∗ ⊙ iI) = [Ω(K), iI]∗ ⊙ iI = (iΩ(K) − iΩ(K)∗) ⊙ iI = 2Ω(K)∗ − 2Ω(K).

From the above two equations, we obtain

Ω(K∗) = Ω(K)∗

for all K ∈ A. This completes the proof. □

Lemma 2.10. We prove that Ω(iK) = iΩ(K) for all K ∈ A.

Proof. For any K ∈ A, we have

Ω([iI, I]∗ ⊙K) = Ω(2iI ⊙K) = −4Ω(iK).

Alternatively, it follows from Lemma 2.8 that

Ω([iI, I]∗ ⊙K) = [iI, I]∗ ⊙Ω(K) = (2iI) ⊙K = −4iΩ(K).

From the above two expressions, we obtain

Ω(iK) = iΩ(K).

□

Proof of Theorem 2.1. For any K,F ∈ A, it follows from Lemmas 2.7 that

Ω(K + F) = Ω(K) + Ω(F). (2.3)

Also, by using Lemma 2.9 that

Ω(K∗) = Ω(K)∗ (2.4)

for all K ∈ A. Now, we only have to show that Ω is an derivation.
Now, for any K,F ∈ A, and using Lemma 2.7, we have

Ω([K, I]∗ ⊙ F) = Ω((K −K∗) ⊙ F) = Ω(K∗F) −Ω(KF) + Ω(FK∗) −Ω(FK).

Also, using Lemma 2.8 that

Ω([K, I]∗ ⊙ F) = [Ω(K), I]∗ ⊙ F + [K, I]∗ ⊙Ω(F)
= Ω(K)∗F −Ω(K)F + FΩ(K)∗ − FΩ(K)
+K∗Ω(F) −KΩ(F) + Ω(F)K∗ −Ω(F)K.
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By comparing the two equations above, we obtain

Ω(K∗F) −Ω(KF) + Ω(FK∗) −Ω(FK) = Ω(K)∗F −Ω(K)F + FΩ(K)∗ − FΩ(K)
+K∗Ω(F) −KΩ(F) + Ω(F)K∗ −Ω(F)K. (2.5)

On the other hand, according to Lemma 2.7, we can infer that

Ω([iK, I]∗ ⊙ iF) = Ω((iK + iK∗) ⊙ iF)
= Ω(K∗F) + Ω(KF) + Ω(FK∗) + Ω(FK).

Alternatively, by using Lemma 2.8, we find

Ω([iK, I]∗ ⊙ iF) = [Ω(iK), I]∗ ⊙ iF + [iK, I]∗ ⊙Ω(iF)
= Ω(K)∗F + Ω(K)F + FΩ(K)∗ + FΩ(K)
+K∗Ω(F) +KΩ(F) + Ω(F)K∗ + Ω(F)K.

From the above two expressions, we find

Ω(K∗F) + Ω(KF) + Ω(FK∗) + Ω(FK) = Ω(K)∗F + Ω(K)F + FΩ(K)∗ + FΩ(K)
+K∗Ω(F) +KΩ(F) + Ω(F)K∗ + Ω(F)K. (2.6)

Subtracting Eq (2.5) to Eq (2.6), we get

Ω(KF + FK) = Ω(K)F +KΩ(F) + FΩ(K) + Ω(F)K. (2.7)

By using Lemma 2.10 and the above equation, we find

Ω(KF − FK) = iΩ((−iK)(F) + (iF)K)
= Ω(K)F +KΩ(F) − FΩ(K) −Ω(F)K (2.8)

Adding Eqs (2.7) and (2.8), we get

Ω(KF) = Ω(K)F +KΩ(F). (2.9)

From Eqs (2.3), (2.4) and (2.9), we get Ω is an additive ∗-derivation. This completes the proof.
Now, we provide an example to demonstrate the necessity of the conditions (▲) and (▼) in

Theorem 2.1.

Example 2.1. Consider A = {
(

a 0
c d

)
} , the algebra of all lower triangular matrix of order 2 over

the field of complex numbers C and I =

(
1 0
0 1

)
be the unity of A. The map ∗ : A → A given by

∗(K) = Kθ, where Kθ denotes the conjugate transpose of matrix A, is an involution. Hence, A is a

unital ∗-algebra with unity I. Now, define a map Ω : A → A such that Ω
(

a 0
c d

)
=

(
0 0
−ic 0

)
. Note

that Ω is a derivation onA. So, it also satisfies

Ω([[K,F]⊙,D]∗) = [[Ω(K),F]⊙,D]∗ + [[K,Ω(F)]⊙,D]∗ + [[K,F]⊙,Ω(D)]∗

for all K,F,D ∈ A. Let P =
(

0 0
0 1

)
is a non-trivial projection, so P2 = P and P∗ = P. For

W =

(
0 0
1 0

)
, 0 ∈ A and hence WAP = (0) but 0 , W ∈ A. However, Ω is not an additive

∗-derivation because Ω(K∗) , (Ω(K))∗ for some K ∈ A.
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3. Corollaries

The following corollaries arise directly from Theorem 2.1: The algebra of all bounded linear
operators on H is denoted by B(H). Let H be a Hilbert space over the field F of real or complex
numbers. The dimension of an operator’s range is known as its rank. An operator with a finite
dimensional range is therefore said to have a finite rank. F (H) is the subalgebra of all bounded linear
operators of finite rank onH .

LetH be a Banach space over the real or complex number field F. In the case of F (H) ⊆ K(H), a
subalgebra K(H) of B(H) is referred to as a standard operator algebra.

Corollary 3.1. Let A be a standard operator algebra on an infinite dimensional complex Hilbert
space H containing an identity operator I. Suppose that A is closed under adjoint operation. Define
Ω : A → A such that

Ω([K,F]∗ ⊙D) = [Ω(K),F]∗ ⊙D + [K,Ω(F)]∗ ⊙D + [K,F]∗ ⊙Ω(D),

for all K,F,D ∈ A, then Ω is an additive ∗-derivation.

Proof. Every standard operator algebra A being a prime algebra is a direct consequence of the Hahn-
Banach theorem. As a prime algebra, A naturally fulfills the conditions specified in (▲) and (▼).
Consequently, according to Theorem 2.1, it follows that the map Ω described earlier is an additive
∗-derivation. □

A von Neumann algebra is defined as a weakly closed self-adjoint subalgebra of B(H) that
includes the identity operator, where B(H) is the space of all bounded linear operators on a complex
Hilbert space H . In other words, a self-adjoint subalgebra of B(H) that satisfies the double
commutant property, that is,M′′ =M, is considered a von Neumann algebra. In this context, a factor
von Neumann algebra is one with a trivial center, which is equal to the intersection of M and its
double commutant, M ∩M′ = CI. Additionally, an abelian von Neumann algebra is one where the
center is equal to the algebra itself, that is,Z(M) =M.

Corollary 3.2. LetM ba a factor von Neumann algebra with dimM ≥ 2. Define Ω : M → M such
that

Ω([K,F]∗ ⊙D) = [Ω(K),F]∗ ⊙D + [K,Ω(F)]∗ ⊙D + [K,F]∗ ⊙Ω(D),

for all K,F,D ∈ A, then Ω is an ∗-derivation.

Proof. By using [16, Lemma 2.2], it is established that every factor von Neumann algebraM satisfies
the conditions outlined in (▲) and (▼). Therefore, applying Theorem 2.1, we conclude that the map Ω
described earlier is an additive ∗-derivation within the context of factor von Neumann algebras. □

An algebraA is called prime algebra, if KAK = {0} for K,F ∈ A implies either K = 0 or F = 0.

Corollary 3.3. Let A be a prime ∗-algebra with unit I containing non-trivial projection P. A map
Ω : A → A satisfies

Ω([K,F]∗ ⊙D) = [Ω(K),F]∗ ⊙D + [K,Ω(F)]∗ ⊙D + [K,F]∗ ⊙Ω(D),

for all K,F,D ∈ A, then Ω is an additive ∗-derivation.

Proof. By the definition of primeness of A, it is straightforward to observe that A also satisfies (▲)
and (▼). Therefore, by Theorem 2.1, we conclude that Ω is an additive ∗-derivation. □
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