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Abstract: In this study for examining the fractional Michaelis-Menten enzymatic reaction (FMMER)
model, we suggested a computational method by using an operational matrix of Jacobi polynomials
(JPs) as its foundation. We obtain an operational matrix for the arbitrary order derivative in the Caputo
sense. The fractional differential equations (FDEs) are then reduced to a set of algebraic equations by
using attained operational matrix and the collocation method. The approach which utilized in this study
is quicker and more effective compared to other schemes. We also compared the suggested method with
the Vieta-Lukas collocation technique (VLCM) and we obtain excellent results. A comparison between
numerical outcomes is shown by figures and tables. Error analysis of the recommended methods is also
presented.

Keywords: FMMER; VLCM; Jacobi polynomials; FDEs; operational matrix; collocation technique
Mathematics Subject Classification: 26A33, 33C45, 65L05

1. Introduction

Fractional-order differential equations allow scientists to simulate a wide range of physical
phenomena. To solve systems by creating precise models, arbitrary-order differential operators are
frequently utilized [1–4]. Due of their property that is not local, the arbitrary-order operators are more
effective at simulating the different issues in physics, fluid dynamics, and the associated fields [1,5–9].
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To investigate the approximation of the Michaelis-Menten enzymatic reaction equation,
Shateyi et al. [10] recommended a technique that is modification of the spectral homotopy analysis
technique. To get the best design of several membrane reactors operating enzyme-catalyzed reactions
in series, Abu-Reesh [11] deduced analytical equations. A precise closed-form resolution to the
Michaelis-Menten equation using the terms of Lambert W(x) function was proposed by
Golicnik [12]. Hussam et al. [13] utilized the Laplace transformation and Adomian decomposition
method to examine the semianalytical outcomes of fractional time enzyme kinetics.
Alqhtani et al. [14] suggested a scale conjugate neural network learning procedure for the non linear
malaria illness concept. Numerous researchers have shown computational, estimate techniques and
applications to address this issue because it can be challenging to find exact solutions to arbitrary
order differential equations [15–19]. In actuality, aside from [20], no other techniques cope with
computational solutions in the fractal-fractional sense. The authors of [21] examined a spectral
approach in the context of fractal-fractional differentiation.

Alqhtani and Saad [22] examined the fractal-fractional michaelis-menten enzymatic reaction
model using different kernels. Alsuyuti et al. [23] investigated the Galerkin operational technique for
multi-dimension fractional differential equations. Spectral Galerkin schemes for a class of multi-order
fractional pantograph equations was examined by Alsuyuti et al. [24]. Bhrawy et al. [25] studied an
effective spectral collocation technique for a dual-sided spaces fractional Boussinesq equation having
non-local circumstances. According to Michaelis and Menten, the enzyme-substrate complex quantity
estimated by the Michaelis-Menten equations [26] is proportional to the rate of an enzyme-catalyzed
process. [26] illustrates this model’s dynamic version:

dε
dt
= −ωε(t)φ(t) + χϱ(t), (1)

dφ
dt
= −ωε(t)φ(t) + (χ + β)ϱ(t), (2)

dϱ
dt
= ωε(t)φ(t) − (χ + β)ϱ(t), (3)

dϑ
dt
= βϱ(t). (4)

The substrate’s concentration is represented by ε(t), and an enzyme’s concentration is φ(t). The
resulting complex’s concentration is ϱ(t), and the resulting product’s concentration is represented by
ϑ(t). ω, χ and β represent the reaction rate regarding the complex’s production from ε(t) and φ(t), the
rate of reaction governing the complex’s breakdown to φ(t) and φ(t), and the reaction rate governing
the complex’s breaking down into ϑ(t) and φ(t) respectively. Initial conditions are ε(0) = ε0, φ(0) =
φ0, ϱ(0) = ϱ0 and ϑ(0) = ϑ0.

The schematic for this model is provided by

ε + φ⇌ ϱ→ φ + ϑ.

This diagram shows that an enzyme φ and a substrate ε react to produce a complex ϱ. In the end, an
enzyme ϑ and a product φ are produced from a complex ϱ [22].

In this article, we presented the computational solution of the FMMER model by Jacobi collocation
method (JCM) and VLCM. It should be mentioned that the FMMER model is handled originally in
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this study using the collocation strategy. It is important to note that no have comparable works that
apply this technique to issues regarding the FMMER model.

2. Preliminaries

2.1. Overview of fractional calculus

Here, we provide a summary of some definitions, characteristics, and outcomes related to fractional
calculus, which is important for developing the computational technique used to resolve FDEs.

Definition 1. The definition of the Riemann-Liouville fractional integral operator of a function ψ of
order ν > 0 is

Jνψ(z) =
1
Γ(ν)

∫ z

0
(z − s)ν−1ψ(s)ds, ν > 0,

J0ψ(z) = ψ(z).

Definition 2. The definition of fractional derivative in Caputo sense for order ν is

Dνψ(z) =
1

Γ(n − ν)

∫ z

0

ψ(n)(s)
(z − s)ν+1−n ds, ν > 0, z > 0,

where n − 1 < ν ≤ n, n ∈ N and ψ ∈ Cn[0, 1]. So, the Caputo operator follows

Dνzk =

0, k ∈ 0, 1, 2, · · · , ⌈ν⌉ − 1,
Γ(1+k)
Γ(1+k−ν)z

k−ν, k ∈ N ∧ k ≥ ⌈ν⌉.

To learn more about the definitions of fractional derivatives and their characteristics, see [27, 28]. The
derivatives d/dt are replaced in the dimensionless enzymatic reaction Eqs (1)–(4) by the fractional
derivatives Dν, 0 < ν ≤ 1. Thus, we attain the fractional model is

Dνε(t) = −ωε(t)φ(t) + χϱ(t), (5)

Dνφ(t) = −ωε(t)φ(t) + (χ + β)ϱ(t), (6)

Dνϱ(t) = ωε(t)φ(t) − (χ + β)ϱ(t), (7)

Dνϑ(t) = βϱ(t). (8)

2.2. JPs

In this article, JPs have served as the foundation for approximating unknown functions. The shifted
JPs is defined as [29–31]

j(p,q)
r (z) =

r∑
w=0

(−1)r−w Γ(r + q + 1)Γ(r + w + p + q + 1)
Γ(w + q + 1)Γ(r + p + q + 1)(r − w)!w!

zw,

the JPs parameters, p and q, are as stated in [29].
The following are orthogonal properties of JPs:∫ 1

0
j(p,q)
k (z) j(p,q)

s (z)ω(p,q)(z)dz = λp,q
k δks,
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δks is Kronecker delta function and ω(p,q)(z) is a weight function and presented as

ω(p,q)(z) = (1 − z)pzq

and
λ

p,q
k =

Γ(k + p + 1)Γ(k + q + 1)
(2k + p + q + 1)k!Γ(k + p + q + 1)

.

2.3. Operational matrix of JPs for fractional derivative

Theorem 1. Suppose that the shifted Jacobi vector is

Jk(z) = [ j(p,q)
0 , j(p,q)

1 , · · · , j(p,q)
k ]T

and ν > 0. Then
Dν j(p,q)

r (z) = D(ν)Jk(z),

here D(ν) = (N(r, i)) is operational matrix of (k + 1) × (k + 1) order and ν denotes order of fractional
derivative , whose entries are offered as

N(r, i, p, q) =
r∑

l=[ν]

(−1)r−l Γ(r + q + 1)Γ(r + l + p + q + 1)
(r − l)!Γ(l + q + 1)Γ(r + p + q + 1)Γ(l − ν + 1)

×

i∑
e=0

(−1)i−eΓ(p + 1)Γ(i + e + p + q + 1)Γ(l + e − ν + q + 1)(2i + p + q + 1)i!
(i − e)!(e)!Γ(i + p + 1)Γ(e + q + 1)Γ(l + e − ν + p + q + 2)

.

Proof. [29–31] are available to view as evidence. □

2.4. Function approximation for JCM

A function η ∈ L2
f [0, 1], with |η”(z)| ≤ A, can be expanded as

η(z) = lim
k→∞

k∑
r=0

ar j(p,q)
r (z), η(z) =< ar, j(p,q)

r (z) >, (9)

where the standard inner product space is indicated by the sign < ., . >.
For the estimation of finite dimensions, the composition of Eq (9) is as follows:

η �
m∑

r=0

ar j(p,q)
r (z) = AT Jm(z), (10)

where A and Jm(z) are matrices of order (m + 1) × 1, presented as

A = [a0, a1, ...., am]T and Jm(z) = [ j(p,q)
0 , j(p,q)

1 , · · · , j(p,q)
m ]T . (11)

2.5. Vieta-Lukas polynomials (VLPs)

Shifted VLPs on [0,1], in analytical form, can be written as [32]

vr(z) = 2r
r∑

j=0

(−1) j 4r− jΓ(2r − j)
Γ( j + 1)Γ(2r − 2 j + 1)

zr− j, r = {2, 3, · · · }

with v0(z) = 2.
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2.6. Operational matrix of VLPs for fractional derivative

Theorem 1. Suppose that the shifted Vieta-Lukas vector is

Vk(z) = [v0, v1, ..., vk]T

and ν > 0. Then,
Dνvr(z) = D(ν)Vk(z),

here D(ν) is an operational matrix of order (k + 1) × (k + 1) and ν represents the order of the fractional
derivative, the entries of which are provided in [32].

D(ν) =



0 0 · · · 0
...

... · · ·
...

0 0 · · · 0∑i−⌈ν⌉
m=0 σi,0,m

∑i−⌈ν⌉
m=0 σi,1,m · · ·

∑i−⌈ν⌉
m=0 σi,k,m

...
... · · ·

...∑k−⌈ν⌉
m=0 σk,0,m

∑k−⌈ν⌉
m=0 σk,1,m · · ·

∑k−⌈ν⌉
m=0 σk,k,m


and σi, j,m is given by

σi, j,m =

 i
∑i−⌈ν⌉

m=0 (−1)m 4i−mΓ(2i−m)Γ(i−m+1)Γ(i−m−ν+1/2)
√
πΓ(m+1)Γ(2i−2m+1)Γ(i−m−ν+1)2 , j = 0,

2i
∑i−⌈ν⌉

m=0

∑ j
r=0

(−1)m+r
√
π

4i−mΓ(2i−m)Γ(i−m+1)
Γ(m+1)Γ(2i−2m+1)Γ(i−m−ν+1) ×

4 j−rΓ(2 j−r)Γ(i+ j−m−r−ν+1/2)
Γ(r+1)Γ(2 j−2r+1)Γ(i+ j+m−r−ν+1) , j = 1, 2, 3, · · · .

Proof. See [32]. □

2.7. Function approximation for VLCM

A function ρ ∈ L2
f [0, 1], with |ρ”(z)| ≤ A, can be expanded in this way:

ρ(z) = lim
k→∞

k∑
r=0

brvr(z), (12)

where

br =
1
µrπ

∫ 1

0

ρ(z)vr(z)
√

z − z2
dz,

µ0 = 4 and µr = 2 (r ≥ 1).
Regarding estimate of finite dimensions, this is the composition of Eq (12):

ρ �
m∑

r=0

brvr(z) = CT Vm(z), (13)

where shifted VLPs coefficient C and shifted VLP vector Vm(z) [matrices of order (m + 1) × 1] are

C = [b0, b1, · · · , bm]T and Vm(z) = [v0, v1, · · · , vm]T . (14)
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3. Overview of the JCM method

Here, we will review the algorithm that uses the operational matrix and collocation strategy [33–35]
to generate the solution for the FDEs. We utilize the subsequent approximation:

π(t) =
k∑

r=0

ar j(p,q)
r (t) = AT Jk(t). (15)

Next, by taking the derivative of (15) at order one, we arrive at

D′π(t) = AT D′Jk(t) � AT D(1)Jk(t), (16)

where D(1) is the operational differentiation matrix of order 1 for JPs.
Taking the order ν derivative of (15), we get

Dνπ(t) = AT DνJk(t) � AT D(ν)Jr(t), (17)

where D(ν) is the operational differentiation matrix of order ν for JPs.
Eqations (15) and (16) allow us to write

π(0) = AT Jk(0), (18)

π′(0) = AT D(1)Jk(0). (19)

4. Numerical simulation of the FMMER model by JCM

Grouping Eqs (5), (15) and (17), we obtain

AT
1 D(ν)Jk(t) + ω

(
AT

1 Jk(t)
)(

AT
2 Jk(t)

)
−χ
(
AT

3 Jk(t)
)
= 0. (20)

Grouping Eqs (6), (15) and (17), we obtain

AT
2 D(ν)Jk(t) + ω

(
AT

1 Jk(t)
)(

AT
2 Jk(t)

)
−(χ + β)

(
AT

3 Jk(t)
)
= 0. (21)

Grouping Eqs (7), (15) and (17), we obtain

AT
3 D(ν)Jk(t) − ω

(
AT

1 Jk(t)
)(

AT
2 Jk(t)

)
+(χ + β)

(
AT

3 Jk(t)
)
= 0. (22)

Grouping Eqs (8), (15) and (17), we obtain

AT
4 D(ν)Jk(t) − β

(
AT

3 Jk(t)
)
= 0. (23)

The residual for Eqs (20)–(23) are given as follows:

R1k(t) = AT
1 D(ν)Jk(t) + ω

(
AT

1 Jk(t)
)(

AT
2 Jk(t)

)
−χ
(
AT

3 Jk(t)
)
, (24)

R2k(t) = AT
2 D(ν)Jk(t) + ω

(
AT

1 Jk(t)
)(

AT
2 Jk(t)

)
−(χ + β)

(
AT

3 Jk(t)
)
, (25)
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R3k(t) = AT
3 D(ν)Jk(t) − ω

(
AT

1 Jk(t)
)(

AT
2 Jk(t)

)
+(χ + β)

(
AT

3 Jk(t)
)
, (26)

R4k(t) = AT
4 D(ν)Jk(t) − β

(
AT

3 Jk(t)
)
. (27)

Now, when Eqs (24)–(27) are collocated at k points

tr =
r
k
, r = 0, 1, 2, · · · , k − 1,

we obtain
R1k(tr) = AT

1 D(ν)Jk(tr) + ω
(
AT

1 Jk(tr)
)(

AT
2 Jk(tr)

)
−χ
(
AT

3 Jk(tr)
)
, (28)

R2k(tr) = AT
2 D(ν)Jk(tr) + ω

(
AT

1 Jk(tr)
)(

AT
2 Jk(tr)

)
−(χ + β)

(
AT

3 Jk(tr)
)
, (29)

R3k(tr) = AT
3 D(ν)Jk(tr) − ω

(
AT

1 Jk(tr)
)(

AT
2 Jk(tr)

)
+(χ + β)

(
AT

3 Jk(tr)
)
, (30)

R4k(tr) = AT
4 D(ν)Jk(tr) − β

(
AT

3 Jk(tr)
)
. (31)

Furthermore, from Eq (18), we can write

AT
1 Jk(0) − ε(0) = 0, (32)

AT
2 Jk(0) − φ(0) = 0, (33)

AT
3 Jk(0) − ϱ(0) = 0, (34)

AT
4 Jk(0) − ϑ(0) = 0. (35)

By using the collocation points in Eqs (28)–(31), along with Eqs (32)–(35), we are left with a non-
linear system of equations that have the same amount of unknowns. The estimated solution of the
FMMER model is obtained by solving this system.

5. Analysis of the plan for JCM

Theorem 5.1. Define the function as π: [0, 1] −→ R, π ∈ C(k+1)[0, 1], where the kth estimate found
using JPs is πk(z). Then,

Fh
π,k = ||π − πk||L2

h[0,1], (36)

and as k −→ ∞, the error vector Fh
π,k −→ 0.

Proof. For evidence, consult the relevant books [36, 37], and the study article [38]. □

Theorem 5.2. The error vector for ν order operational matrix differentiation is Fν,h
D,k, and it is computed

utilizing (k + 1) JPs. Then,
Fν,h

D,k = D(ν)Jk(t) − DνJk(t), (37)

and as k −→ ∞, Fν,h
D,k −→ 0.

Proof. [39, 40] are available for viewing. □

Theorem 5.3. Consider the functional Y . Then

lim
k→∞

ζk(t) = ζ(t) = inf
t∈[0,1]

Y(t). (38)
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Proof. See [41]. For Eq (5), the functional Y is offered as

Y(t) = Dν
t ε(t) + ωε(t)φ(t) + χϱ(t). (39)

Using Eqs (15) and (17), we obtain

Y (F)(t) = AT
1 D(ν)Yk(t) + Fν,h

D,k + ω
(
AT

1 Jk(t) + Fh
π,k
)(

AT
2 Jk(t) + Fh

π,k
)
−χ
(
AT

3 Jk(t) + Fh
π,k
)
, (40)

where
Fh
π,k = AT J(t) − AT Jk(t), (41)

Fν,h
D,k = D(ν)Jk(t) − DνJk(t). (42)

Residual for Eq (40) is

R(F)
k (t) = AT

1 D(ν)Yk(t) + Fν,h
D,k + ω

(
AT

1 Jk(t) + Fh
π,k
)(

AT
2 Jk(t) + Fh

π,k
)
−χ
(
AT

3 Jk(t) + Fh
π,k
)
, (43)

when Eq (43) is collocated at k points

tr =
r
k
, r = 0, 1, 2, · · · , k − 1,

we obtain

R(F)
k (tr) = AT

1 D(ν)Yk(tr) + Fν,h
D,k + ω

(
AT

1 Jk(tr) + Fh
π,k
)(

AT
2 Yk(tr) + Fh

π,k
)
−χ
(
AT

3 Jk(tr) + Fh
π,k
)
. (44)

Ultimately, Eqs (32) and (44) lead to a set of non-linear algebraic equations. We solve the system to
find the value of the unknowns. Afterward, we move on to solving Eq (39). Let the achieved solution
be represented by ζ∗k (t).

Now, applying the limit k −→ ∞ and using Theorems 5.1 and 5.2, we get

ζ∗k (t) −→ ζk(t). (45)

From Eq (45) and Theorem 5.3, we get that

lim
k→∞

ζk(t) = ζ(t).

For FDEs (6)–(8), the same proof can be created. □

6. Overview of the VLCM method

Here, we will review the algorithm that uses the collocation approach and operational matrix to
generate the fractional DE solution [32–35]. We utilize the subsequent approximation:

ψ(t) =
k∑

r=0

brv(p,q)
r (t) = CT Vk(t). (46)

Next, by taking the derivative of (46) at order one, we arrive at

D′ψ(t) = CT D′Vk(t) � CT D(1)Vk(t), (47)
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here D(1) denotes the operational differentiation matrix of order 1 for VLPs.
Taking order ν derivative of (46), we get

Dνψ(t) = CT DνVk(t) � CT D(ν)Vk(t), (48)

here D(ν) denotes the operational differentiation matrix of order ν for VLPs.
From Eqs (46) and (47), we can write

ψ(0) = CT Vk(0), (49)

ψ′(0) = CT D(1)Vk(0). (50)

7. Numerical simulation of the FMMER model by VLCM

Grouping Eqs (5), (46) and (48), we obtain

CT
1 D(ν)Vk(t) + ω

(
CT

1 Vk(t)
)(

CT
2 Vk(t)

)
−χ
(
CT

3 Vk(t)
)
= 0. (51)

Grouping Eqs (6), (46) and (48), we obtain

CT
2 D(ν)Vk(t) + ω

(
CT

1 Vk(t)
)(

CT
2 Vk(t)

)
−(χ + β)

(
CT

3 Vk(t)
)
= 0. (52)

Grouping Eqs (7), (46) and (48), we obtain

CT
3 D(ν)Vk(t) − ω

(
CT

1 Vk(t)
)(

CT
2 Vk(t)

)
+(χ + β)

(
CT

3 Vk(t)
)
= 0. (53)

Grouping Eqs (8), (46) and (48), we obtain

CT
4 D(ν)Vk(t) − β

(
CT

3 Vk(t)
)
= 0. (54)

The residual for Eqs (51)–(54) are

R1k(t) = CT
1 D(ν)Vk(t) + ω

(
CT

1 Vk(t)
)(

CT
2 Vk(t)

)
−χ
(
CT

3 Vk(t)
)
, (55)

R2k(t) = CT
2 D(ν)Vk(t) + ω

(
CT

1 Vk(t)
)(

CT
2 Vk(t)

)
−(χ + β)

(
CT

3 Vk(t)
)
, (56)

R3k(t) = CT
3 D(ν)Vk(t) − ω

(
CT

1 Vk(t)
)(

CT
2 Vk(t)

)
+(χ + β)

(
CT

3 Vk(t)
)
, (57)

R4k(t) = CT
4 D(ν)Vk(t) − β

(
CT

3 Vk(t)
)
. (58)

Now, when Eqs (55)–(58) are collocated at k points

tr =
r
k
, r = 0, 1, 2, · · · , k − 1,

we obtain
R1k(tr) = CT

1 D(ν)Vk(tr) + ω
(
CT

1 Vk(tr)
)(

CT
2 Vk(tr)

)
−χ
(
CT

3 Vk(tr)
)
, (59)

R2k(tr) = CT
2 D(ν)Vk(tr) + ω

(
CT

1 Vk(tr)
)(

CT
2 Vk(tr)

)
−(χ + β)

(
CT

3 Vk(tr)
)
, (60)

R3k(tr) = CT
3 D(ν)Vk(tr) − ω

(
CT

1 Vk(tr)
)(

CT
2 Vk(tr)

)
+(χ + β)

(
CT

3 Vk(tr)
)
, (61)

AIMS Mathematics Volume 9, Issue 1, 625–641.



634

R4k(tr) = CT
4 D(ν)Vk(tr) − β

(
CT

3 Vk(tr)
)
. (62)

Furthermore, from Eq (49), we get

CT
1 Vk(0) − ε(0) = 0, (63)

CT
2 Vk(0) − φ(0) = 0, (64)

CT
3 Vk(0) − ϱ(0) = 0, (65)

CT
4 Vk(0) − ϑ(0) = 0. (66)

By using the collocation points in Eqs (59)–(62) along with Eqs (63)–(66), we are left with a non-
linear system of equations that have the same amount of unknowns. The FMMER model’s estimated
solution is obtained by solving this system.

8. Analysis of the plan for VLCM

Theorem 8.1. Define the function as ψ: [0, 1] −→ R, ψ ∈ C(k+1)[0, 1]. The kth estimate found using
VLPs is ψk(z). Then,

E f
ψ,k = ||ψ − ψk||L2

f [0,1], (67)

and as k −→ ∞, the error vector E f
ψ,k −→ 0.

Proof. For evidence, consult the relevant books [36, 37], and the study article [38]. □

Theorem 8.2. The error vector for ν order operational matrix differentiation is Eν, f
D,k, and it is computed

utilizing (k + 1) VLPs. Then,
Eν, f

D,k = D(ν)Vk(t) − DνVk(t), (68)

and as k −→ ∞, Eν, f
D,k −→ 0.

Proof. [39, 40] are available for viewing. □

Theorem 8.3. Consider the functional U. Then

lim
k→∞

γk(t) = γ(t) = inf
t∈[0,1]

U(t). (69)

Proof. See [41]. For Eq (5), the functional U is:

U(t) = Dν
t ε(t) + ωε(t)φ(t) + χϱ(t). (70)

Using Eqs (46) and (48), we obtain

U (E)(t) = CT
1 D(ν)Uk(t) + Eν, f

D,k + ω
(
CT

1 Vk(t) + E f
ψ,k

)(
CT

2 Vk(t) + E f
ψ,k

)
−χ
(
CT

3 Vk(t) + E f
ψ,k

)
, (71)

where
E f
ψ,k = CT V(t) −CT Vk(t), (72)

Eν, f
D,k = D(ν)Vk(t) − DνVk(t). (73)
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Residual, for Eq (71) is

R(E)
k (t) = CT

1 D(ν)Uk(t) + Eν, f
D,k + ω

(
CT

1 Vk(t) + E f
ψ,k

)(
CT

2 Vk(t) + E f
ψ,k

)
−χ
(
CT

3 Vk(t) + E f
ψ,k

)
, (74)

when Eq (74) is collocated at k point

tr =
r
k
, r = 0, 1, 2, · · · , k − 1,

we obtain

R(E)
k (tr) = CT

1 D(ν)Uk(tr) + Eν, f
D,k + ω

(
CT

1 Vk(tr) + E f
ψ,k

)(
CT

2 Vk(tr) + E f
ψ,k

)
−χ
(
CT

3 Vk(tr) + E f
ψ,k

)
. (75)

Ultimately, Eqs (63) and (75) lead to a set of non-linear algebraic equations. To determine the
unknown values, we solve the system. Then we solve Eq (70). Let the achieved solution be represented
by γ∗k(t).

Now, applying the limit k −→ ∞ and using Theorems 8.1 and 8.2,

γ∗k(t) −→ γk(t). (76)

From Eq (76) and Theorem 8.3, we get

lim
k→∞

γk(t) = γ(t).

For FDEs (6)–(8), the same proof can be created. □

9. Numerical results and discussion

Tables 1–4 compare the numerically calculated responses of ε(t), φ(t), ϱ(t) and ϑ(t) using the
collocation technique based-on shifted JPs and the collocation technique based on shifted VLPs.

Table 1. Comparison of numerical value of ε(t) obtained by VLCM and JCM for t = 0.01 to
0.05 and k = 4.

t VLCM JCM

0.01 0.5387 0.5387
0.02 0.5757 0.5757
0.03 0.6111 0.6111
0.04 0.6450 0.6450
0.05 0.6774 0.6774

Table 2. Comparison of numerical value of φ(t) obtained by VLCM and JCM for t = 0.01 to
0.05 and k = 4.

t VLCM JCM

0.01 0.1584 0.1584
0.02 0.2146 0.2146
0.03 0.2687 0.2687
0.04 0.3207 0.3207
0.05 0.3708 0.3708
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Table 3. Comparison of numerical value of ϱ(t) obtained by VLCM and JCM for t = 0.01 to
0.05 and k = 4.

t VLCM JCM

0.01 1.9416 1.9416
0.02 1.8854 1.8854
0.03 1.8313 1.8313
0.04 1.7793 1.7793
0.05 1.7292 1.7292

Table 4. Comparison of numerical value of ϑ(t) obtained by VLCM and JCM for t = 0.01 to
0.05 and k = 4.

t VLCM JCM

0.01 9.0197 9.0197
0.02 9.0389 9.0389
0.03 9.0576 9.0576
0.04 9.0757 9.0757
0.05 9.0934 9.0934

Numerical simulation and graphical results of the fractional order enzymatic reaction model are
displayed in the Figures 1–4 which is obtained by JCM. Figures 1–4 present the behaviour of ε, φ,
ϱ and ϑ, respectively, with time. ε(t) exhibits a tendency to rise with respect to time, and the rate of
increase, decreases when fractional order rises from 0.8 to 1 (see Figure 1). φ(t) displays a tendency
to increase with respect to time, and the rate of increase, decreases when fractional order is increased
from 0.8 to 1 (see Figure 2). ϱ(t) demonstrates a tendency to decline over time, and rate of decrese,
increases as fractional order rises from 0.8 to 1 (see Figure 3). ϑ(t) indicates a tendency to increase
with respect to time, and the rate of increase, decreases as fractional order rises from 0.8 to 1 (see
Figure 4). Figures 5 and 6 show the comparison between JCM and VLCM.

ν=1

ν=0.9

ν=0.8

0.00 0.01 0.02 0.03 0.04 0.05

0.5

1.0

1.5

2.0

t

ε
(t
)

Figure 1. Graph of ε(t) vs t at p = 1, q = 1, k = 8, ε0 = 0.5, ω = 1, β = 1 and χ = 2.
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Figure 2. Graph of φ(t) vs t at p = 1, q = 1, k = 8, φ0 = 0.1, ω = 1, β = 1 and χ = 2.
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t
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Figure 3. Graph of ϱ(t) vs t at p = 1, q = 1, k = 8, ϱ0 = 2, ω = 1, β = 1 and χ = 2.
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Figure 4. Graph of ϑ(t) vs t at p = 1, q = 1, k = 8, ϑ0 = 9, ω = 1, β = 1 and χ = 2.
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(a) Graph of ε(t) vs t for ν = 1 obtain by collocation
technique using JPs and VLPs.
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(b) Graph of φ(t) vs t for ν = 1 obtain by collocation
technique using JPs and VLPs.

Figure 5. Comparison between JCM and VLCM.
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(a) Graph of ϱ(t) vs t for ν = 1 obtain by collocation
technique using JPs and VLPs.
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(b) Graph of ϑ(t) vs t for ν = 1 obtain by collocation
technique using JPs and VLPs.

Figure 6. Comparison between JCM and VLCM.

10. Conclusions

To evaluate the computational solutions of the FMMER model, two computational techniques have
been discussed in the present article. In this work, we present a novel operational matrix for derivatives
of arbitrary order for JPs and VLPs in the Caputo sense. A computer-based mathematical algorithm
is created using an operational matrix to resolve the nonlinear FDEs that contain the Caputo arbitrary
order derivative. The benefit of using the proposed mathematical technique is that it reduces the issues
to a simple set of algebraic equations that is solvable using any type of computing device. Algebraic
equations are solved in this research study using Newton’s approach. To compute numerical results,
we use Mathematica computer software. The numerical results show the recommended approach’s
accuracy, success and trustworthiness. We found that our approach leds to more effective outcomes.
The computer solution of the FMMER model using a collocation approch shows that this technique
can be applied to explain chemical difficulties that occur in chemistry. We can solve more complex
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fractional calculus problems using the collocation technique that arises in real words.
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