In this study for examining the fractional Michaelis-Menten enzymatic reaction (FMMER) model, we suggested a computational method by using an operational matrix of Jacobi polynomials (JPs) as its foundation. We obtain an operational matrix for the arbitrary order derivative in the Caputo sense. The fractional differential equations (FDEs) are then reduced to a set of algebraic equations by using attained operational matrix and the collocation method. The approach which utilized in this study is quicker and more effective compared to other schemes. We also compared the suggested method with the Vieta-Lukas collocation technique (VLCM) and we obtain excellent results. A comparison between numerical outcomes is shown by figures and tables. Error analysis of the recommended methods is also presented.
Citation: Devendra Kumar, Hunney Nama, Dumitru Baleanu. Computational analysis of fractional Michaelis-Menten enzymatic reaction model[J]. AIMS Mathematics, 2024, 9(1): 625-641. doi: 10.3934/math.2024033
In this study for examining the fractional Michaelis-Menten enzymatic reaction (FMMER) model, we suggested a computational method by using an operational matrix of Jacobi polynomials (JPs) as its foundation. We obtain an operational matrix for the arbitrary order derivative in the Caputo sense. The fractional differential equations (FDEs) are then reduced to a set of algebraic equations by using attained operational matrix and the collocation method. The approach which utilized in this study is quicker and more effective compared to other schemes. We also compared the suggested method with the Vieta-Lukas collocation technique (VLCM) and we obtain excellent results. A comparison between numerical outcomes is shown by figures and tables. Error analysis of the recommended methods is also presented.
[1] | K. Diethelm, N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl., 265 (2002), 229–248. https://doi.org/10.1006/jmaa.2000.7194 doi: 10.1006/jmaa.2000.7194 |
[2] | M. Eckert, M. Kupper, S. Hohmann, Functional fractional calculus for system identification of battery cells, Automatisierungstechnik, 62 (2014), 272–281. https://doi.org/10.1515/auto-2014-1083 doi: 10.1515/auto-2014-1083 |
[3] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
[4] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, John Wiley & Sons, 1993. |
[5] | M. N. Alam, I. Talib, O. Bazighifan, D. N. Chalishajar, B. Almarri, An analytical technique implemented in the fractional clannish random Walker's parabolic equation with nonlinear physical phenomena, Mathematics, 9 (2021), 801. https://doi.org/10.3390/math9080801 doi: 10.3390/math9080801 |
[6] | K. B. Oldham, J. Spanier, The fractional calculus, Academic Press, 1974. |
[7] | H. Zhang, X. Jiang, X. Yang, A time-space spectral method for the time-space fractional Fokker-Planck equation and its inverse problem, Appl. Math. Comput., 320 (2018), 302–318. https://doi.org/10.1016/j.amc.2017.09.040 doi: 10.1016/j.amc.2017.09.040 |
[8] | H. Zhang, X. Jiang, F. Zeng, G. E. Karniadakis, A stabilized semi-implicit Fourier spectral method for nonlinear space-fractional reaction-diffusion equations, J. Comput. Phys., 405 (2020), 109141. https://doi.org/10.1016/j.jcp.2019.109141 doi: 10.1016/j.jcp.2019.109141 |
[9] | X. Zheng, H. Wang, Optimal-order error estimates of finite element approximations to variable-order time-fractional diffusion equations without regularity assumptions of the true solutions, IMA J. Numer. Anal., 41 (2021), 1522–1545. https://doi.org/10.1093/imanum/draa013 doi: 10.1093/imanum/draa013 |
[10] | S. Shateyi, S. S. Motsa, Y. Khan, A new piecewise spectral homotopy analysis of the Michaelis-Menten enzymatic reactions model, Numer. Algorithms, 66 (2014), 495–510. https://doi.org/10.1007/s11075-013-9745-4 doi: 10.1007/s11075-013-9745-4 |
[11] | I. M. Abu-Reesh, Optimal design of continuously stirred membrane reactors in series using Michaelis-Menten kinetics with competitive product inhibition: theoretical analysis, Desalination, 180 (2005), 119–132. https://doi.org/10.1016/j.desal.2004.12.033 doi: 10.1016/j.desal.2004.12.033 |
[12] | M. Goličnik, Explicit reformulations of time-dependent solution for a Michaelis-Menten enzyme reaction model, Anal. Biochem., 406 (2010), 94–96. https://doi.org/10.1016/j.ab.2010.06.041 doi: 10.1016/j.ab.2010.06.041 |
[13] | H. Alrabaiah, A. Ali, F. Haq, K. Shah, Existence of fractional order semianalytical results for enzyme kinetics model, Adv. Differ. Equations, 2020 (2020), 443. https://doi.org/10.1186/s13662-020-02897-2 doi: 10.1186/s13662-020-02897-2 |
[14] | M. Alqhtani, J. F. Gómez-Aguilar, K. M. Saad, Z. Sabir, E. Pérez-Careta, A scale conjugate neural network learning process for the nonlinear malaria disease model, AIMS Math., 8 (2023), 21106–21122. https://doi.org/10.3934/math.20231075 doi: 10.3934/math.20231075 |
[15] | S. Liao, On the homotopy analysis method for nonlinear problems, Appl. Math. Comput., 147 (2004), 499–513. https://doi.org/10.1016/S0096-3003(02)00790-7 doi: 10.1016/S0096-3003(02)00790-7 |
[16] | X. C. Shi, L. L. Huang, Y. Zeng, Fast Adomian decomposition method for the Cauchy problem of the time-fractional reaction diffusion equation, Adv. Mech. Eng., 8 (2016), 1687814016629898. https://doi.org/10.1177/16878140166298 doi: 10.1177/16878140166298 |
[17] | H. M. Srivastava, K. M. Saad, Some new and modified fractional analysis of the time-fractional Drinfeld-Sokolov-Wilson system, Chaos, 30 (2020), 113104. https://doi.org/10.1063/5.0009646 doi: 10.1063/5.0009646 |
[18] | Y. Takeuchi, Y. Yoshimoto, R. Suda, Second order accuracy finite difference methods for space-fractional partial differential equations, J. Comput. Appl. Math., 320 (2017), 101–119. https://doi.org/10.1016/j.cam.2017.01.013 doi: 10.1016/j.cam.2017.01.013 |
[19] | K. M. Saad, H. M. Srivastava, J. F. Gómez-Aguilar, A fractional quadratic autocatalysis associated with chemical clock reactions involving linear inhibition, Chaos Solitons Fract., 132 (2020), 109557. https://doi.org/10.1016/j.chaos.2019.109557 doi: 10.1016/j.chaos.2019.109557 |
[20] | A. Atangana, Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system, Chaos Solitons Fract., 102 (2017), 396–406. https://doi.org/10.1016/j.chaos.2017.04.027 doi: 10.1016/j.chaos.2017.04.027 |
[21] | M. H. Heydari, A. Atangana, Z. Avazzadeh, Y. Yang, Numerical treatment of the strongly coupled nonlinear fractal-fractional Schrödinger equations through the shifted Chebyshev cardinal functions, Alex. Eng. J., 59 (2020), 2037–2052. https://doi.org/10.1016/j.aej.2019.12.039 doi: 10.1016/j.aej.2019.12.039 |
[22] | M. Alqhtani, K. M. Saad, Fractal-fractional Michaelis-menten enzymatic reaction model via different kernels, Fractal Fract., 6 (2022), 13. https://doi.org/10.3390/fractalfract6010013 doi: 10.3390/fractalfract6010013 |
[23] | M. M. Alsuyuti, E. H. Doha, S. S. Ezz-Eldien, Galerkin operational approach for multi-dimensions fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 114 (2022), 106608. https://doi.org/10.1016/j.cnsns.2022.106608 doi: 10.1016/j.cnsns.2022.106608 |
[24] | M. M. Alsuyuti, E. H. Doha, S. S. Ezz-Eldien, I. K. Youssef, Spectral Galerkin schemes for a class of multi-order fractional pantograph equations, J. Comput. Appl. Math., 384 (2021), 113157. https://doi.org/10.1016/j.cam.2020.113157 doi: 10.1016/j.cam.2020.113157 |
[25] | A. H. Bhrawy, M. A. Abdelkawy, S. S. Ezz-Eldien, Efficient spectral collocation algorithm for a two-sided space fractional Boussinesq equation with non-local conditions, Mediterr. J. Math., 13 (2016), 2483–2506. https://doi.org/10.1007/s00009-015-0635-y doi: 10.1007/s00009-015-0635-y |
[26] | L. Michaelis, M. L. Menten, Die kinetik der invertinwirkung, Biochem. Z., 49 (1913), 333–369. |
[27] | I. Podlubny, Fractional differential equations, Elsevier, 1998. |
[28] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: theory and applications, Gordon and Breach Science Publishers, 1993. |
[29] | E. H. Doha, A. H. Bhrawy, D. Baleanu, S. S. Ezz-Eldien, The operational matrix formulation of the Jacobi tau approximation for space fractional diffusion equation, Adv. Differ. Equations, 2014 (2014), 231. https://doi.org/10.1186/1687-1847-2014-231 doi: 10.1186/1687-1847-2014-231 |
[30] | A. Ahmadian, M. Suleiman, S. Salahshour, D. Baleanu, A Jacobi operational matrix for solving a fuzzy linear fractional differential equation, Adv. Differ. Equations, 2013 (2013), 104. https://doi.org/10.1186/1687-1847-2013-104 doi: 10.1186/1687-1847-2013-104 |
[31] | A. H. Bhrawy, M. M. Tharwat, M. A. Alghamdi, A new operational matrix of fractional integration for shifted Jacobi polynomials, Bull. Malays. Math. Sci. Soc., 37 (2013), 983–995. |
[32] | Z. A. Noor, I. Talib, T. Abdeljawad, M. A. Alqudah, Numerical study of Caputo fractional-order differential equations by developing new operational matrices of Vieta-Lucas polynomials, Fractal Fract., 6 (2022), 79. https://doi.org/10.3390/fractalfract6020079 doi: 10.3390/fractalfract6020079 |
[33] | H. Singh, Approximate solution of fractional vibration equation using Jacobi polynomials, Appl. Math. Comput., 317 (2018), 85–100. https://doi.org/10.1016/j.amc.2017.08.057 doi: 10.1016/j.amc.2017.08.057 |
[34] | C. S. Singh, H. Singh, V. K. Singh, O. P. Singh, Fractional order operational matrix methods for fractional singular integro-differential equation, Appl. Math. Modell., 40 (2016), 10705–10718. https://doi.org/10.1016/j.apm.2016.08.011 doi: 10.1016/j.apm.2016.08.011 |
[35] | H. Singh, A new numerical algorithm for fractional model of Bloch equation in nuclear magnetic resonance, Alex. Eng. J., 55 (2016), 2863–2869. https://doi.org/10.1016/j.aej.2016.06.032 doi: 10.1016/j.aej.2016.06.032 |
[36] | T. J. Rivlin, An introduction to the approximation of functions, Courier Corporation, 1981. |
[37] | E. Kreyszig, Introductory functional analysis with applications, John Wiley & Sons, 1991 |
[38] | M. Behroozifar, A. Sazmand, An approximate solution based on Jacobi polynomials for time-fractional convection-diffusion equation, Appl. Math. Comput., 296 (2017), 1–17. https://doi.org/10.1016/j.amc.2016.09.028 doi: 10.1016/j.amc.2016.09.028 |
[39] | S. S. Ezz-Eldien, A. A. El-Kalaawy, Numerical simulation and convergence analysis of fractional optimization problems with right-sided Caputo fractional derivative, J. Comput. Nonlinear Dyn., 13 (2017), 011010. https://doi.org/10.1115/1.4037597 doi: 10.1115/1.4037597 |
[40] | H. Singh, H. M. Srivastava, Numerical investigation of the fractional-order Liénard and Duffing equations arising in oscillating circuit theory, Front. Phys., 8 (2020), 120. https://doi.org/10.3389/fphy.2020.00120 doi: 10.3389/fphy.2020.00120 |
[41] | S. S. Ezz-Eldien, New quadrature approach based on operational matrix for solving a class of fractional variational problems, J. Comput. Phys., 317 (2016), 362–381. https://doi.org/10.1016/j.jcp.2016.04.045 doi: 10.1016/j.jcp.2016.04.045 |