Research article

Two-grid finite element method with an H2N2 interpolation for two-dimensional nonlinear fractional multi-term mixed sub-diffusion and diffusion wave equation

  • Received: 30 August 2023 Revised: 03 November 2023 Accepted: 08 November 2023 Published: 27 November 2023
  • MSC : 26A33, 65M60, 65N30

  • In this paper, we studied the two-grid method (TGM) for two-dimensional nonlinear time fractional multi-term mixed sub-diffusion and diffusion wave equation. A fully discrete scheme with the quadratic Hermite and Newton interpolation (H2N2) method was considered in the temporal direction and the expanded finite element method is used to approximate the spatial direction. In order to reduce computational time, a dual grid method based on Newton iteration was constructed with order $ \alpha\in(0, 1) $ and $ \beta\in(1, 2) $. The global convergence order of the two-grid scheme reaches $ O(\tau^{3-\beta}+h^{r+1}+H^{2r+2}) $, where $ \tau $, $ H $ and $ h $ are the time step size, coarse grid mesh size and fine grid mesh size, respectively. The error estimation and stability of the fully discrete scheme were derived. Theoretical analysis shows that the two grid algorithms maintain asymptotic optimal accuracy while saving computational costs. In addition, numerical experiments further confirmed the theoretical results.

    Citation: Huiqin Zhang, Yanping Chen. Two-grid finite element method with an H2N2 interpolation for two-dimensional nonlinear fractional multi-term mixed sub-diffusion and diffusion wave equation[J]. AIMS Mathematics, 2024, 9(1): 160-177. doi: 10.3934/math.2024010

    Related Papers:

  • In this paper, we studied the two-grid method (TGM) for two-dimensional nonlinear time fractional multi-term mixed sub-diffusion and diffusion wave equation. A fully discrete scheme with the quadratic Hermite and Newton interpolation (H2N2) method was considered in the temporal direction and the expanded finite element method is used to approximate the spatial direction. In order to reduce computational time, a dual grid method based on Newton iteration was constructed with order $ \alpha\in(0, 1) $ and $ \beta\in(1, 2) $. The global convergence order of the two-grid scheme reaches $ O(\tau^{3-\beta}+h^{r+1}+H^{2r+2}) $, where $ \tau $, $ H $ and $ h $ are the time step size, coarse grid mesh size and fine grid mesh size, respectively. The error estimation and stability of the fully discrete scheme were derived. Theoretical analysis shows that the two grid algorithms maintain asymptotic optimal accuracy while saving computational costs. In addition, numerical experiments further confirmed the theoretical results.



    加载中


    [1] S. Jiang, J. Zhang, Q. Zhang, Z. Zhang, Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations, Commun. Comput. Phys., 21 (2017), 650–678. https://doi.org/10.4208/cicp.OA-2016-0136 doi: 10.4208/cicp.OA-2016-0136
    [2] Y. Yu, P. Perdikaris, G. E. Karniadaki, Fractional modeling of viscoelasticity in 3D cerebral arteries and aneurysms, J. Comput. Phys., 323 (2016), 219–242. https://doi.org/10.1016/j.jcp.2016.06.038 doi: 10.1016/j.jcp.2016.06.038
    [3] Q. Li, Y. Chen, Y. Huang, Y. Wang, Two-grid methods for semilinear time fractional reaction diffusion equations by expanded mixed finite element method, Commun. Comput. Phys., 157 (2020), 38–54. https://doi.org/10.1016/j.apnum.2020.05.024 doi: 10.1016/j.apnum.2020.05.024
    [4] J. Xu, A novel two-grid method for semilinear equations, SIAM. J. Sci. Comput., 15 (1994), 231–237. https://doi.org/10.1137/0915016 doi: 10.1137/0915016
    [5] J. Xu, Two-grid discretization techniques for linear and non-linear PDEs, SIAM. J. Numer. Anal., 33 (1996), 1759–1777. https://doi.org/10.1137/S0036142992232949 doi: 10.1137/S0036142992232949
    [6] L. Chen, Y. Chen, Two-grid method for nonlinear reaction-diffusion equations by mixed finite element methods, J. Sci. Comput., 49 (2011), 383–401. https://doi.org/10.1007/s10915-011-9469-3
    [7] Y. Chen, Q. Gu, Q. Li, Y. Huang, A two-grid finite element approximation for nonlinear time fractional two-term mixed sub-diffusion and diffusion wave equations, J. Comput. Math., 40 (2022), 938–956. https://doi.org/10.4208/jcm.2104-m2021-0332 doi: 10.4208/jcm.2104-m2021-0332
    [8] X. Li, H. Rui, A two-grid block-centered finite difference method for the nonlinear time-fractional parabolic equation, J. Sci. Comput., 72 (2017), 863–891. https://doi.org/10.1007/s10915-017-0380-4 doi: 10.1007/s10915-017-0380-4
    [9] Y. Tang, A characteristic mixed finite element method for bilinear convection-diffusion optimal control problems, J. Nonlinear Funct. Anal., 2022 (2022), 39. https://doi.org/10.23952/jnfa.2022.39 doi: 10.23952/jnfa.2022.39
    [10] R. Schumer, D. A. Benson, M. M. Meerschaert, B. Baeumer, Fractal mobile/immobile solute transport, Water. Resour. Res., 39 (2003), 1296–1308. https://doi.org/10.1029/2003WR002141 doi: 10.1029/2003WR002141
    [11] Y. Zhang, Z. Sun, X. Zhao, Compact alternating direction implicit scheme for the two-dimensional fractional diffusion-wave equation, SIAM. J. Numer. Anal., 50 (2012), 1535–1555. https://doi.org/10.1137/110840959 doi: 10.1137/110840959
    [12] Y. Zhao, F. Wang, X. Hu, Anisotropic linear triangle finite element approximation for multi-term time-fractional mixed diffusion and diffusion-wave equations with variable coefficient on 2D bounded domain, Comput. Math. Appl., 78 (2019), 1705–1719. https://doi.org/10.1016/j.camwa.2018.11.028 doi: 10.1016/j.camwa.2018.11.028
    [13] Z. Sun, C. Ji, R. Du, A new analytical technique of the L-type difference schemes for time fractional mixed sub-diffusion and diffusion-wave equations, Appl. Math. Lett., 102 (2020), 106–115. https://doi.org/10.1016/j.aml.2019.106115 doi: 10.1016/j.aml.2019.106115
    [14] J. Shen, C. Li, Z. Sun, An H2N2 interpolation for Caputo derivative with order in (1, 2) and its application to time fractional hyperbolic equation in more than one space dimension, J. Sci. Comput., 83 (2020), 38–67. https://doi.org/10.1007/s10915-020-01219-8 doi: 10.1007/s10915-020-01219-8
    [15] J. Shen, X. M. Gu, Two finite difference methods based on an H2N2 interpolation for two-dimensional time fractional mixed diffusion and diffusion-wave equations, Discrete. Cont. Dyn. Syst. B, 27 (2022), 1179–1207. https://doi.org/10.3934/dcdsb.2021086 doi: 10.3934/dcdsb.2021086
    [16] Y. Liu, Y. Du, H. Li, S. He, W. Gao, Finite difference/finite element method for a nonlinear time-fractional fourth-order reaction-diffusion problem, Comput. Math. Appl., 70 (2015), 573–591. https://doi.org/10.1016/j.camwa.2015.05.015 doi: 10.1016/j.camwa.2015.05.015
    [17] Y. Liu, Y. Du, H. Li, J. Wang, A two-grid finite element approximation for a nonlinear time-fractional Cable equation, Nonlinear Dyn., 85 (2016), 2535–2548. https://doi.org/10.1007/s11071-016-2843-9 doi: 10.1007/s11071-016-2843-9
    [18] C. Bi, C. Wang, Y. Lin, Pointwise error estimates and two-grid algorithms of discontinuous Galerkin method for strongly nonlinear elliptic problems, J. Sci. Comput., 67 (2016), 153–175. https://doi.org/10.1007/s10915-015-0072-x doi: 10.1007/s10915-015-0072-x
    [19] B. Jin, B. Li, Z. Zhou, Numerical analysis of nonlinear subdiffusion equations, SIAM. J. Numer. Anal., 56 (2018), 1–23. https://doi.org/10.1137/16M1089320 doi: 10.1137/16M1089320
    [20] D. Li, C. Wu, Z. Zhang, Linearized Galerkin FEMs for nonlinear time fractional parabolic problems with non-smooth solutions in time direction, J. Sci. Comput., 80 (2019), 403–419. https://doi.org/10.1007/s10915-019-00943-0 doi: 10.1007/s10915-019-00943-0
    [21] P. Ciarlet, The finite element method for elliptic problems, New York: North-Hollan, 1978. https://doi.org/10.1115/1.3424474
    [22] I. H. Sloan, V. Thomée, Time discretization of an integro-differential equation of parabolic type, SIAM. J. Numer. Anal., 23 (1986), 1052–1061. https://doi.org/10.1137/0723073 doi: 10.1137/0723073
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(989) PDF downloads(93) Cited by(1)

Article outline

Figures and Tables

Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog