Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article

Two-grid finite element method with an H2N2 interpolation for two-dimensional nonlinear fractional multi-term mixed sub-diffusion and diffusion wave equation

  • Received: 30 August 2023 Revised: 03 November 2023 Accepted: 08 November 2023 Published: 27 November 2023
  • MSC : 26A33, 65M60, 65N30

  • In this paper, we studied the two-grid method (TGM) for two-dimensional nonlinear time fractional multi-term mixed sub-diffusion and diffusion wave equation. A fully discrete scheme with the quadratic Hermite and Newton interpolation (H2N2) method was considered in the temporal direction and the expanded finite element method is used to approximate the spatial direction. In order to reduce computational time, a dual grid method based on Newton iteration was constructed with order α(0,1) and β(1,2). The global convergence order of the two-grid scheme reaches O(τ3β+hr+1+H2r+2), where τ, H and h are the time step size, coarse grid mesh size and fine grid mesh size, respectively. The error estimation and stability of the fully discrete scheme were derived. Theoretical analysis shows that the two grid algorithms maintain asymptotic optimal accuracy while saving computational costs. In addition, numerical experiments further confirmed the theoretical results.

    Citation: Huiqin Zhang, Yanping Chen. Two-grid finite element method with an H2N2 interpolation for two-dimensional nonlinear fractional multi-term mixed sub-diffusion and diffusion wave equation[J]. AIMS Mathematics, 2024, 9(1): 160-177. doi: 10.3934/math.2024010

    Related Papers:

    [1] Zhichao Fang, Ruixia Du, Hong Li, Yang Liu . A two-grid mixed finite volume element method for nonlinear time fractional reaction-diffusion equations. AIMS Mathematics, 2022, 7(2): 1941-1970. doi: 10.3934/math.2022112
    [2] Yones Esmaeelzade Aghdam, Hamid Mesgarani, Zeinab Asadi, Van Thinh Nguyen . Investigation and analysis of the numerical approach to solve the multi-term time-fractional advection-diffusion model. AIMS Mathematics, 2023, 8(12): 29474-29489. doi: 10.3934/math.20231509
    [3] Ailing Zhu, Yixin Wang, Qiang Xu . A weak Galerkin finite element approximation of two-dimensional sub-diffusion equation with time-fractional derivative. AIMS Mathematics, 2020, 5(5): 4297-4310. doi: 10.3934/math.2020274
    [4] Changling Xu, Hongbo Chen . A two-grid P20-P1 mixed finite element scheme for semilinear elliptic optimal control problems. AIMS Mathematics, 2022, 7(4): 6153-6172. doi: 10.3934/math.2022342
    [5] Jing Li, Linlin Dai, Kamran, Waqas Nazeer . Numerical solution of multi-term time fractional wave diffusion equation using transform based local meshless method and quadrature. AIMS Mathematics, 2020, 5(6): 5813-5838. doi: 10.3934/math.2020373
    [6] Yanjie Zhou, Xianxiang Leng, Yuejie Li, Qiuxiang Deng, Zhendong Luo . A novel two-grid Crank-Nicolson mixed finite element method for nonlinear fourth-order sin-Gordon equation. AIMS Mathematics, 2024, 9(11): 31470-31494. doi: 10.3934/math.20241515
    [7] Liang He, Yihui Sun, Zhenglong Chen, Fei Teng, Chao Shen, Zhendong Luo . The POD-based reduced-dimension study on the two-grid finite element method for the nonlinear time-fractional wave equation. AIMS Mathematics, 2025, 10(2): 3408-3427. doi: 10.3934/math.2025158
    [8] Lei Ren . High order compact difference scheme for solving the time multi-term fractional sub-diffusion equations. AIMS Mathematics, 2022, 7(5): 9172-9188. doi: 10.3934/math.2022508
    [9] Fouad Mohammad Salama, Faisal Fairag . On numerical solution of two-dimensional variable-order fractional diffusion equation arising in transport phenomena. AIMS Mathematics, 2024, 9(1): 340-370. doi: 10.3934/math.2024020
    [10] Zihan Yue, Wei Jiang, Boying Wu, Biao Zhang . A meshless method based on the Laplace transform for multi-term time-space fractional diffusion equation. AIMS Mathematics, 2024, 9(3): 7040-7062. doi: 10.3934/math.2024343
  • In this paper, we studied the two-grid method (TGM) for two-dimensional nonlinear time fractional multi-term mixed sub-diffusion and diffusion wave equation. A fully discrete scheme with the quadratic Hermite and Newton interpolation (H2N2) method was considered in the temporal direction and the expanded finite element method is used to approximate the spatial direction. In order to reduce computational time, a dual grid method based on Newton iteration was constructed with order α(0,1) and β(1,2). The global convergence order of the two-grid scheme reaches O(τ3β+hr+1+H2r+2), where τ, H and h are the time step size, coarse grid mesh size and fine grid mesh size, respectively. The error estimation and stability of the fully discrete scheme were derived. Theoretical analysis shows that the two grid algorithms maintain asymptotic optimal accuracy while saving computational costs. In addition, numerical experiments further confirmed the theoretical results.



    In recent decades, fractional partial differential equations (FPDEs) have become popular for modeling anomalous transport processes. In virtue of the difficulty for looking for the exact solutions of FPDEs, the construction of numerical methods for FPDEs have been studied extensively by many scholars which mainly cover the finite difference method, finite element method, spectral method and so on. Unlike general PDEs, it has been found that fractional derivatives are nonlocal, with long memory and weak singular kernels, and it takes more time to solve fractional differential equations when using some well-known L-type discretization formulas. In order to increase computational efficiency, some fast algorithms have been presented, such as the sum-of-exponentials technique [1,2] and the two-grid technique [3,4,5,6,7,8,9].

    There have been many studies on the approximation of time fractional order equations. Schumer [10] first developed the fractional-order mobile/immobile model in which the time drift term u/t is added to describe the motion time, thus helps to distinguish the status of particles conveniently. Zhang and his coauthors [11] proposed a difference scheme combining the compact difference approach for spatial discretization and the alternating direction implicit (ADI) method in the time stepping for the two-dimensional time fractional diffusion-wave equation. In [12], the authors established a fully-discrete approximate scheme for the 2D multi-term time-fractional mixed diffusion and diffusion-wave equations with a spatial variable coefficient by using the linear triangle finite element method in space and classical L1 time-stepping method combined with the Crank–Nicolson scheme in time. Sun et al. [13] gave an L-type difference scheme for time-fractional mixed sub-diffusion and diffusion wave equations, the new analytical technique with a min{2α,3β} order accuracy in the discrete H1 norm and second order accuracy in space, where α(0,1),β(1,2). In recent years, Shen et al. [14] derived the H2N2 method to develop a known numerical differential formula of the Caputo fractional derivative to obtain a (3α) order temporal convergence rate with α(1,2). Moreover, Shen and his coauthors [15] also gave the finite difference methods based on an H2N2 interpolation for two-dimensional time fractional mixed sub-diffusion and diffusion-wave equations with a (3β) order temporal convergence rate and second order accuracy in space.

    With further research, it is found that nonlinear partial differential equations can describe some model problems more effectively compared to linear fractional differential equations. As we know, numerical methods for nonlinear parabolic fractional partial differential problems have been extensively studied, especially for the two-grid approximation of nonlinear reaction terms. In [4,5], Xu utilized the two-grid method to discretize asymmetric, indefinite, and nonlinear partial differential equations. Afterward, many authors devoted themselves to the research of the two-grid method. For example, Chen and Chen [6] investigated a scheme for nonlinear reaction-diffusion equations by using the mixed finite element methods, in which the two-grid method (TGM) studied provided a new approach to take the advantage of some nice properties hidden in a complex problem. Based on the finite difference approximation in the time direction and the finite element method in the spatial direction, a class of time fractional fourth order reaction diffusion problems with nonlinear reaction terms was solved by Liu et al. [16]. Almost simultaneously, Liu et al. [17] considered a nonlinear fractional Cable equation by a two-grid algorithm combined arriving at a second-order convergence rate independent of fractional parameters α(0<α<1) and β(0<β<1) with finite element method. In addition, Bi et al. [18] established a discontinuous Galerkin finite element scheme for the second-order nonlinear elliptic problem, using piecewise polynomials of degree r2 based on pointwise error estimation, and provided an error estimate of the energy norm of a two-grid mesh algorithm. Li and Rui [8] introduced and analyzed a two-grid block-centered finite difference scheme for the nonlinear time-fractional parabolic equation with the Neumann condition, and the error estimates established on a non-uniform rectangular grid with the discrete L(L2) and L2(H1) errors were O(t2α+h2+H3). Jin et al. [19] demonstrated a general criterion for showing the fractional discrete Gr¨uonwall inequality and verified it for the L1 scheme and convolution quadrature generated by backward difference formulas for time-fractional nonlinear parabolic partial differential equations. In 2019, Li et al. [20] presented and developed a Newton linearized Galerkin finite element method to solve nonlinear time fractional parabolic problems with non-smooth solutions in time direction. Recently, Chen et al. [7] constructed and studied a two-grid finite element method for 2D nonlinear time fractional two-term mixed sub-diffusion and diffusion wave equations and got min(2-α,3β) order in the time direction where α(0,1),β(1,2).

    However, to our knowledge, there is no two-grid finite element method with an H2N2 interpolation for two-dimensional nonlinear fractional multi-term mixed sub-diffusion and diffusion wave equations, and our aim is to present the corresponding algorithm in this paper. We consider the numerical solution of the following nonlinear time-fractional multi-term mixed sub-diffusion and diffusion wave equations:

    {tu(x,t)+M1i=1piαitu(x,t)+M2i=1qjβjtu(x,t)Δu(x,t)=g(u),(x,t)Ω×(0,T]u(x,0)=u0(x),ut(x,0)=u0t(x),xΩ, (1.1)

    where M1,M2 are positive integers, pi,qj are nonnegative constants, ΩR2 is a bounded convex polygonal region with boundary Ω,x=[x,y] and g() is twice continuously differentiable. Δ is a Laplace operator, and u0(x),u0t(x) are given as sufficiently smooth functions. The Caputo fractional derivative αitu(x,t),βjtu(x,t) is defined by

    αitu(x,t)=1Γ(1αi)t0u(x,s)s1(ts)αids, (1.2)
    βjtu(x,t)=1Γ(2βj)t02u(x,s)s21(ts)βj1ds, (1.3)

    with 0<α0<<αi<<αM1<1(i=1,2,,M1) and 1<β0<<βj<<βM2<2(j=1,2,,M2). For convenience, we define αM1=α,βM2=β. Throughout this paper, the notation C denotes a generic constant, which may vary at different occurrences, but it is always independent of the coarse grid mesh size H, fine grid mesh size h and time step size τ.

    The remaining outline of the article is constructed as follows. In section two, we propose some preliminary knowledge of fractional derivatives and some lemmas on time approximations. The unconditional stability and the error estimates of the two-grid finite element method (FEM) are discussed in section three. In section four, numerical examples are presented to demonstrate the efficiency of the theoretical results. Finally, a brief conclusion of the article was provided.

    Let Wmp(Ω) be the standard Sobolev space with a norm m,p given by vpm,p=|α|mDαvpLP(Ω). For p=2, we denote Hm(Ω)=Wm2(Ω) and H10(Ω) to be the subspace of H1(Ω) consisting of functions with a vanishing trace on Ω. m=m,2 and =0,2. Take an integer N and denote τ=TN,tn=nτ,tn12=12(tn+tn1). For a sequence of smooth funtions {u(t)}Nn=0 on [0,T], we denote

    un=u(tn),ut(x,0)=u0t(x),un12=un+un12,δtuk12=ukuk12(1kN),δtu0=0.

    For any function u defined on the interval [0,t1], we consider the Hermite quadratic interpolation polynomial H2,0(t). On the interval [tk1,tk+1](1kN1), the Newton quadratic interpolation polynomial N2,k(t) will be used. With the Caputo-fractional derivatives (1.1) on the time grid points of the form {t12,t32,,tN12} [14,15], we can obtain

    M1i=1piDαitu(tn12)M1i=1piΓ(1αi)[t12t0H2,0(t)(tn12t)αidt+n1k=1tk+12tk12N2,k(t)(tn12t)αidt]=M1i=1piΓ(1αi){(tn12t0)1αiu0t(tn12t12)1αiδtu12+t12t0H2,0(t)(tn12t)1αidt+n1k=1[(tn12tk12)1αiδtuk12(tn12tk+12)1αiδtuk+12+tk+12tk12N2,k(t)(tn12t)1αidt]}=M1i=1piΓ(1αi)[a(n,αi)n1δtun12+n1k=1(a(n,αi)k1a(n,αi)k)δtuk12+(A(n,αi)0a(n,αi)0)u0t], (2.1)

    where

    A(n,αi)0=(tn12t0)1αi=t1αin12, (2.2)
    a(n,αi)n1=2τt12t0(tn12t)1αidt=2τ1αi2αi[(n12)2αi(n1)2αi], (2.3)
    a(n,αi)nk1=1τtk+12tk12(tn12t)1αidt=τ1αi2αi[(nk)2αi(n1k)2αi],1kn1. (2.4)

    The H2N2 interpolation for the Caputo derivative Dβjtu(tn12) can be written as follows:

    M2j=1qjDβjtu(tn12)M2j=1qjΓ(2βj)[t12t0H2,0(t)(tn12t)1βjdt+n1k=1tk+12tk12N2,k(t)(tn12t)1βjdt]=M2j=1qjΓ(2βj)[b(n,βj)0δtun12n1k=1(b(n,βj)n1kb(n,βj)nk)δtuk12b(n,βj)n1u0t]. (2.5)

    Here

    b(n,βj)n1=2τt12t0(tn12t)1βjdt=2τ1βj2βj[(n12)2βj(n1)2βj], (2.6)
    b(n,βj)nk1=1τtk+12tk12(tn12t)1βjdt=τ1βj2βj[(nk)2βj(n1k)2βj],1kn1. (2.7)

    Lemma 2.1. For A(n,αi)0,a(n,αi)k,b(n,βj)k,0kn1 defined by (2.2)–(2.4), (2.6) and (2.7), we gain

    0<a(n,αi)0<a(n,αi)1<<a(n,αi)n1<A(n,αi)0,0<t1βjn12<b(n,βj)n1<b(n,βj)n2<<b(n,βj)0=τ1βj2βj. (2.8)

    Lemma 2.2. [14,15] Suppose u(t)C3[t0,tn], and denote Rn12αi=M1i=1piαitu(tn12)M1i=1piDαitu(tn12) then we can get

    Rn12αiC0max

    If u(t)\in C^3[t_0, t_n] , denote R_{\beta_j}^{n-\frac{1}{2}} = \sum_{j = 1}^{M_{2}}q_{j}\partial_t^{\beta_j}u(t_{n-\frac{1}{2}})-\sum_{j = 1}^{M_{2}}q_{j}\mathcal{D}_t^{\beta_j}u(t_{n-\frac{1}{2}}) , then we have

    \begin{align*} \left\|R_{\beta_j}^{n-\frac{1}{2}}\right\|\le C_1 \max\limits_{t_0\le t\le t_{n-\frac{1}{2}}}\left|u''(t)\right|\tau^{3-\beta_j}. \end{align*}

    The basic mechanism in this algorithm is the construction of two shape-regular triangulations of \Omega , which we denote by \mathcal{T}_H and \mathcal{T}_h , with different mesh sizes H and h\; (h\ll H) . This can be accomplished by successively refining the triangulation \mathcal{T}_H to obtain the fine mesh \mathcal{T}_h . The corresponding finite element spaces are V_H and V_h , which will be called coarse and fine space, respectively. We note that by such a construction we have V_H\subset V_h . Let V_h be the two-dimensional subspace of H^1_0(\Omega) , which consists of continuous piecewise polynomials of degree r(r\ge1) on \mathcal{T}_h and V_h^0 = \{v\in V_h, v|\partial\Omega = 0\} , V_H^0 = \{v\in V_H, v|\partial\Omega = 0\} . {Note} that the corresponding weak formulation of (1.1) is to find u({\boldsymbol{x}}, t):(0, T]\to H^1_0(\Omega) , then

    \begin{equation} \begin{aligned} \begin{cases} (\delta_t u({\boldsymbol{x}},t),v)+\sum_{i = 1}^{M_{1}}p_{i}(\mathcal{D} _{t}^{\alpha_{i}}u({\boldsymbol{x}},t),v)+\sum_{j = 1}^{M_{2}}q_{j}(\mathcal{D}_{t}^{\beta_{j}}u({\boldsymbol{x}},t),v)+(\nabla u({\boldsymbol{x}},t),\nabla v) = (g({\boldsymbol{u}}),v),\\ u({\boldsymbol{x}},0) = u_0({\boldsymbol{x}}),\; u_{t}({\boldsymbol{x}},0) = u_t^0({\boldsymbol{x}}),\; {\boldsymbol{x}}\in\Omega. \end{cases} \end{aligned} \end{equation} (2.9)

    First, we derive the two-grid fully discrete scheme for problem (1.1). The process is divided into two steps. Step 1: On the coarse grid \mathcal{T}_H , for any v_H\in V_H^0, find u_H^n\in V_H^n for the following nonlinear system, such that

    \begin{equation} \begin{aligned} \begin{cases}(\delta_t u_H^{n-\frac{1}{2}},v_H)+\sum_{i = 1}^{M_{1}}p_{i}(\mathcal{D} _{t}^{\alpha_{i}}u_{H}^{n-\frac{1}{2}},v_{H})+\sum_{j = 1}^{M_{2}}q_{j}(\mathcal{D} _{t}^{\beta_{j}}u_{H}^{n-\frac{1}{2}},v_{H})+(\nabla u_H^{n-\frac{1}{2}},\nabla v_H) = (g(u_H^{n-\frac{1}{2}}),v_H),\\ u_H^{0} = R_Hu_0({\boldsymbol{x}}),\; u_{Ht}^{0} = R_Hu_t^0({\boldsymbol{x}}),\; {\boldsymbol{x}}\in\Omega. \end{cases} \end{aligned} \end{equation} (2.10)

    Step 2: On the fine grid \mathcal{T}_h , find u_h^n\in V_h^n for the following linear system, then

    \begin{equation} \begin{aligned}\begin{cases}(\delta_t u_h^{n-\frac{1}{2}},v_h) +\sum_{i = 1}^{M_{1}}p_{i}(\mathcal{D} _{t}^{\alpha_{i}}u_{h}^{n-\frac{1}{2}},v_{h}) +\sum_{j = 1}^{M_{2}}q_{j}(\mathcal{D} _{t}^{\beta_{j}}u_{h}^{n-\frac{1}{2}},v_{h}) +(\nabla u_h^{n-\frac{1}{2}},\nabla v_h),\\ = \Big(g(u_H^{n-\frac{1}{2}})+g'(u_H^{n-\frac{1}{2}})(u_h^{n-\frac{1}{2}}-u_H^{n-\frac{1}{2}}),v_h\Big),\; \forall v_h\in V_h^0,\\ u_h^{0} = R_hu_0({\boldsymbol{x}}),\; u_{ht}^{0} = R_hu_t^0({\boldsymbol{x}}),\; {\boldsymbol{x}}\in \Omega. \end{cases} \end{aligned} \end{equation} (2.11)

    Next, the two-grid fully discrete scheme based on the Newton iteration idea will be analyzed. In the two-grid algorithm, we solve the nonlinear factional equation on the coarse grid \mathcal{T}_H to produce a rough approximation, and then use the rough approximation as the initial guess to slove the linearized equation on the fine grid \mathcal{T}_h .

    Below, the stability and convergence of the two-grid fully discrete scheme will be derived. For the demand of analysis, we introduce some lemmas as follows:

    Lemma 3.1. [21] Let R_{\tilde{h}}:H^1_0(\Omega)\to V^0_{\tilde{h}} , be the Rize-projection operator satisfying

    \begin{equation} \begin{aligned} (\nabla(u-R_{\tilde{h}}u),\nabla v) = 0,\; \forall v\in V^0_{\tilde{h}}. \end{aligned} \end{equation} (3.1)

    For u\in H^1_0(\Omega)\cap H^{r+1}(\Omega) , it holds that

    \begin{equation} \begin{aligned} \left\|u-R_{\tilde{h}}u\right\|+\tilde{h}\left\|u-R_{\tilde{h}}u\right\|_1\le C\tilde{h}^{r+1}\left\|u\right\|_{r+1}, \end{aligned} \end{equation} (3.2)

    where \tilde{h} is coarse grid step length H or fine grid size h .

    Lemma 3.2. [22] If A_m, B_s are nonnegative real sequences and the sequence Z_m satisfies

    \begin{align*} Z_m\le A_m+\sum\limits_{s = 0}^{m-1}B_sZ_s,\; m\ge0, \end{align*}

    where A_0\ge0 , then the sequence {Z_m} satisfies

    \begin{align*} Z_m\le A_m{\mathrm{exp}}(\sum\limits_{s = 0}^{m-1}B_s),\; m\ge0. \end{align*}

    In this subsection, we shall present the main algorithm of the paper. The energy method is applied to estabilish the stability of the two-grid fully discrete scheme. First, we derive the stability of the coarse grid system.

    Theorem 3.1. For u_H^n\in V_H^0 , the two-grid finite element analysis system (2.10) can obtain the following inequality

    \begin{align*} \left\|u_{H}^{n}\right\|^2\le C\Big(\left\|\nabla u_{H}^{0}\right\|^2+\sum\limits_{j = 1}^{M_{2}}\frac{t_n^{2-\beta_j}q_j}{\Gamma(3-\beta_j)}\left\|u_{Ht}^{0}\right\|^2\Big). \end{align*}

    Proof. Suppose \{u_H^{n-\frac{1}{2}}\} is the solution of a semi discrete scheme (2.10), the v_H = \delta_tu_H^{n-\frac{1}{2}}\in V_H^0 , then the first item of (2.10) holds that

    \begin{equation} \begin{aligned} (\delta_{t}u_H^{n-\frac{1}{2}},\delta_{t}u_H^{n-\frac{1}{2}}) = \left\|\delta_{t}u_H^{n-\frac{1}{2}}\right\|^2. \end{aligned} \end{equation} (3.3)

    Using Eq (2.1), the second item of (2.10) follows that

    \begin{equation} \begin{aligned} &\; \; \; \; \sum\limits_{i = 1}^{M_{1}}p_i(\mathcal{D} _{t}^{\alpha_{i}}u_{H}^{n-\frac{1}{2}},\delta_{t}u_H^{n-\frac{1}{2}})\\ & = \sum\limits_{i = 1}^{M_{1}}\frac{p_{i}}{\Gamma(2-\alpha_{i})}\Big(a_{0}^{(n,\alpha_{i})}\delta_{t}u_H^{n-\frac{1}{2}}-\sum\limits_{k = 1}^{n-1}\big(a_{n-k-1}^{(n,\alpha_{i})}-a_{n-k}^{(n,\alpha_{i})}\big)\delta_{t}u_H^{k-\frac{1}{2}}+\big(A_{0}^{(n,\alpha_{i})}-a_{n-1}^{(n,\alpha_{i})}\big)u_{Ht}^{0},\delta_{t}u_H^{n-\frac{1}{2}}\Big)\\ & = \sum\limits_{i = 1}^{M_{1}}\frac{p_{i}\tau^{1-\alpha_{i}}}{\Gamma(3-\alpha_{i})}(\delta_{t}u_H^{n-\frac{1}{2}},\delta_{t}u_H^{n-\frac{1}{2}}) -\sum\limits_{i = 1}^{M_{1}}\frac{p_{i}}{\Gamma(2-\alpha_{i})}\sum\limits_{k = 1}^{n-1}\big(a_{n-k-1}^{(n,\alpha_{i})}-a_{n-k}^{(n,\alpha_{i})}\big)\big(\delta_{t}u_H^{k-\frac{1}{2}},\delta_{t}u_H^{n-\frac{1}{2}}\big)\\ &\; \; \; +\sum\limits_{i = 1}^{M_{1}}\frac{p_{i}}{\Gamma(2-\alpha_{i})}\big(A_{0}^{(n,\alpha_{i})}-a_{n-1}^{(n,\alpha_{i})}\big)\big(u_{Ht}^{0},\delta_{t}u_H^{n-\frac{1}{2}}\big). \end{aligned} \end{equation} (3.4)

    By substituting (2.5) into (2.10), we can organize and obtain the third item of (2.10)

    \begin{equation} \begin{aligned} &\; \; \; \sum\limits_{j = 1}^{M_{2}}q_j(\mathcal{D} _{t}^{\beta_{j}}u_{H}^{n-\frac{1}{2}},\delta_{t}u_H^{n-\frac{1}{2}})\\ & = \sum\limits_{j = 1}^{M_{2}}\frac{q_j}{\Gamma(2-\beta_j)}\Big(b_{0}^{(n,\beta_{j})}\delta_{t}u_H^{n-\frac{1}{2}}-\sum\limits_{k = 1}^{n-1}\Big(b_{n-1-k}^{(n,\beta_{j})}-b_{n-k}^{(n,\beta_{j})}\Big)\delta_{t}u_H^{k-\frac{1}{2}}-b_{n-1}^{(n,\beta_{j})}u_{Ht}^{0},\delta_{t}u_H^{n-\frac{1}{2}}\Big)\\ & = \sum\limits_{j = 1}^{M_{2}}\frac{q_j\tau^{1-\beta_{j}}}{\Gamma(3-\beta_{j})}(\delta_{t}u_H^{n-\frac{1}{2}},\delta_{t}u_H^{n-\frac{1}{2}}) -\sum\limits_{j = 1}^{M_{2}}\frac{q_j}{\Gamma(2-\beta_{j})}\sum\limits_{k = 1}^{n-1}\Big(b_{n-1-k}^{(n,\beta_{j})}-b_{n-k}^{(n,\beta_{j})}\Big)\Big(\delta_{t}u_H^{k-\frac{1}{2}},\delta_{t}u_H^{n-\frac{1}{2}}\Big)\\ &\; \; \; -\sum\limits_{j = 1}^{M_{2}}\frac{q_jb_{n-1}^{(n,\beta_{j})}}{\Gamma(2-\beta_{j})}\Big(u_{Ht}^{0},\delta_{t}u_H^{n-\frac{1}{2}}\Big). \end{aligned} \end{equation} (3.5)

    Substituting (3.3)–(3.5) into (2.10), and multiplying 2\tau on both sides of this equatity, we obtain

    \begin{equation} \begin{aligned} &\; \; \; \; 2\tau\left\|\delta_{t}u_H^{n-\frac{1}{2}}\right\|^2+\left\|\nabla u_H^{n}\right\|^2-\left\|\nabla u_H^{n-1}\right\|^2 +\sum\limits_{i = 1}^{M_{1}}\frac{2\tau^{2-\alpha_{i}}p_{i}}{\Gamma(3-\alpha_{i})}\left\|\delta_{t}u_H^{n-\frac{1}{2}}\right\|^2 +\sum\limits_{j = 1}^{M_{2}}\frac{2\tau^{2-\beta_{j}}q_j}{\Gamma(3-\beta_{j})}\left\|\delta_{t}u_H^{n-\frac{1}{2}}\right\|^2\\ &\le\sum\limits_{i = 1}^{M_{1}}\frac{\tau p_{i}}{\Gamma(2-\alpha_{i})}\sum\limits_{k = 1}^{n-1}\Big(a_{n-k-1}^{(n,\alpha_{i})}-a_{n-k}^{(n,\alpha_{i})}\Big)\Big(\left\|\delta_{t}u_H^{k-\frac{1}{2}}\right\|^2+\left\|\delta_{t}u_H^{n-\frac{1}{2}}\right\|^2\Big) +\sum\limits_{i = 1}^{M_{1}}\frac{\tau p_i}{\Gamma(2-\alpha_{i})}\Big(a_{n-1}^{(n,\alpha_{i})}-A_{0}^{(n,\alpha_{i})}\Big)\cdot\\ &\; \; \; \; \Big(\left\|u_{Ht}^{0}\right\|^2+\left\|\delta_{t}u_H^{n-\frac{1}{2}}\right\|^2\Big) +\sum\limits_{j = 1}^{M_{2}}\frac{\tau q_j}{\Gamma(2-\beta_{j})}\sum\limits_{k = 1}^{n-1}\Big(b_{n-1-k}^{(n,\beta_{j})}-b_{n-k}^{(n,\beta_{j})}\Big) \Big(\left\|\delta_{t}u_H^{k-\frac{1}{2}}\right\|^2+\left\|\delta_{t}u_H^{n-\frac{1}{2}}\right\|^2\Big)\\ &\; \; \; \; +\sum\limits_{j = 1}^{M_{2}}\frac{\tau q_j}{\Gamma(2-\beta_{j})}b_{n-1}^{(n,\beta_{j})}\Big(\left\|u_{Ht}^{0}\right\|^2+\left\|\delta_{t}u_H^{n-\frac{1}{2}}\right\|^2\Big) +2\tau\Big(g(u_H^{n-\frac{1}{2}}),\delta_{t}u_H^{n-\frac{1}{2}}\Big). \end{aligned} \end{equation} (3.6)

    Denoting E^0 = \left\|\nabla u_{H}^{0}\right\|^2 and E^n = \left\|\nabla u_{H}^{n}\right\|^2+\sum_{i = 1}^{M_{1}}\frac{\tau p_i}{\Gamma(2-\alpha_i)}\sum_{k = 1}^{n}a_{n-k}^{(n, \alpha_i)}\left\|\delta_{t}u_H^{k-\frac{1}{2}}\right\|^2+\sum_{j = 1}^{M_{2}}\frac{\tau q_j}{\Gamma(2-\beta_j)}\sum_{k = 1}^{n}b_{n-k}^{(n, \beta_j)}\cdot \left\|\delta_{t}u_H^{k-\frac{1}{2}}\right\|^2 , we can calculate that

    \begin{align*} E^n&\le E^{n-1}-2\tau\left\|\delta_{t}u_H^{n-\frac{1}{2}}\right\|^2 +\sum\limits_{i = 1}^{M_{1}}\frac{\tau p_i}{\Gamma(2-\alpha_i)}\big(a_{n-1}^{(n,\alpha_i)}-A_{0}^{(n,\alpha_i)}\big)\left\|u_{Ht}^{0}\right\|^2 -\sum\limits_{i = 1}^{M_{1}}\frac{\tau p_i}{\Gamma(2-\alpha_i)}A_{0}^{(n,\alpha_i)}\left\|\delta_{t}u_H^{n-\frac{1}{2}}\right\|^2\\ &\; \; +\sum\limits_{j = 1}^{M_{2}}\frac{\tau p_j}{\Gamma(2-\beta_j)}b_{n-1}^{(n,\beta_j)}\left\|u_{Ht}^{0}\right\|^2 +2\tau\left|\Big(g(u_H^{n-\frac{1}{2}}),\delta_{t}u_H^{n-\frac{1}{2}}\Big)\right|, \end{align*}

    which, by induction, gives

    \begin{equation} \begin{aligned} E^n&\le E^{0}-2\tau\sum\limits_{l = 1}^{n}\left\|\delta_{t}u_H^{l-\frac{1}{2}}\right\|^2 +\sum\limits_{i = 1}^{M_{1}}\frac{\tau p_i}{\Gamma(2-\alpha_i)}\sum\limits_{l = 1}^{n}\big(a_{l-1}^{(l,\alpha_i)}-A_{0}^{(l,\alpha_i)}\big)\left\|u_{Ht}^{0}\right\|^2 -\sum\limits_{i = 1}^{M_{1}}\frac{\tau p_i}{\Gamma(2-\alpha_i)}\cdot \\ &\; \; \; \; \sum\limits_{l = 1}^{n}A_{0}^{(l,\alpha_i)}\left\|\delta_{t}u_H^{l-\frac{1}{2}}\right\|^2 +\sum\limits_{j = 1}^{M_{2}}\frac{\tau p_j}{\Gamma(2-\beta_j)}\sum\limits_{l = 1}^{n}b_{l-1}^{(l,\beta_j)}\left\|u_{Ht}^{0}\right\|^2 +2\tau\sum\limits_{l = 1}^{n}\left|\Big(g(u_H^{l-\frac{1}{2}}),\delta_{t}u_H^{l-\frac{1}{2}}\Big)\right|. \end{aligned} \end{equation} (3.7)

    Using the Cauchy-Schwarz inequality, the Young's inequality and the nonlinear property of g(\cdot) , it is shown that

    \begin{equation} \begin{aligned} 2\tau\sum\limits_{l = 1}^{n}\left|\Big(g(u_H^{l-\frac{1}{2}}),\delta_{t}u_H^{l-\frac{1}{2}}\Big)\right|&\le \tau\sum\limits_{l = 1}^{n}\bigg\{\frac{1}{\Xi}\left\|g(u_H^{l-\frac{1}{2}})\right\|^2 +\Xi\left\|\delta_{t}u_H^{l-\frac{1}{2}}\right\|^2\bigg\}\\ &\le\sum\limits_{l = 1}^{n}\frac{\tau}{\Xi}C_0^2\left\|u_H^{l-\frac{1}{2}}\right\|^2 +\sum\limits_{l = 1}^{n}\tau\Xi\left\|\delta_{t}u_H^{l-\frac{1}{2}}\right\|^2, \end{aligned} \end{equation} (3.8)

    where

    \begin{align*} \Xi = 2+\sum\limits_{i = 1}^{M_{1}}\frac{p_i}{\Gamma(2-\alpha_i)}(a_{n-l}^{(n,\alpha_i)}+A_{0}^{(n,\alpha_i)})+\sum\limits_{j = 1}^{M_{2}}\frac{q_j}{\Gamma(2-\beta_j)}b_{n-l}^{(n,\beta_j)}. \end{align*}

    Combing with the Lemma 2.1, above analysis uses

    \begin{equation} \begin{aligned} 0 < a_{l-1}^{(l,\alpha_i)} < A_{0}^{(l,\alpha_i)}, \end{aligned} \end{equation} (3.9)
    \begin{equation} \begin{aligned} \sum\limits_{l = 1}^{n}\frac{1}{\Xi} \le\frac{1}{\sum_{j = 1}^{M_{2}}\frac{q_j}{\Gamma(2-\beta_j)}\sum_{l = 1}^{n}b_{n-1}^{(n,\beta_j)}} \le\sum\limits_{j = 1}^{M_{2}}\frac{\Gamma(2-\beta_j)}{q_j}t_{n-\frac{1}{2}}^{\beta_j-1}, \end{aligned} \end{equation} (3.10)
    \begin{equation} \begin{aligned} \sum\limits_{j = 1}^{M_{2}}\frac{\tau q_j}{\Gamma(2-\beta_j)}\sum\limits_{l = 1}^{n}b_{l-1}^{(l,\beta_j)}\left\|u_{Ht}^{0}\right\|^2 &\le\sum\limits_{j = 1}^{M_{2}}\frac{\tau^{2-\beta_j} q_j}{\Gamma(3-\beta_j)}\left\|u_{Ht}^{0}\right\|^2\sum\limits_{l = 1}^{n}\Big[\big(n-l+1\big)^{2-\beta_j}-\big(n-l\big)^{2-\beta_j}\Big] \\ &\le\sum\limits_{j = 1}^{M_{2}}\frac{t_n^{2-\beta_j} q_j}{\Gamma(3-\beta_j)}\left\|u_{Ht}^{0}\right\|^2. \end{aligned} \end{equation} (3.11)

    Substituting the estimates (3.8)–(3.10) into (3.5), and using the Poincar {\mathrm{\acute{e}}} inequality, we have

    \begin{align*} \left\|u_{H}^{n}\right\|^2\le\left\|\nabla u_{H}^{0}\right\|^2+\sum\limits_{j = 1}^{M_{2}}\frac{t_n^{2-\beta_j}q_j}{\Gamma(3-\beta_j)}\left\|u_{Ht}^{0}\right\|^2 +\sum\limits_{j = 1}^{M_{2}}\frac{\Gamma(2-\beta_j)}{q_j}t_{n-\frac{1}{2}}^{\beta_j-1}\sum\limits_{l = 1}^{n}C_0^2\tau\left\|u_{H}^{l-\frac{1}{2}}\right\|^2. \end{align*}

    By the Lemma 3.2, we have the desired result.

    Theorem 3.2. For the fine grid system (2.11), the following stable inequality for u_h^n\in V_h^0

    \begin{align*} \left\|\nabla u_h^n\right\|^2&\le C\Big(\left\|\nabla u_h^0\right\|^2+\sum\limits_{j = 1}^{M_{2}}\frac{t_n^{2-\beta_j}q_j}{\Gamma(3-\beta_j)}\left\|u_{ht}^0\right\|^2+\sum\limits_{j = 1}^{M_{2}}\frac{\Gamma(2-\beta_j)}{q_j}T^{\beta_j}C_2^2\max\limits_{0\le t\le T}\left\|u_H({\boldsymbol{x}},t)\right\|^2\Big). \end{align*}

    Proof. Considering (2.11), we can deduce that

    \begin{equation} \begin{aligned} &\; \; \; \sum\limits_{i = 1}^{M_{1}}\frac{p_i}{\Gamma(2-\alpha_i)}\Big(\frac{\tau^{1-\alpha_i}}{2-\alpha_i}\delta_{t}u_h^{n-\frac{1}{2}}-\sum\limits_{k = 1}^{n-1}\big(a_{n-k-1}^{(n,\alpha_i)}-a_{n-k}^{(n,\alpha_i)}\big)\delta_{t}u_h^{k-\frac{1}{2}}-\big(a_{n-1}^{(n,\alpha_i)}-A_{0}^{(n,\alpha_i)}\big)u_{ht}^{0},v_h\Big)\\ &\; \; \; +\sum\limits_{i = 1}^{M_{1}}\frac{q_j}{\Gamma(2-\beta_j)}\Big(\frac{\tau^{1-\beta_j}}{2-\beta_j}\delta_{t}u_h^{n-\frac{1}{2}}-\sum\limits_{k = 1}^{n-1}\big(b_{n-1-k}^{(n,\beta_j)}-b_{n-k}^{(n,\beta_j)}\big)\delta_{t}u_h^{k-\frac{1}{2}}-b_{n-1}^{(n,\beta_j)}u_{ht}^{0},v_h\Big)\\ & = \Big(g(u_H^{n-\frac{1}{2}})+g'(u_H^{n-\frac{1}{2}})(u_h^{n-\frac{1}{2}}-u_H^{n-\frac{1}{2}}),v_h\Big)\\ &\le\Big(C(u_H^{n-\frac{1}{2}})+C_1(u_h^{n-\frac{1}{2}}-u_H^{n-\frac{1}{2}}),v_h\Big)\\ & = \Big(C_2(u_H^{n-\frac{1}{2}})+C_1(u_h^{n-\frac{1}{2}}),v_h\Big), \end{aligned} \end{equation} (3.12)

    where C, C_1, C_2 are positive constants.

    Let v_h = \delta_{t}u_h^{n-\frac{1}{2}}, \; F^n = \left\|\nabla u_{h}^{n}\right\|^2+\sum_{i = 1}^{M_{1}}\frac{\tau p_i}{\Gamma(2-\alpha_i)}\sum_{k = 1}^{n}a_{n-k}^{(n, \alpha_i)}\left\|\delta_{t}u_h^{k-\frac{1}{2}}\right\|^2 +\sum_{j = 1}^{M_{2}}\frac{\tau q_j}{\Gamma(2-\beta_j)}\sum_{k = 1}^{n}b_{n-k}^{(n, \beta_j)}\left\|\delta_{t}u_h^{k-\frac{1}{2}}\right\|^2 . Using the recurrence relation, we have

    \begin{equation} \begin{aligned} F^n&\le F^{n-1}-2\tau\left\|\delta_{t}u_h^{n-\frac{1}{2}}\right\|^2 +\sum\limits_{i = 1}^{M_{1}}\frac{\tau p_i}{\Gamma(2-\alpha_i)}\big(a_{n-1}^{(n,\alpha_i)}-A_{0}^{(n,\alpha_i)}\big)\left\|u_{ht}^{0}\right\|^2 -\sum\limits_{j = 1}^{M_{2}}\frac{\tau p_i}{\Gamma(2-\alpha_i)}A_{0}^{(n,\alpha_i)}\left\|\delta_{t}u_h^{n-\frac{1}{2}}\right\|^2\\ &\; \; \; +\sum\limits_{j = 1}^{M_{2}}\frac{\tau q_j}{\Gamma(2-\beta_j)}b_{n-1}^{(n,\beta_j)}\left\|u_{ht}^{0}\right\|^2 +2\tau\left(C_2(u_H^{n-\frac{1}{2}})+C_1(u_h^{n-\frac{1}{2}}),\delta_{t}u_h^{n-\frac{1}{2}}\right)\\ &\le F^{0}-2\tau\sum\limits_{l = 1}^{n}\left\|\delta_{t}u_h^{l-\frac{1}{2}}\right\|^2 +\sum\limits_{i = 1}^{M_{1}}\sum\limits_{l = 1}^{n}\frac{\tau p_i}{\Gamma(2-\alpha_i)}\big(a_{l-1}^{(l,\alpha_i)}-A_{0}^{(l,\alpha_i)}\big)\left\|u_{ht}^{0}\right\|^2 -\sum\limits_{i = 1}^{M_{1}}\sum\limits_{l = 1}^{n}\frac{\tau p_iA_{0}^{(l,\alpha_i)}}{\Gamma(2-\alpha_i)}\left\|\delta_{t}u_h^{l-\frac{1}{2}}\right\|^2\\ &\; \; \; +\sum\limits_{j = 1}^{M_{2}}\sum\limits_{l = 1}^{n}\frac{\tau b_{l-1}^{(l,\beta_j)}q_j}{\Gamma(2-\beta_j)}\left\|u_{ht}^{0}\right\|^2 +\sum\limits_{l = 1}^{n}\frac{4\tau C_2^2\left\|u_H^{l-\frac{1}{2}}\right\|^2}{\Xi} +\sum\limits_{l = 1}^{n}\frac{4\tau C_1^2\left\|u_h^{l-\frac{1}{2}}\right\|^2}{\Xi} +\sum\limits_{l = 1}^{n}\tau\Xi\left\|\delta_{t}u_h^{l-\frac{1}{2}}\right\|^2. \end{aligned} \end{equation} (3.13)

    It follows from (3.10) that

    \begin{equation} \begin{aligned} \sum\limits_{l = 1}^{n}\frac{4\tau C_2^2\left\|u_H^{l-\frac{1}{2}}\right\|^2}{\Xi} \le\sum\limits_{j = 1}^{M_{2}}\frac{\Gamma(2-\beta_j)}{q_j}T^{\beta_j}C_2^2\max\limits_{0\le t\le T}\left\|u_H({\boldsymbol{x}},t)\right\|^2, \end{aligned} \end{equation} (3.14)

    then combing with (3.8) and substituting (3.14) into (3.13) yields

    \begin{align*} \left\|\nabla u_h^n\right\|^2&\le\left\|\nabla u_h^0\right\|^2+\sum\limits_{j = 1}^{M_{2}}\frac{t_n^{2-\beta_j}q_j}{\Gamma(3-\beta_j)}\left\|u_{ht}^0\right\|^2+\sum\limits_{j = 1}^{M_{2}}\frac{\Gamma(2-\beta_j)}{q_j}T^{\beta_j} C_2^2\max\limits_{0\le t\le T}\left\|u_H({\boldsymbol{x}},t)\right\|^2 +\sum\limits_{l = 1}^{n}\frac{4\tau C_1^2\left\|u_h^{l-\frac{1}{2}}\right\|^2}{\Xi}. \end{align*}

    Using the Poincar {\mathrm{\acute{e}}} inequality and the Lemma 3.2, we obtain the proof.

    The convergence of the FEM system is considered by the energy method. First, we shall derive the convergence of the coarse grid system as follows:

    Theorem 3.3. Let u(t_n)\in H_0^1(\Omega)\cap H^{r+1}(\Omega), \; u_t\in H^2(\Omega), \; u_{tt}\in L^2(\Omega), \; u_{ttt}\in L^2(\Omega), \; u_H^n\in V_H^n and u_H^0 = R_hu_0(x) , then we have

    \begin{equation} \begin{aligned} \left\|u(t_n)-u_H^n\right\|\le O(H^{r+1}+\tau^{3-\beta}). \end{aligned} \end{equation} (3.15)

    Proof. We combine (1.1) with (2.10) to get

    \begin{equation} \begin{aligned} &(\delta_tu^{n-\frac{1}{2}}_h,v_h)+\Big(\sum\limits_{i = 1}^{M_{1}}p_i\mathcal{D}_t^{\alpha_i}(u^{n-\frac{1}{2}}-u_H^{n-\frac{1}{2}}),v_h\Big)+\Big(\sum\limits_{j = 1}^{M_{2}}q_j\mathcal{D}_t^{\beta_j}(u^{n-\frac{1}{2}}-u_H^{n-\frac{1}{2}}),v_h\Big)+\big(\nabla(u^{n-\frac{1}{2}}-u_H^{n-\frac{1}{2}}),\nabla v_h\big)\\ & = \Big(g(u^{n-\frac{1}{2}})-g(u_H^{n-\frac{1}{2}}),v_h\Big)-(R_{\alpha_i}^{n-\frac{1}{2}},v_h)-(R_{\beta_j}^{n-\frac{1}{2}},v_h). \end{aligned} \end{equation} (3.16)

    Denoting \eta^n = u^n-R_hu^n, \; \theta^n = R_hu^n-u_H^n and choosing v_h = \delta _t\theta^{n-\frac{1}{2}} in (3.15), we obtain

    \begin{equation} \begin{aligned} &\; \; \; \; (\delta_t\theta^{n-\frac{1}{2}},\delta_t\theta^{n-\frac{1}{2}})+\Big(\sum\limits_{i = 1}^{M_1}p_i\mathcal{D}_t^{\alpha_i}\theta^{n-\frac{1}{2}},\delta_t\theta^{n-\frac{1}{2}}\Big)+\Big(\sum\limits_{j = 1}^{M_2}q_j\mathcal{D}_t^{\beta_j}\theta^{n-\frac{1}{2}},\delta_t\theta^{n-\frac{1}{2}}\Big)+\big(\nabla\theta^{n-\frac{1}{2}},\nabla \delta _t\theta^{n-\frac{1}{2}}\big)\\ & = \Big(g(u^{n-\frac{1}{2}})-g(u_H^{n-\frac{1}{2}}),\delta _t\theta^{n-\frac{1}{2}}\Big)-(R_{\alpha_i}^{n-\frac{1}{2}},\delta_t\theta^{n-\frac{1}{2}})-(R_{\beta_j}^{n-\frac{1}{2}},\delta _t\theta^{n-\frac{1}{2}}) -(\delta_t\eta^{n-\frac{1}{2}},\delta_t\theta^{n-\frac{1}{2}})\\ &\; \; \; \; -\Big(\sum\limits_{i = 1}^{M_1}p_i\mathcal{D}_t^{\alpha_i}\eta^{n-\frac{1}{2}},\delta_t\theta^{n-\frac{1}{2}}\Big)-\Big(\sum\limits_{j = 1}^{M_2}q_j\mathcal{D}_t^{\beta_j}\eta^{n-\frac{1}{2}},\delta_t\theta^{n-\frac{1}{2}}\Big) -\big(\nabla\eta^{n-\frac{1}{2}},\nabla\delta_t\theta^{n-\frac{1}{2}}\big). \end{aligned} \end{equation} (3.17)

    From the definitions of \sum_{i = 1}^{M_1}p_i\mathcal{D}_t^{\alpha_i}u_H^{n-\frac{1}{2}}, \; \sum_{j = 1}^{M_2}q_j\mathcal{D}_t^{\beta_j} u_H^{n-\frac{1}{2}} and \delta_tu_H^{n-\frac{1}{2}} , we can have that

    \begin{equation} \begin{aligned} \Big(\sum\limits_{i = 1}^{M_1}p_i\mathcal{D}_t^{\alpha_i}\theta^{n-\frac{1}{2}},\delta_t\theta^{n-\frac{1}{2}}\Big) & = \sum\limits_{i = 1}^{M_1}\frac{\tau^{1-\alpha_i}p_i}{\Gamma(3-\alpha_i)}\left\|\delta_{t}\theta^{n-\frac{1}{2}}\right\|^2 -\sum\limits_{i = 1}^{M_1}\sum\limits_{k = 1}^{n-1}\frac{p_i}{\Gamma(2-\alpha_i)}\big(a_{n-k-1}^{(n,\alpha_i)}-a_{n-k}^{(n,\alpha_i)}\big)\cdot\\ &\; \; \; \big(\delta_{t}\theta^{k-\frac{1}{2}},\delta_{t}\theta^{n-\frac{1}{2}}\big) -\sum\limits_{i = 1}^{M_1}\frac{p_i}{\Gamma(2-\alpha_i)}\big(a_{n-1}^{(n,\alpha_i)}-A_{0}^{(n,\alpha_i)}\big)\big(\delta_t\theta^{0},\delta_{t}\theta^{n-\frac{1}{2}}\big), \end{aligned} \end{equation} (3.18)
    \begin{equation} \begin{aligned} \Big(\sum\limits_{j = 1}^{M_2}q_j\mathcal{D}_t^{\beta_j}\theta^{n-\frac{1}{2}},\delta_t\theta^{n-\frac{1}{2}}\Big) & = \sum\limits_{j = 1}^{M_2}\frac{\tau^{1-\beta_j}q_j}{\Gamma(3-\beta_j)}\left\|\delta_{t}\theta^{n-\frac{1}{2}}\right\|^2-\sum\limits_{j = 1}^{M_2}\sum\limits_{k = 1}^{n-1}\frac{q_j}{\Gamma(2-\beta_j)}\big(b_{n-1-k}^{(n,\beta_j)}-b_{n-k}^{(n,\beta_j)}\big)\cdot\\ &\; \; \; \big(\delta_{t}\theta^{k-\frac{1}{2}},\delta_{t}\theta^{n-\frac{1}{2}}\big) -\sum\limits_{j = 1}^{M_2}\frac{q_jb_{n-1}^{(n,\beta_j)}}{\Gamma(2-\beta_j)}\big(\delta_{t}\theta^{0},\delta_{t}\theta^{n-\frac{1}{2}}\big), \end{aligned} \end{equation} (3.19)

    and

    \begin{equation} \begin{aligned} \big(\nabla\theta^{n-\frac{1}{2}},\nabla\delta_t\theta^{n-\frac{1}{2}}\big) & = \frac{1}{2\tau}\big(\left\|\nabla\theta^n\right\|^2-\left\|\nabla\theta^{n-1}\right\|^2\big). \end{aligned} \end{equation} (3.20)

    Since g(\cdot) is twice continuously differentiable, we have

    \begin{equation} \begin{aligned} \Big(g(u^{n-\frac{1}{2}})-g(u_H^{n-\frac{1}{2}}),\delta _t\theta^{n-\frac{1}{2}}\Big) \le\left\|u(t_n)-u_H^n\right\|\left\|\delta _t\theta^{n-\frac{1}{2}}\right\| \le C\Big(\left\|\eta ^{n-\frac{1}{2}}\right\|+\left\|\theta^{n-\frac{1}{2}}\right\|\Big)\left\|\delta _t\theta^{n-\frac{1}{2}}\right\|. \end{aligned} \end{equation} (3.21)

    Substituting the above results into (3.16) and multiplying 2\tau on both sides of the resulting identity, it holds that

    \begin{equation} \begin{aligned} &\; \; 2\tau\left\|\delta_{t}\theta^{n-\frac{1}{2}}\right\|^2+\left\|\nabla \theta^{n}\right\|^2-\left\|\nabla \theta^{n-1}\right\|^2 +\sum\limits_{i = 1}^{M_1}\frac{2\tau^{2-\alpha_i}p_i}{\Gamma(3-\alpha_i)}\left\|\delta_{t}\theta^{n-\frac{1}{2}}\right\|^2 +\sum\limits_{j = 1}^{M_2}\frac{2\tau^{2-\beta_j}q_j}{\Gamma(3-\beta_j)}\left\|\delta_{t}\theta^{n-\frac{1}{2}}\right\|^2\\ & = \sum\limits_{i = 1}^{M_1}\frac{\tau p_i}{\Gamma(2-\alpha_i)}\sum\limits_{k = 1}^{n-1}\big(a_{n-k-1}^{(n,\alpha_i)}-a_{n-k}^{(n,\alpha_i)}\big)\Big(\left\|\delta_{t}\theta^{k-\frac{1}{2}}\right\|^2+\left\|\delta_{t}\theta^{n-\frac{1}{2}}\right\|^2\Big) +\sum\limits_{i = 1}^{M_1}\frac{\tau p_i}{\Gamma(2-\alpha_i)}\big(a_{n-1}^{(n,\alpha_i)}-A_{0}^{(n,\alpha_i)}\big)\cdot\\ &\; \; \Big(\left\|\delta_{t}\theta^{0}\right\|^2+\left\|\delta_{t}\theta^{n-\frac{1}{2}}\right\|^2\Big) +\sum\limits_{j = 1}^{M_2}\frac{\tau q_j}{\Gamma(2-\beta_j)}\sum\limits_{k = 1}^{n-1}\big(b_{n-1-k}^{(n,\beta_j)}-b_{n-k}^{(n,\beta_j)}\big) \Big(\left\|\delta_{t}\theta^{k-\frac{1}{2}}\right\|^2+\left\|\delta_{t}\theta^{n-\frac{1}{2}}\right\|^2\Big)\\ &+\frac{\tau b_{n-1}^{(n,\beta_j)}}{\Gamma(2-\beta_j)}\Big(\left\|\delta_{t}\theta^{0}\right\|^2+\left\|\delta_{t}\theta^{n-\frac{1}{2}}\right\|^2\Big) -2\tau(R_{\alpha_i}^{n-\frac{1}{2}},\delta_t\theta^{n-\frac{1}{2}})-2\tau(R_{\beta_j}^{n-\frac{1}{2}},\delta _t\theta^{n-\frac{1}{2}}) -2\tau\big(\delta_t\eta^{n-\frac{1}{2}},\delta_t\theta^{n-\frac{1}{2}}\big)\\ &-2\tau\sum\limits_{i = 1}^{M_1}p_i\big(\mathcal{D}_t^{\alpha_i}\eta^{n-\frac{1}{2}},\delta_t\theta^{n-\frac{1}{2}}\big) -2\tau\sum\limits_{j = 1}^{M_2}q_j\big(\mathcal{D}_t^{\beta_j}\eta^{n-\frac{1}{2}},\delta_t\theta^{n-\frac{1}{2}}\big) +2\tau C\Big(\left\|\eta ^{n-\frac{1}{2}}\right\|+\left\|\theta^{n-\frac{1}{2}}\right\|\Big)\left\|\delta _t\theta^{n-\frac{1}{2}}\right\|. \end{aligned} \end{equation} (3.22)

    Denoting G^0 = \left\|\nabla\theta^{0}\right\|^2 and G^n = \left\|\nabla\theta^{n}\right\|^2+\sum_{i = 1}^{M_1}\sum_{k = 1}^{n}\frac{\tau p_ia_{n-k}^{(n, \alpha_i)}}{\Gamma(2-\alpha_i)}\left\|\delta_{t}\theta^{k-\frac{1}{2}}\right\|^2+\sum_{j = 1}^{M_2}\sum_{k = 1}^{n}\frac{\tau q_jb_{n-k}^{(n, \beta_j)}}{\Gamma(2-\beta_j)}\left\|\delta_{t}\theta^{k-\frac{1}{2}}\right\|^2 , we have that

    \begin{align*} G^n&\le G^{n-1}-2\tau\left\|\delta_{t}\theta^{n-\frac{1}{2}}\right\|^2 +\sum\limits_{i = 1}^{M_1}\frac{\tau p_i}{\Gamma(2-\alpha_i)}\big(a_{n-1}^{(n,\alpha_i)}-A_{0}^{(n,\alpha_i)}\big)\left\|\delta_{t}\theta^{0}\right\|^2 -\sum\limits_{i = 1}^{M_1}\frac{\tau p_i}{\Gamma(2-\alpha_i)}A_{0}^{(n,\alpha_i)}\left\|\delta_{t}\theta^{n-\frac{1}{2}}\right\|^2\\ &\; \; +\sum\limits_{j = 1}^{M_2}\frac{\tau q_j}{\Gamma(2-\beta_j)}b_{n-1}^{(n,\beta_j)}\left\|\delta_{t}\theta^{0}\right\|^2 -2\tau(R_{\alpha_i}^{n-\frac{1}{2}},\delta_t\theta^{n-\frac{1}{2}}) -2\tau(R_{\beta_j}^{n-\frac{1}{2}},\delta _t\theta^{n-\frac{1}{2}}) -2\tau\sum\limits_{i = 1}^{M_1}p_i\Big(\mathcal{D}_t^{\alpha_i}\eta^{n-\frac{1}{2}},\delta_t\theta^{n-\frac{1}{2}}\Big)\\ &\; \; -2\tau\sum\limits_{j = 1}^{M_2}q_j\Big(\mathcal{D}_t^{\beta_j}\eta^{n-\frac{1}{2}},\delta_t\theta^{n-\frac{1}{2}}\Big) -2\tau(\delta_t\eta^{n-\frac{1}{2}},\delta_t\theta^{n-\frac{1}{2}}) +2\tau C\left\|\eta ^{n-\frac{1}{2}}\right\|\left\|\delta _t\theta^{n-\frac{1}{2}}\right\| +2\tau C\left\|\theta^{n-\frac{1}{2}}\right\|\left\|\delta _t\theta^{n-\frac{1}{2}}\right\|, \end{align*}

    which, by induction, gives

    \begin{equation} \begin{aligned} G^n&\le G^{0}-2\tau\sum\limits_{l = 1}^{n}\left\|\delta_{t}\theta^{l-\frac{1}{2}}\right\|^2 +\sum\limits_{i = 1}^{M_1}\sum\limits_{l = 1}^{n}\frac{\tau p_i}{\Gamma(2-\alpha_i)}\big(a_{l-1}^{(l,\alpha_i)}-A_{0}^{(l,\alpha_i)}\big)\left\|\delta_{t}\theta^{0}\right\|^2\\ &\; \; \; -\sum\limits_{i = 1}^{M_1}\sum\limits_{l = 1}^{n}\frac{\tau p_iA_{0}^{(l,\alpha_i)}}{\Gamma(2-\alpha_i)}\left\|\delta_{t}\theta^{l-\frac{1}{2}}\right\|^2 +\sum\limits_{j = 1}^{M_2}\sum\limits_{l = 1}^{n}\frac{\tau q_jb_{l-1}^{(l,\beta_j)}}{\Gamma(2-\beta_j)}\left\|\delta_{t}\theta^{0}\right\|^2 -2\tau\sum\limits_{l = 1}^{n}(R_{\alpha_i}^{l-\frac{1}{2}},\delta_t\theta^{l-\frac{1}{2}})\\ &\; \; \; -2\tau\sum\limits_{l = 1}^{n}(R_{\beta_j}^{l-\frac{1}{2}},\delta _t\theta^{l-\frac{1}{2}}) -2\tau\sum\limits_{i = 1}^{M_1}\sum\limits_{l = 1}^{n}p_i\Big(\mathcal{D}_t^{\alpha_i}\eta^{l-\frac{1}{2}},\delta_t\theta^{l-\frac{1}{2}}\Big) -2\tau\sum\limits_{j = 1}^{M_2}\sum\limits_{l = 1}^{n}q_j\Big(\mathcal{D}_t^{\beta_j}\eta^{l-\frac{1}{2}},\delta_t\theta^{l-\frac{1}{2}}\Big)\\ &\; \; \; -2\tau\sum\limits_{l = 1}^{n}\big(\delta_t\eta^{l-\frac{1}{2}},\delta_t\theta^{l-\frac{1}{2}}\big) +2\tau C\sum\limits_{l = 1}^{n}\left\|\eta^{l-\frac{1}{2}}\right\|\left\|\delta _t\theta^{l-\frac{1}{2}}\right\| +2\tau C\sum\limits_{l = 1}^{n}\left\|\theta^{l-\frac{1}{2}}\right\|\left\|\delta _t\theta^{l-\frac{1}{2}}\right\|. \end{aligned} \end{equation} (3.23)

    By the Cauchy-Schwarz inequality, the Young's inequality and Lemma 2.2, we obtain

    \begin{equation} \begin{aligned} 2\tau\sum\limits_{l = 1}^{n}(R_{\alpha_i}^{l-\frac{1}{2}},\delta _t\theta^{l-\frac{1}{2}}) &\le\sum\limits_{l = 1}^{n}\frac{C\tau}{\Xi}\max\limits_{0\le t\le T}\left\|u_{ttt}({\boldsymbol{x}},t)\right\|^2\max\limits_{0\le i\le M_1}\tau^{6-2\alpha_i} +\sum\limits_{l = 1}^{n}\frac{\tau\Xi}{7}\left\|\delta_t\theta^{l-\frac{1}{2}}\right\|^2, \end{aligned} \end{equation} (3.24)
    \begin{equation} \begin{aligned} 2\tau\sum\limits_{l = 1}^{n}(R_{\beta_j}^{l-\frac{1}{2}},\delta _t\theta^{l-\frac{1}{2}}) &\le\sum\limits_{l = 1}^{n}\frac{C\tau}{\Xi}\max\limits_{0\le t\le T}\left\|u_{ttt}({\boldsymbol{x}},t)\right\|^2\max\limits_{0\le j\le M_2}\tau^{6-2\beta_j} +\sum\limits_{l = 1}^{n}\frac{\tau\Xi}{7}\left\|\delta_t\theta^{l-\frac{1}{2}}\right\|^2, \end{aligned} \end{equation} (3.25)
    \begin{equation} \begin{aligned} 2\tau\sum\limits_{l = 1}^{n}\Big(\delta_t\eta^{l-\frac{1}{2}},\delta_t\theta^{l-\frac{1}{2}}\Big) &\le\sum\limits_{l = 1}^{n}\frac{7\tau\left\|\delta_t\eta\right\|^2}{\Xi} +\sum\limits_{l = 1}^{n}\frac{\tau\Xi}{7}\left\|\delta_t\theta^{l-\frac{1}{2}}\right\|^2, \end{aligned} \end{equation} (3.26)
    \begin{equation} \begin{aligned} 2\tau\sum\limits_{i = 1}^{M_1}\sum\limits_{l = 1}^{n}p_i\Big(\mathcal{D}_t^{\alpha_i}\eta^{l-\frac{1}{2}},\delta_t\theta^{l-\frac{1}{2}}\Big) &\le\sum\limits_{l = 1}^{n}\frac{7\tau\left\|\sum\limits_{i = 1}^{M_1}p_i\mathcal{D}_t^{\alpha_i}\eta^{l-\frac{1}{2}}\right\|^2}{\Xi} +\sum\limits_{l = 1}^{n}\frac{\tau\Xi}{7}\left\|\delta_t\theta^{l-\frac{1}{2}}\right\|^2, \end{aligned} \end{equation} (3.27)
    \begin{equation} \begin{aligned} 2\tau\sum\limits_{j = 1}^{M_2}\sum\limits_{l = 1}^{n}q_j\Big(\mathcal{D}_t^{\beta_j}\eta^{l-\frac{1}{2}},\delta_t\theta^{l-\frac{1}{2}}\Big) &\le\sum\limits_{l = 1}^{n}\frac{7\tau\left\|\sum\limits_{j = 1}^{M_2}q_j\mathcal{D}_t^{\beta_j}\eta^{l-\frac{1}{2}}\right\|^2}{\Xi} +\sum\limits_{l = 1}^{n}\frac{\tau\Xi}{7}\left\|\delta_t\theta^{l-\frac{1}{2}}\right\|^2, \end{aligned} \end{equation} (3.28)
    \begin{equation} \begin{aligned} 2\tau C\sum\limits_{l = 1}^{n}\left\|\eta^{l-\frac{1}{2}}\right\|\left\|\delta _t\theta^{l-\frac{1}{2}}\right\| &\le\sum\limits_{l = 1}^{n}\frac{7\tau C^2}{\Xi}\left\|\eta^{l-\frac{1}{2}}\right\|^2 +\sum\limits_{l = 1}^{n}\frac{\tau\Xi}{7}\left\|\delta_t\theta^{l-\frac{1}{2}}\right\|^2, \end{aligned} \end{equation} (3.29)
    \begin{equation} \begin{aligned} 2\tau C\sum\limits_{l = 1}^{n}\left\|\theta^{l-\frac{1}{2}}\right\|\left\|\delta_t\theta^{l-\frac{1}{2}}\right\| &\le\sum\limits_{l = 1}^{n}\frac{7\tau C^2}{\Xi}\left\|\theta^{l-\frac{1}{2}}\right\|^2 +\sum\limits_{l = 1}^{n}\frac{\tau\Xi}{7}\left\|\delta_t\theta^{l-\frac{1}{2}}\right\|^2. \end{aligned} \end{equation} (3.30)

    The definition of \Xi is the same as (3.9). By Lemma 2.1, we have

    \begin{equation} \begin{aligned} 0 < a_{n-l}^{(n,\alpha_i)} < A_{0}^{(n,\alpha_i)}. \end{aligned} \end{equation} (3.31)

    Based on the above estimates and Lemma 3.1, we have

    \begin{equation} \begin{aligned} \sum\limits_{l = 1}^{n}\frac{\tau}{\Xi }\max\limits_{1\le l\le n}\left\|u_{ttt}({\boldsymbol{x}},t)\right\|^2\max\limits_{0\le i\le M_1}\tau^{6-2\alpha_i} \le \sum\limits_{j = 1}^{M_{2}}\frac{\Gamma(2-\beta_j)}{q_j}T^{\beta_j}\max\limits_{1\le l\le n}\left\|u_{ttt}({\boldsymbol{x}},t)\right\|^2\tau^{6-2\alpha}, \end{aligned} \end{equation} (3.32)
    \begin{equation} \begin{aligned} \sum\limits_{l = 1}^{n}\frac{\tau}{\Xi }\max\limits_{1\le l\le n}\left\|u_{ttt}({\boldsymbol{x}},t)\right\|^2\max\limits_{0\le j\le M_2}\tau^{6-2\beta_j} \le \sum\limits_{j = 1}^{M_{2}}\frac{\Gamma(2-\beta_j)}{q_j}T^{\beta_j}\max\limits_{1\le l\le n}\left\|u_{ttt}({\boldsymbol{x}},t)\right\|^2\tau^{6-2\beta}, \end{aligned} \end{equation} (3.33)
    \begin{equation} \begin{aligned} \sum\limits_{l = 1}^{n}\frac{\tau\left\|\delta_t\eta\right\|^2}{\Xi} &\le \sum\limits_{j = 1}^{M_{2}}\frac{\Gamma(2-\beta_j)}{q_j}T^{\beta_j}H^{2r+2}\max\limits_{1\le l\le n}\left\|\delta_tu^{l-\frac{1}{2}}\right\|_{r+1}^2, \end{aligned} \end{equation} (3.34)
    \begin{equation} \begin{aligned} \sum\limits_{l = 1}^{n}\frac{7\tau\left\|\sum\limits_{i = 1}^{M_1}p_i\mathcal{D}_t^{\alpha_i}\eta^{l-\frac{1}{2}}\right\|^2}{\Xi} &\le \sum\limits_{j = 1}^{M_{2}}\frac{\Gamma(2-\beta_j)}{q_j}T^{\beta_j}\max\limits_{1\le l\le n}\left\|{ \sum\limits_{i = 1}^{M_1}}p_i\mathcal{D}_t^{\alpha_i}\eta^{l-\frac{1}{2}}\right\|^2\\ &\le C\max\limits_{1\le l\le n}\left\| { \sum\limits_{i = 1}^{M_1}}p_i\mathcal{D}_t^{\alpha_i}u^{l-\frac{1}{2}}\right\|_{r+1}^2H^{2r+2} +C\max\limits_{1\le l\le n}\left\|u_{ttt}({\boldsymbol{x}},t)\right\|^2\tau^{6-2\alpha}, \end{aligned} \end{equation} (3.35)
    \begin{equation} \begin{aligned} \sum\limits_{l = 1}^{n}\frac{7\tau\left\|\sum\limits_{q = 0}^{M_2}q_j\mathcal{D}_t^{\beta_j}\eta^{l-\frac{1}{2}}\right\|^2}{\Xi} &\le C\max\limits_{1\le l\le n}\left\| { \sum\limits_{q = 0}^{M_2}}q_j\mathcal{D}_t^{\beta_j}u^{l-\frac{1}{2}}\right\|_{r+1}^2H^{2r+2} +C\max\limits_{1\le l\le n}\left\|u_{ttt}({\boldsymbol{x}},t)\right\|^2\tau^{6-2\beta}, \end{aligned} \end{equation} (3.36)
    \begin{equation} \begin{aligned} \sum\limits_{l = 1}^{n}\frac{7\tau}{\Xi}\left\|\eta ^{l-\frac{1}{2}}\right\|^2 \le \sum\limits_{j = 1}^{M_{2}}\frac{\Gamma(2-\beta_j)}{q_j}T^{\beta_j}\left\|\eta ^{l-\frac{1}{2}}\right\|^2\le\sum\limits_{j = 1}^{M_{2}}\frac{\Gamma(2-\beta_j)}{q_j}T^{\beta_j}\left\|u^{l-\frac{1}{2}}\right\|_{r+1}^2H^{2r+2}. \end{aligned} \end{equation} (3.37)

    Combining (3.22)–(3.37) can give

    \begin{align*} \left\|\nabla\theta^{n}\right\|^2\le C\Big(\sum\limits_{l = 1}^{n}\frac{7\tau}{\Xi}\left\|\theta^{l-\frac{1}{2}}\right\|^2+H^{2r+2}+\tau^{min\{6-2\alpha,6-2\beta\}}\Big). \end{align*}

    By the Poincar {\mathrm{\acute{e}}} inequality, Lemma 3.1 and the Lemma 3.2, it follows that

    \begin{equation} \begin{aligned} \left\|\theta^{n}\right\|^2\le C\big(H^{2r+2}+\tau^{6-2\beta}\big). \end{aligned} \end{equation} (3.38)

    The proof is complete.

    Theorem 3.4. Let u(t_n)\in H_0^1(\Omega)\cap H^{r+1}(\Omega), \; u_t\in H^2(\Omega), \; u_{tt}\in L^2(\Omega), \; u_{ttt}\in L^2(\Omega), \; u^n_h\in V_h^0 , and u^0_h = R_hu_0({\boldsymbol{x}}) , then we arrive at the following

    \begin{equation} \begin{aligned} \left\|u(t_n)-u_h^n\right\|\le C\big(\tau^{3-\beta}+h^{r+1}+H^{2r+2}\big). \end{aligned} \end{equation} (3.39)

    Proof. Subtracting (1.1) from (2.10), it yields

    \begin{equation} \begin{aligned} &\Big(\delta _t(u^{n-\frac{1}{2}}-u_h^{n-\frac{1}{2}}),v_h\Big)+\Big(\sum\limits_{i = 1}^{M_1}p_i\mathcal{D}_t^{\alpha_i}(u^{n-\frac{1}{2}}-u_h^{n-\frac{1}{2}}),v_h\Big)\\ &+\Big(\sum\limits_{j = 1}^{M_2}q_j\mathcal{D}_t^{\beta_j}(u^{n-\frac{1}{2}}-u_h^{n-\frac{1}{2}}),v_h\Big)+\Big(\nabla(u^{n-\frac{1}{2}}-u_h^{n-\frac{1}{2}}),\nabla v_h\Big)\\ = &\Big(g(u^{n-\frac{1}{2}})-g(u_H^{n-\frac{1}{2}})-g'(u_H^{n-\frac{1}{2}})(u_h^{n-\frac{1}{2}}-u_H^{n-\frac{1}{2}}),v_h\Big)-(R_{\alpha_i}^{n-\frac{1}{2}},v_h)-(R_{\beta_j}^{n-\frac{1}{2}},v_h). \end{aligned} \end{equation} (3.40)

    By the Taylor expansion, we can have the estimate that

    \begin{equation} \begin{aligned} g(u^{n-\frac{1}{2}}) = g(u_H^{n-\frac{1}{2}})+g'(u_H^{n-\frac{1}{2}})(u^{n-\frac{1}{2}}-u_H^{n-\frac{1}{2}})+\frac{g''(u_H^{n-\frac{1}{2}})}{2}(u^{n-\frac{1}{2}}-u_H^{n-\frac{1}{2}}). \end{aligned} \end{equation} (3.41)

    then it follows from (3.40) that

    \begin{equation} \begin{aligned} &\Big(\delta _t(u^{n-\frac{1}{2}}-u_h^{n-\frac{1}{2}}),v_h\Big)+\Big(\sum\limits_{i = 1}^{M_1}p_i\mathcal{D}_t^{\alpha_i}(u^{n-\frac{1}{2}}-u_h^{n-\frac{1}{2}}),v_h\Big)\\ &+\Big(\sum\limits_{j = 1}^{M_2}q_j\mathcal{D}_t^{\beta_j}(u^{n-\frac{1}{2}}-u_h^{n-\frac{1}{2}}),v_h\Big)+\Big(\nabla(u^{n-\frac{1}{2}}-u_h^{n-\frac{1}{2}}),\nabla v_h\Big)\\ = &\Big(g'(u_H^{n-\frac{1}{2}})(u^{n-\frac{1}{2}}-u_h^{n-\frac{1}{2}})+\frac{g''(u_H^{n-\frac{1}{2}})}{2}(u^{n-\frac{1}{2}}-u_H^{n-\frac{1}{2}}),v_h\Big)-(R_{\alpha_i}^{n-\frac{1}{2}},v_h)-(R_{\beta_j}^{n-\frac{1}{2}},v_h)\\ \le&\Big(C(u^{n-\frac{1}{2}}-u_h^{n-\frac{1}{2}})+\frac{C_1}{2}(u^{n-\frac{1}{2}}-u_H^{n-\frac{1}{2}}),v_h\Big). \end{aligned} \end{equation} (3.42)

    Let u^{n-\frac{1}{2}}-R_hu^{n-\frac{1}{2}} = \eta^{n-\frac{1}{2}}, \; R_hu^{n-\frac{1}{2}}-u_h^{n-\frac{1}{2}} = \theta^{n-\frac{1}{2}} , and v_h = \delta_t\theta^{n-\frac{1}{2}} . Hence, (3.42) becomes

    \begin{equation} \begin{aligned} &\; \; \; \; \; \big(\delta_t\theta^{n-\frac{1}{2}},\delta_t\theta^{n-\frac{1}{2}}\big) +\sum\limits_{i = 1}^{M_1}p_i\big(\mathcal{D}_t^{\alpha_i}\theta^{n-\frac{1}{2}},\delta_t\theta^{n-\frac{1}{2}}\big) +\sum\limits_{j = 1}^{M_2}q_j\big(\mathcal{D}_t^{\beta_j}\theta^{n-\frac{1}{2}},\delta_t\theta^{n-\frac{1}{2}}\big) +\big(\nabla\theta^{n-\frac{1}{2}},\nabla v_h\big)\\ &\le-\big(\delta_t\eta^{n-\frac{1}{2}},\delta_t\theta^{n-\frac{1}{2}}\big) -\sum\limits_{i = 1}^{M_1}p_i\big(\mathcal{D}_t^{\alpha_i}\eta^{n-\frac{1}{2}},\delta_t\theta^{n-\frac{1}{2}}\big) -\sum\limits_{j = 1}^{M_2}q_j\big(\mathcal{D}_t^{\beta_j}\eta^{n-\frac{1}{2}},\delta_t\theta^{n-\frac{1}{2}}\big) -(R_{\alpha_i}^{n-\frac{1}{2}},\delta_t\theta^{n-\frac{1}{2}})\\ &\; \; \; \; -(R_{\beta_j}^{n-\frac{1}{2}},\delta_t\theta^{n-\frac{1}{2}}) +\Big(C(u^{n-\frac{1}{2}}-u_h^{n-\frac{1}{2}})+\frac{C_3}{2}(u^{n-\frac{1}{2}}-u_H^{n-\frac{1}{2}}),\delta_t\theta^{n-\frac{1}{2}}\Big). \end{aligned} \end{equation} (3.43)

    Defining H^0 = \nabla\theta^{0}, \; H^n = \left\|\nabla\theta^{n}\right\|^2+\sum_{i = 1}^{M_1}\sum_{k = 1}^{n}\frac{\tau p_i}{\Gamma(2-\alpha_i)}a_{n-k}^{(n, \alpha_i)}\left\|\delta_{t}\theta^{k-\frac{1}{2}}\right\|^2 +\sum_{j = 1}^{M_2}\sum_{k = 1}^{n}\frac{\tau q_j}{\Gamma(2-\beta_j)}b_{n-k}^{(n, \beta_j)}\left\|\delta_{t}\theta^{k-\frac{1}{2}}\right\|^2 , we have following results:

    \begin{align*} H^n&\le H^{0}-\sum\limits_{l = 1}^{n}2\tau\left\|\delta_{t}\theta^{l-\frac{1}{2}}\right\|^2 +\sum\limits_{i = 1}^{M_1}\sum\limits_{l = 1}^{n}\frac{\tau p_i}{\Gamma(2-\alpha_i)}\big(a_{l-1}^{(l,\alpha_i)}-A_{0}^{(l,\alpha_i)}\big)\left\|\delta_{t}\theta^{0}\right\|^2\\ &\; \; -\sum\limits_{i = 1}^{M_1}\sum\limits_{l = 1}^{n}\frac{\tau p_iA_{0}^{(l,\alpha_i)}}{\Gamma(2-\alpha_i)}\left\|\delta_{t}\theta^{l-\frac{1}{2}}\right\|^2 +\sum\limits_{j = 1}^{M_2}\sum\limits_{l = 1}^{n}\frac{\tau q_jb_{l-1}^{(l,\beta_j)}}{\Gamma(2-\beta_j)}\left\|\delta_{t}\theta^{0}\right\|^2 -2\tau\sum\limits_{i = 1}^{M_1}\sum\limits_{l = 1}^{n}p_i\big(\mathcal{D}_t^{\alpha_i}\eta^{l-\frac{1}{2}},\delta_t\theta^{n-\frac{1}{2}}\big)\\ &\; \; -2\tau\sum\limits_{j = 1}^{M_2}\sum\limits_{l = 1}^{n}q_j\big(\mathcal{D}_t^{\beta_j}\eta^{l-\frac{1}{2}},\delta_t\theta^{l-\frac{1}{2}}\big) -2\tau\sum\limits_{l = 1}^{n}(R_{\alpha_i}^{l-\frac{1}{2}},\delta_t\theta^{l-\frac{1}{2}}) -2\tau\sum\limits_{l = 1}^{n}(R_{\beta_j}^{l-\frac{1}{2}},\delta_t\theta^{l-\frac{1}{2}})\\ &\; \; +2\tau\sum\limits_{l = 1}^{n}\Big(C(u^{l-\frac{1}{2}}-u_h^{l-\frac{1}{2}})+\frac{C_3}{2}(u^{l-\frac{1}{2}}-u_H^{l-\frac{1}{2}}),\delta_t\theta^{l-\frac{1}{2}}\Big). \end{align*}

    We use the similar process of proof to the estimate (3.37). By the Poincar {\mathrm{\acute{e}}} inequality, Lemma 3.1, Lemma 3.2 and the estimate of (3.37), it follows that

    \begin{align*} \left\|\theta^{n}\right\|^2&\le C\Big[\left\|\theta^{0}\right\|^2+\tau^{6-2\beta}+\sum\limits_{l = 1}^{n}\left\|\big(u^{l-\frac{1}{2}}-u_H^{l-\frac{1}{2}}\big)^2\right\|^2+h^{2r+2}\Big]\\ &\le C\big(\left\|\theta^{0}\right\|^2+\tau^{6-2\beta}+H^{4r+4}+h^{2r+2}\big), \end{align*}

    which leads to

    \begin{equation} \begin{aligned} \left\|u-u_h\right\|&\le C(\tau^{3-\beta}+H^{2r+2}+h^{r+1}). \end{aligned} \end{equation} (3.44)

    This concludes the proof.

    Remark 4.1. In the estimate (3.44), we observe that the TGM algorithm can achieve the convergence rate h^{r+1} as long as the mesh sizes satisfy H = O(h^{\frac{1}{2}}) .

    In this section, we present a numerical example to demonstrate the theoretical analysis and illustrate the efficiency of the algorithm discussed in section three. To investigate the spatial and temporal convergence order, we use a bilinear finite element approximation and the computation is performed by using Matlab.

    Example 4.1. The following equation has an exact solution u(x, y, t) = t^{3+\alpha+\beta}{\mathrm{sin}}\pi x{\mathrm{sin}}\pi y :

    \begin{align*} \begin{cases} \; \partial_{t}u(x,y,t)+\partial_{t}^{\alpha}u(x,y,t)+\partial_{t}^{\beta}u(x,y,t)-\Delta u(x,y,t) = -{\boldsymbol{u}}^2+g(x,y,t),\; (x,y,t)\in\Omega\times(0,T], \\ u(x,y,0) = u_0(x,y),\; u_t(x,y,0) = u_t^0(x,y),\; x,y\in \Omega, \end{cases} \end{align*}

    where \Omega is the unit square (0, 1)\times (0, 1) , T = 1 and g is a known function. The domain \Omega is divided into families \mathcal{T}_H and \mathcal{T}_h of quadrilaterals, and V_H, V_h\subset H_0^1(\Omega) are linear spaces of piecewise continuous bilinear functions defined on \mathcal{T}_H and \mathcal{T}_h , respectively.

    Let H_x = H_y = H, \; h_x = h_y = h and h = H^2 . Tables 13 show that the spatial convergence rates in the L^2 -norm of FEM and Algorithm 3.1 are both equivalent to two. The convergence results are in good agreement with the results O(h^{r+1}) of the theoretical analysis. Moreover, combining Tables 24, it can be seen that the TGM scheme will save more time than the general FEM scheme as M increases.

    Table 1.  Comparison of the spatial convergence order and elapsed CPU(s) time of TGM and FEM for Example 4.1 with different (\alpha, \beta) , \tau = 1000 .
    H h \alpha=0.3, \beta=1.7 \alpha=0.5, \beta=1.5 \alpha=0.9, \beta=1.3
    \left\|u^n-u_h^n\right\| Rate_h CPU \left\|u^n-u_h^n\right\| Rate_{h} CPU \left\|u^n-u_h^n\right\| Rate_h CPU
    \frac{1}{2} \frac{1}{4} 4.815e-2 \ast 14.39 4.780e-2 \ast 13.49 4.780e-2 \ast 13.92
    \frac{1}{3} \frac{1}{9} 8.811e-3 2.09 29.54 8.720e-3 2.10 29.28 8.631e-3 2.10 29.85
    \frac{1}{4} \frac{1}{16} 2.635e-3 2.10 67.18 2.614e-3 2.09 67.62 2.590e-3 2.09 69.60
    \frac{1}{5} \frac{1}{25} 1.058e-3 2.04 175.41 1.063e-3 2.02 173.26 1.058e-3 2.01 174.18
    h \alpha=0.3, \beta=1.7 \alpha=0.5, \beta=1.5 \alpha=0.9, \beta=1.3
    \left\|u^n-U^n\right\| Rate_{h} CPU \left\|u^n-U^n\right\| Rate_{h} CPU \left\|u^n-U^n\right\| Rate_{h} CPU
    \frac{1}{4} 4.816e-2 \ast 23.66 4.780e-2 \ast 24.70 4.780e-2 \ast 25.74
    \frac{1}{9} 8.811e-3 2.09 41.52 8.720e-3 2.10 53.05 8.631e-3 2.10 53.44
    \frac{1}{16} 2.636e-3 2.10 77.83 2.614e-3 2.09 118.43 2.590e-3 2.09 120.49
    \frac{1}{25} 1.059e-3 2.04 326.60 1.063e-3 2.02 296.73 1.058e-3 2.01 298.67

     | Show Table
    DownLoad: CSV
    Table 2.  L^2 -errors and temporal convergence rate for TGM and FEM with \alpha = 0.3, \beta = 1.7 , \alpha = 0.5, \beta = 1.5 and \alpha = 0.7, \beta = 1.7 .
    \tau \alpha=0.3, \beta=1.7 \alpha=0.5, \beta=1.5 \alpha=0.7, \beta=1.7
    \left\|u^n-u_h^n\right\| Rate_{h} CPU \left\|u^n-u_h^n\right\| Rate_{h} CPU \left\|u^n-u_h^n\right\| Rate_{h} CPU
    \frac{1}{12} 1.397e-2 \ast 30.34 6.519e-3 \ast 41.16 1.706e-2 \ast 30.31
    \frac{1}{14} 1.145e-2 1.29 35.40 5.169e-3 1.51 51.90 1.396e-2 1.30 35.44
    \frac{1}{16} 9.633e-3 1.29 41.20 4.231e-3 1.50 58.28 1.174e-2 1.30 40.65
    \frac{1}{18} 8.274e-3 1.29 47.23 3.549e-3 1.49 62.54 1008e-2 1.30 45.44
    \tau \alpha=0.3, \beta=1.7 \alpha=0.5, \beta=1.5 \alpha=0.7, \beta=1.7
    \left\|u^n-U^n\right\| Rate_{h} CPU \left\|u^n-U^n\right\| Rate_{h} CPU \left\|u^n-U^n\right\| Rate_{h} CPU
    \frac{1}{12} 1.395e-2 \ast 132.68 6.501e-3 \ast 130.38 1.704e-2 \ast 133.69
    \frac{1}{14} 1.143e-2 1.29 153.62 5.152e-3 1.51 152.17 1.395e-2 1.30 152.98
    \frac{1}{16} 9.623e-3 1.29 186.10 4.215e-3 1.50 175.50 1.173e-2 1.30 175.26
    \frac{1}{18} 8.265e-3 1.29 267.50 3.533e-3 1.50 198.20 1.007e-2 1.30 200.97

     | Show Table
    DownLoad: CSV
    Table 3.  Comparison of the spatial convergence order and elapsed CPU(s) time of TGM and FEM for Example 4.2 with different (\alpha_i,\beta_j) , \tau = 1000 .
    H h \alpha_i=0.2,0.3, \beta_j=1.6,1.7 \alpha_i=0.4,0.5, \beta_j=1.4,1.5 \alpha_i=0.8,0.9, \beta_j=1.2,1.3
    \left\|u^n-u_h^n\right\| Rate_h CPU \left\|u^n-u_h^n\right\| Rate_{h} CPU \left\|u^n-u_h^n\right\| Rate_h CPU
    \frac{1}{2} \frac{1}{4} 4.417e-2 \ast 16.71 4.597e-2 \ast 17.13 4.598e-2 \ast 15.87
    \frac{1}{3} \frac{1}{9} 8.036e-3 2.10 31.46 8.421e-3 2.10 34.52 8.426e-3 2.10 33.49
    \frac{1}{4} \frac{1}{16} 2.413e-3 2.09 72.02 2.539e-3 2.09 70.44 2.543e-3 2.08 74.08
    \frac{1}{5} \frac{1}{25} 9.730e-4 2.04 188.77 1.028e-3 2.02 181.33 1.034e-3 2.02 173.04
    h \alpha_i=0.2,0.3, \beta_j=1.6,1.7 \alpha_i=0.4,0.5, \beta_j=1.4,1.5 \alpha_i=0.8,0.9, \beta_j=1.2,1.3
    \left\|u^n-U^n\right\| Rate_{h} CPU \left\|u^n-U^n\right\| Rate_{h} CPU \left\|u^n-U^n\right\| Rate_{h} CPU
    \frac{1}{4} 4.417e-2 \ast 26.53 4.597e-2 \ast 25.27 4.326e-2 \ast 25.69
    \frac{1}{9} 8.036e-3 2.10 41.09 8.421e-3 2.10 42.90 7.878e-3 2.10 41.97
    \frac{1}{16} 2.413e-3 2.09 98.70 2.539e-3 2.08 97.41 2.3703e-3 2.09 98.14
    \frac{1}{25} 9.730e-4 2.04 367.81 1.028e-3 2.02 320.95 9.570e-4 2.03 367.51

     | Show Table
    DownLoad: CSV
    Table 4.  L^2 -errors and temporal convergence rate and elapsed CPU(s) time of TGM and FEM with different (\alpha_i,\beta_j) , m = 121 .
    \tau \alpha_i=0.2,0.3, \beta_j=1.6,1.7 \alpha_i=0.4,0.5, \beta_j=1.4,1.5 \alpha_i=0.8,0.9, \beta_j=1.6,1.7
    \left\|u^n-u_h^n\right\| Rate_{h} CPU \left\|u^n-u_h^n\right\| Rate_{h} CPU \left\|u^n-u_h^n\right\| Rate_{h} CPU
    \frac{1}{12} 1.893e-2 \ast 36.93 8.676e-3 \ast 32.44 2.184e-2 \ast 30.83
    \frac{1}{14} 1.544e-2 1.32 35.26 6.845e-3 1.54 35.76 1.777e-2 1.34 35.92
    \frac{1}{16} 1.294e-2 1.32 42.71 5.577e-3 1.53 40.98 1.487e-2 1.34 40.89
    \frac{1}{18} 1.107e-2 1.32 45.54 4.657e-3 1.53 46.42 1.271e-2 1.33 46.27
    \tau \alpha_i=0.2,0.3, \beta_j=1.6,1.7 \alpha_i=0.4,0.5, \beta_j=1.4,1.5 \alpha_i=0.8,0.9, \beta_j=1.6,1.7
    \left\|u^n-U^n\right\| Rate_{h} CPU \left\|u^n-U^n\right\| Rate_{h} CPU \left\|u^n-U^n\right\| Rate_{h} CPU
    \frac{1}{12} 6.474e-3 \ast 137.84 4.772e-3 \ast 135.30 1.373e-2 \ast 135.73
    \frac{1}{14} 5.273e-3 1.33 153.89 3.767e-3 1.53 154.05 1.117e-2 1.33 155.12
    \frac{1}{16} 4.417e-3 1.33 176.16 3.072e-3 1.53 178.36 9.351e-3 1.33 196.50
    \frac{1}{18} 3.779e-3 1.32 198.87 2.568e-3 1.52 200.17 7.993e-3 1.33 325.33

     | Show Table
    DownLoad: CSV

    Example 4.2. The following equation has the exact solution u(x, y, t) = (1+t^{3+\alpha+\beta}){\mathrm{sin}}\pi x{\mathrm{sin}}\pi y :

    \begin{align*} \begin{cases} \; \partial_{t}u({\boldsymbol{x}},t)+\sum_{i = 1}^{2}\partial_{t}^{\alpha_{i}}u({\boldsymbol{x}},t)+\sum_{i = 1}^{2}\partial_{t}^{\beta_{j}}u({\boldsymbol{x}},t)-\Delta u(x,y,t) = -{\boldsymbol{u}}^2+g(x,y,t),\; (x,y,t)\in\Omega\times(0,T], \\ u(x,y,0) = u_0(x,y),\; u_t(x,y,0) = u_t^0(x,y),\; x,y\in \Omega, \end{cases} \end{align*}

    where \Omega is the unit square (0, 1)\times (0, 1) , T = 1 and g is a known function.

    In this paper, we proposed a new H2N2 formula to approximate the multi-term fractional derivative \sum_{i = 1}^{M_{1}}p_{i}\partial_{t}^{\alpha_{i}}u({\boldsymbol{x}}, t), \; \sum_{j = 1}^{M_{2}}q_{j}\partial_{t}^{\beta_{j}}u({\boldsymbol{x}}, t), \; \alpha_{i}\in(0, 1), \; \beta_{j}\in(1, 2) . Based on the H2N2 approximation in time and the finite element method for the spatial discretization, we have presented a fully discrete TGM scheme for two-dimensional nonlinear time fractional multi-term mixed sub-diffusion and diffusion wave equations and proved they are of second-order convergence in space and can reach the optimal convergence order 3-\beta in time, which is not related to \alpha . In future work, we will consider the L2-1 _\sigma formulation, which can reach second-order accuracy in time.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work is supported by the State Key Program of the National Natural Science Foundation of China (11931003), and by the Grants (41974133).

    There is no conflicts of interest between all authors.



    [1] S. Jiang, J. Zhang, Q. Zhang, Z. Zhang, Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations, Commun. Comput. Phys., 21 (2017), 650–678. https://doi.org/10.4208/cicp.OA-2016-0136 doi: 10.4208/cicp.OA-2016-0136
    [2] Y. Yu, P. Perdikaris, G. E. Karniadaki, Fractional modeling of viscoelasticity in 3D cerebral arteries and aneurysms, J. Comput. Phys., 323 (2016), 219–242. https://doi.org/10.1016/j.jcp.2016.06.038 doi: 10.1016/j.jcp.2016.06.038
    [3] Q. Li, Y. Chen, Y. Huang, Y. Wang, Two-grid methods for semilinear time fractional reaction diffusion equations by expanded mixed finite element method, Commun. Comput. Phys., 157 (2020), 38–54. https://doi.org/10.1016/j.apnum.2020.05.024 doi: 10.1016/j.apnum.2020.05.024
    [4] J. Xu, A novel two-grid method for semilinear equations, SIAM. J. Sci. Comput., 15 (1994), 231–237. https://doi.org/10.1137/0915016 doi: 10.1137/0915016
    [5] J. Xu, Two-grid discretization techniques for linear and non-linear PDEs, SIAM. J. Numer. Anal., 33 (1996), 1759–1777. https://doi.org/10.1137/S0036142992232949 doi: 10.1137/S0036142992232949
    [6] L. Chen, Y. Chen, Two-grid method for nonlinear reaction-diffusion equations by mixed finite element methods, J. Sci. Comput., 49 (2011), 383–401. https://doi.org/10.1007/s10915-011-9469-3
    [7] Y. Chen, Q. Gu, Q. Li, Y. Huang, A two-grid finite element approximation for nonlinear time fractional two-term mixed sub-diffusion and diffusion wave equations, J. Comput. Math., 40 (2022), 938–956. https://doi.org/10.4208/jcm.2104-m2021-0332 doi: 10.4208/jcm.2104-m2021-0332
    [8] X. Li, H. Rui, A two-grid block-centered finite difference method for the nonlinear time-fractional parabolic equation, J. Sci. Comput., 72 (2017), 863–891. https://doi.org/10.1007/s10915-017-0380-4 doi: 10.1007/s10915-017-0380-4
    [9] Y. Tang, A characteristic mixed finite element method for bilinear convection-diffusion optimal control problems, J. Nonlinear Funct. Anal., 2022 (2022), 39. https://doi.org/10.23952/jnfa.2022.39 doi: 10.23952/jnfa.2022.39
    [10] R. Schumer, D. A. Benson, M. M. Meerschaert, B. Baeumer, Fractal mobile/immobile solute transport, Water. Resour. Res., 39 (2003), 1296–1308. https://doi.org/10.1029/2003WR002141 doi: 10.1029/2003WR002141
    [11] Y. Zhang, Z. Sun, X. Zhao, Compact alternating direction implicit scheme for the two-dimensional fractional diffusion-wave equation, SIAM. J. Numer. Anal., 50 (2012), 1535–1555. https://doi.org/10.1137/110840959 doi: 10.1137/110840959
    [12] Y. Zhao, F. Wang, X. Hu, Anisotropic linear triangle finite element approximation for multi-term time-fractional mixed diffusion and diffusion-wave equations with variable coefficient on 2D bounded domain, Comput. Math. Appl., 78 (2019), 1705–1719. https://doi.org/10.1016/j.camwa.2018.11.028 doi: 10.1016/j.camwa.2018.11.028
    [13] Z. Sun, C. Ji, R. Du, A new analytical technique of the L-type difference schemes for time fractional mixed sub-diffusion and diffusion-wave equations, Appl. Math. Lett., 102 (2020), 106–115. https://doi.org/10.1016/j.aml.2019.106115 doi: 10.1016/j.aml.2019.106115
    [14] J. Shen, C. Li, Z. Sun, An H2N2 interpolation for Caputo derivative with order in (1, 2) and its application to time fractional hyperbolic equation in more than one space dimension, J. Sci. Comput., 83 (2020), 38–67. https://doi.org/10.1007/s10915-020-01219-8 doi: 10.1007/s10915-020-01219-8
    [15] J. Shen, X. M. Gu, Two finite difference methods based on an H2N2 interpolation for two-dimensional time fractional mixed diffusion and diffusion-wave equations, Discrete. Cont. Dyn. Syst. B, 27 (2022), 1179–1207. https://doi.org/10.3934/dcdsb.2021086 doi: 10.3934/dcdsb.2021086
    [16] Y. Liu, Y. Du, H. Li, S. He, W. Gao, Finite difference/finite element method for a nonlinear time-fractional fourth-order reaction-diffusion problem, Comput. Math. Appl., 70 (2015), 573–591. https://doi.org/10.1016/j.camwa.2015.05.015 doi: 10.1016/j.camwa.2015.05.015
    [17] Y. Liu, Y. Du, H. Li, J. Wang, A two-grid finite element approximation for a nonlinear time-fractional Cable equation, Nonlinear Dyn., 85 (2016), 2535–2548. https://doi.org/10.1007/s11071-016-2843-9 doi: 10.1007/s11071-016-2843-9
    [18] C. Bi, C. Wang, Y. Lin, Pointwise error estimates and two-grid algorithms of discontinuous Galerkin method for strongly nonlinear elliptic problems, J. Sci. Comput., 67 (2016), 153–175. https://doi.org/10.1007/s10915-015-0072-x doi: 10.1007/s10915-015-0072-x
    [19] B. Jin, B. Li, Z. Zhou, Numerical analysis of nonlinear subdiffusion equations, SIAM. J. Numer. Anal., 56 (2018), 1–23. https://doi.org/10.1137/16M1089320 doi: 10.1137/16M1089320
    [20] D. Li, C. Wu, Z. Zhang, Linearized Galerkin FEMs for nonlinear time fractional parabolic problems with non-smooth solutions in time direction, J. Sci. Comput., 80 (2019), 403–419. https://doi.org/10.1007/s10915-019-00943-0 doi: 10.1007/s10915-019-00943-0
    [21] P. Ciarlet, The finite element method for elliptic problems, New York: North-Hollan, 1978. https://doi.org/10.1115/1.3424474
    [22] I. H. Sloan, V. Thomée, Time discretization of an integro-differential equation of parabolic type, SIAM. J. Numer. Anal., 23 (1986), 1052–1061. https://doi.org/10.1137/0723073 doi: 10.1137/0723073
  • This article has been cited by:

    1. Ujala Gul, Zareen A. Khan, Salma Haque, Nabil Mlaiki, A Local Radial Basis Function Method for Numerical Approximation of Multidimensional Multi-Term Time-Fractional Mixed Wave-Diffusion and Subdiffusion Equation Arising in Fluid Mechanics, 2024, 8, 2504-3110, 639, 10.3390/fractalfract8110639
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1242) PDF downloads(102) Cited by(1)

Figures and Tables

Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog