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Abstract: In this paper, we studied the two-grid method (TGM) for two-dimensional nonlinear
time fractional multi-term mixed sub-diffusion and diffusion wave equation. A fully discrete scheme
with the quadratic Hermite and Newton interpolation (H2N2) method was considered in the temporal
direction and the expanded finite element method is used to approximate the spatial direction. In
order to reduce computational time, a dual grid method based on Newton iteration was constructed
with order @ € (0,1) and 8 € (1,2). The global convergence order of the two-grid scheme reaches
O** + k! + H**?), where 7, H and h are the time step size, coarse grid mesh size and fine
grid mesh size, respectively. The error estimation and stability of the fully discrete scheme were
derived. Theoretical analysis shows that the two grid algorithms maintain asymptotic optimal accuracy
while saving computational costs. In addition, numerical experiments further confirmed the theoretical
results.
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1. Introduction

In recent decades, fractional partial differential equations (FPDEs) have become popular for
modeling anomalous transport processes. In virtue of the difficulty for looking for the exact solutions
of FPDEs, the construction of numerical methods for FPDEs have been studied extensively by many
scholars which mainly cover the finite difference method, finite element method, spectral method and
so on. Unlike general PDEs, it has been found that fractional derivatives are nonlocal, with long
memory and weak singular kernels, and it takes more time to solve fractional differential equations
when using some well-known L-type discretization formulas. In order to increase computational
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efficiency, some fast algorithms have been presented, such as the sum-of-exponentials technique [1,2]
and the two-grid technique [3-9].

There have been many studies on the approximation of time fractional order equations.
Schumer [10] first developed the fractional-order mobile/immobile model in which the time drift
term Ou/0t is added to describe the motion time, thus helps to distinguish the status of particles
conveniently. Zhang and his coauthors [11] proposed a difference scheme combining the compact
difference approach for spatial discretization and the alternating direction implicit (ADI) method in
the time stepping for the two-dimensional time fractional diffusion-wave equation. In [12], the authors
established a fully-discrete approximate scheme for the 2D multi-term time-fractional mixed diffusion
and diffusion-wave equations with a spatial variable coefficient by using the linear triangle finite
element method in space and classical L1 time-stepping method combined with the Crank—Nicolson
scheme in time. Sun et al. [13] gave an L-type difference scheme for time-fractional mixed sub-
diffusion and diffusion wave equations, the new analytical technique with a min{2 — @, 3 — 8} order
accuracy in the discrete H' norm and second order accuracy in space, where @ € (0, 1), 8 € (1,2).
In recent years, Shen et al. [14] derived the H2N2 method to develop a known numerical differential
formula of the Caputo fractional derivative to obtain a (3 — a) order temporal convergence rate with
a € (1,2). Moreover, Shen and his coauthors [15] also gave the finite difference methods based on
an H2N2 interpolation for two-dimensional time fractional mixed sub-diffusion and diffusion-wave
equations with a (3 — ) order temporal convergence rate and second order accuracy in space.

With further research, it is found that nonlinear partial differential equations can describe some
model problems more effectively compared to linear fractional differential equations. As we
know, numerical methods for nonlinear parabolic fractional partial differential problems have been
extensively studied, especially for the two-grid approximation of nonlinear reaction terms. In [4,5],
Xu utilized the two-grid method to discretize asymmetric, indefinite, and nonlinear partial differential
equations. Afterward, many authors devoted themselves to the research of the two-grid method. For
example, Chen and Chen [6] investigated a scheme for nonlinear reaction-diffusion equations by
using the mixed finite element methods, in which the two-grid method (TGM) studied provided a
new approach to take the advantage of some nice properties hidden in a complex problem. Based on
the finite difference approximation in the time direction and the finite element method in the spatial
direction, a class of time fractional fourth order reaction diffusion problems with nonlinear reaction
terms was solved by Liu et al. [16]. Almost simultaneously, Liu et al. [17] considered a nonlinear
fractional Cable equation by a two-grid algorithm combined arriving at a second-order convergence
rate independent of fractional parameters @ (0 < @ < 1) and 8 (0 < 8 < 1) with finite element method.
In addition, Bi et al. [18] established a discontinuous Galerkin finite element scheme for the second-
order nonlinear elliptic problem, using piecewise polynomials of degree r > 2 based on pointwise error
estimation, and provided an error estimate of the energy norm of a two-grid mesh algorithm. Li and
Rui [8] introduced and analyzed a two-grid block-centered finite difference scheme for the nonlinear
time-fractional parabolic equation with the Neumann condition, and the error estimates established on
a non-uniform rectangular grid with the discrete L*(L?) and L*(H"') errors were O(*~® + h* + H?). Jin
et al. [19] demonstrated a general criterion for showing the fractional discrete Griionwall inequality and
verified it for the L1 scheme and convolution quadrature generated by backward difference formulas
for time-fractional nonlinear parabolic partial differential equations. In 2019, Li et al. [20] presented
and developed a Newton linearized Galerkin finite element method to solve nonlinear time fractional
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parabolic problems with non-smooth solutions in time direction. Recently, Chen et al. [7] constructed
and studied a two-grid finite element method for 2D nonlinear time fractional two-term mixed sub-
diffusion and diffusion wave equations and got min(2-a,3 — ) order in the time direction where
ae(0,1), pe(1,2).

However, to our knowledge, there is no two-grid finite element method with an H2N2 interpolation
for two-dimensional nonlinear fractional multi-term mixed sub-diffusion and diffusion wave equations,
and our aim is to present the corresponding algorithm in this paper. We consider the numerical
solution of the following nonlinear time-fractional multi-term mixed sub-diffusion and diffusion wave
equations:

i= i=

du(a, 1) + M pd¥u(x, 1) + XM q;00 u(x, 1) - Au(z, 1) = g(u), (x,1) € QX (0,T] 0
u(x, 0) = up(x), u(x,0) = u'(x), x € Q, ’

where M,, M, are positive integers, p;,q; are nonnegative constants, Q C R? is a bounded convex
polygonal region with boundary 0Q,x = [x,y] and g(-) is twice continuously differentiable. A is a
Laplace operator, and uo(x), u’(x) are given as sufficiently smooth functions. The Caputo fractional
derivative 8! u(zx, 1), 813 ‘u(z, t) is defined by

. 1 "ou(x,s) 1
u(x, 1) = ’ ds, 1.2
(@, 1) m-@fo ds  (t—s) " (12)
. 1 L 0Pu(x, s) 1
iz, 1) = f i d 1.3
t I/l(w, ) F(Z —ﬁ]) 0 852 (l _ S)ﬁj_] S7 ( )
withO) < ap < - <@ < -~ <ay <10@=12,....M)and1 < By < -+ < B < -+ <
Bm, < 2(j= 1,2,...,M,). For convenience, we define ay, = «@,By, = B. Throughout this paper,

the notation C denotes a generic constant, which may vary at different occurrences, but it is always
independent of the coarse grid mesh size H, fine grid mesh size 4 and time step size 7.

The remaining outline of the article is constructed as follows. In section two, we propose some
preliminary knowledge of fractional derivatives and some lemmas on time approximations. The
unconditional stability and the error estimates of the two-grid finite element method (FEM) are
discussed in section three. In section four, numerical examples are presented to demonstrate the
efficiency of the theoretical results. Finally, a brief conclusion of the article was provided.

2. Construction of fully-discrete scheme

m,p
For p = 2, we denote H™(Q) = WJ(Q) and H;(€) to be the subspace of H'(Q) consisting of functions

with a vanishing trace on 9Q. ||||,, = II‘ll,,. and ||| = ||-|lo». Take an integer N and denote T = sz’ t, =

nT, t, 1= %(t,l + t,-1). For a sequence of smooth funtions {u(t)}f:’:O on [0, T'], we denote

Let WI’,"(Q) be the standard Sobolev space with a norm |||, , given by V||, | = ¥, ||D“v||‘L7P @

I/lk k—1

n n—1 _
wru T”asksm,@uo:o.

1 1
M” = I/t(ln), ut(:l:, O) = u?(m)’ ul’l—z =" 6luk_§ _

2

For any function u defined on the interval [0, #;], we consider the Hermite quadratic interpolation
polynomial H,(#). On the interval [#_1,%+1] (1 < kK < N — 1), the Newton quadratic interpolation
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polynomial N, (#) will be used. With the Caputo-fractional derivatives (1.1) on the time grid points of
the form {t%, f3,... ,tN_%} [14,15], we can obtain

A n—-1
;pzﬂ M(tn—l) ~ Z F(l _ z) f HéO(l’)(t é - l) Yidt + k 1 f N2k(t)(l é _ l) i

— 1—0/,' 0 1—(}’,' |
Z F(l - ) { = to) u = (tn_% - l‘%) O.u2
: = 1—(1,-
’ f H (O =0+ Z [T T @1
fo k_
l

l-a; 1
~(ts —ts) 0T 4

11
"‘2

M,
_ Z Di in Tt)étun I4 Z (a(n @) (n a/,))é- Mk—7 " (A(n ) a(()n,a,-))u?],
LIT(1 - ol

C NGy D “’dt]}

where

(nay) _ I=ai g,
AG = (b, —10) = Loy 2.2)
2 (" 27! 1\
(n,a;) 2 1-a; 2—a;
== t_ 1 —10)%dt = - —(n—-1)7], 2.3
an—l T " ( n—x ) 2 . l(n 2) (I’l ) l ( )

n,a; 1 4 —a; Tl_ai —a; —a;
ay, = ;ft oy -0 e = - =k -1k 1<k<n-1.  (24)

The H2N?2 interpolation for the Caputo derivative Z)f Tut, 1 ) can be written as follows:

M,

qu Z r(zq—_jl‘w[ Hé’o(l)(l - N Pidr + Zf Ny ()t y - B! ﬁ,dt]
j

fo

=1

jMz (2.5
5t = S 0, - 5t - )
;r(z ,3)[ Z |

Here

gy 2 (1 271 1\*
P =2 P -0 Pdr =T —[n-=) -1, (2.6)
n-1 7 Js "3 Z—ﬁj 2

1 [l 218
(nBj) -8, B B
bn_i_lzgft ey =0 Pt = 5 j[(n—k)z f—m-1-kPP| 1<k<n—-1. (27

1
k=3

Lemma 2.1. For A", a™, b 0 < k < n — 1 defined by (2.2)~(2.4), (2.6) and (2.7), we gain
0 y 8

(n.j)

O < a < a(ln ;) <L e < a(n’(lli < A(nsai)’
n— 0
18 (2.8)
1-6; (nﬂ (n.B)) mp) T
0<n_7f <b"<b") <. <by ]_r.
2 ﬁ]
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al , .
Lemma 2.2. [14,15] Suppose u(t) € C*[to, 1,], and denote R,,, > = ZZ‘I p,-(??‘u(tn_%)—ZZ‘l pil)f’u(tn_%)
then we can get

1
n=3

R

<Cy max |u"@@)|7>.
toStStn_%

_1 . .
If u(t) € C3[ty, t,], denote an * = Zﬁg qj(?f’u(t _%) - 27:21 qu,B’u(t _%), then we have

1
=3
Rﬁ_/

<C, max ||,
10<I<t 1

The basic mechanism in this algorithm is the construction of two shape-regular triangulations
of Q, which we denote by 7y and 77, with different mesh sizes H and h (h < H). This can
be accomplished by successively refining the triangulation 75 to obtain the fine mesh 7,. The
corresponding finite element spaces are Vy and V), which will be called coarse and fine space,
respectively. We note that by such a construction we have Vy C V). Let V,, be the two-dimensional
subspace of H;(Q), which consists of continuous piecewise polynomials of degree r(r > 1) on 7}, and
V) = {v e Vp,voQ = 0}, V) = {v € Vy,v[0Q = 0}. Note that the corresponding weak formulation
of (1.1)is to find u(x,t) : (0,T] — Hé(Q), then

Jj=

(S, 1),v) + X2 pi D, 1),v) + £ q,(D) u(, 1), v) + (Vu(x, 1), Vv) = (g(w), v), 2.9)
u(x, 0) = up(x), u(x,0) = ud(x), x € Q. '

First, we derive the two-grid fully discrete scheme for problem (1.1). The process is divided into
two steps. Step 1: On the coarse grid 7y, for any vy € Vy, find uf, € V2 for the following nonlinear
system, such that

n—3 M, @ n=3 M Z)Bj n—3 n—3 — n—3
Oty *vy) + 202 Pi(D uy, *ve) + ijl q,(D; uy *,vy) + Vuy, >, Vvy) = (g(uy *), vy),
uyy, = Ryuo(x), ufy, = Ryud(x), = € Q.
(2.10)
Step 2: On the fine grid 77, find u; € V;' for the following linear system, then

net v n-l R el
Oy, %, vp) + ZZ} pi(Dfu, *,vy) + Zjﬂizl qj(D,B’uh 2,vp) + (Vu, 2, Vvy),
1 A L
= (8 ) + &Gy )ady 2 =y ), vy), Vv € VP, 2.11)
u) = Ryup(x), u), = Rul(x), = € Q.

Next, the two-grid fully discrete scheme based on the Newton iteration idea will be analyzed. In
the two-grid algorithm, we solve the nonlinear factional equation on the coarse grid 7 to produce a
rough approximation, and then use the rough approximation as the initial guess to slove the linearized
equation on the fine grid 7.

3. Unconditional stability and error estimate

Below, the stability and convergence of the two-grid fully discrete scheme will be derived. For the
demand of analysis, we introduce some lemmas as follows:
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Lemma 3.1. [2]] Let R;, : Hé(Q) - V}N?, be the Rize-projection operator satisfying
(V(u = Rju), Vv) = 0, Yv € V7. (3.1)
For u € Hy(Q) N H™*'(Q), it holds that
|l = Ry + 7 ||u = Ry, < CH* il (3.2)

where h is coarse grid step length H or fine grid size h.

Lemma 3.2. [22] If A,,, By are nonnegative real sequences and the sequence Z,, satisfies
Zy <A+ ) BZ, m=0,

where Ay > 0, then the sequence Z,, satisfies

m—1

Zyw < Ayexp() | B)), m > 0.
s=0

3.1. Stability

In this subsection, we shall present the main algorithm of the paper. The energy method is applied
to estabilish the stability of the two-grid fully discrete scheme. First, we derive the stability of the
coarse grid system.

Theorem 3.1. For u}, € Vg, the two-grid finite element analysis system (2.10) can obtain the following
inequality

2
<c(||wH||+zr(3 )

1
Proof. Suppose {uH } is the solution of a semi discrete scheme (2.10), the vy = 6,uH e VO then the

first item of (2.10) holds that
2

(O, 2 ,5tu’;, 7 = Sl (3.3)
Using Eq (2.1), the second item of (2.10) follows that
Z Dy iy )
_ (n ) (e _ gl (i) _ gl -3
Z F(2 al Sl 2 — Z (a0, — )6tuH c Ay = a™ My, S, )
(3.4)

— n— (n,a;) (n @) n—
Z F(S — (6ﬂ/iH 76[”]_] 2) Z 1"(2 a,) Z (an k-1 n P )(6IMH ’6ZMH 2)
Pi (n,a;) (n ) 1
N R R
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By substituting (2.5) into (2.10), we can organize and obtain the third item of (2.10)

Zq]"Z)Bquaét ’;]2)

-1
qj nBj) « n— (nﬁ (n,8;) ; (nﬁ)o 7
= —L—(py"s (b, = b, )0y = b, U0, 6
> oty = S0 Yty -y

k_

o ; - (3.5)
_N 4T oo n- (nﬁ, L)
. j:zlm—ﬁ,,)(é’””z’a’ i Zr(z /31)Z L ol o)
M; (n,8;)
q 'bn_ ' n—4%
~ 2 gy o)
Substituting (3.3)—(3.5) into (2.10), and multiplying 2t on both sides of this equatity, we obtain
; &, 272 2 & 20 Fig el
Sl 2, ey )@ " TG —B;) Ot
S S (n @;) (n a; k—% 2 (n al (n,a;
= Z 1"(2 @;) ; nk—-1— g )( (5;”1_] 6tuH Z 1—*(2 CY) A )
- . ) ) (3.6)
n, n, -1 n—1
([l +'5,u Zr(z ,B)Z (679, = ) o} + |l )
M, j (nﬁ] 9 n—% 2 n—% n—%
ZF(Z ~5) b,” (” || + (|0, )+27(g(uH ), 0ty )
Denoting E° = ||VuH|| and E" = o 1r(;pla) - la(”“’ (5tuH + ZJ 1r(;q2;) Yo bfgj")-
' o,u H_ 2 2, we can calculate that
2
e Zr(z = AT I _Zr(z a0 o
j n n—1 n—1
2L g Wl i),
which, by induction, gives
M, .
pr< B -2y ol Z - Z( =AWl = Xty
I=1 i=1 !
(3.7
n 12 . & 1 _1
2, A0 e ||+ Z o5 Zb(lﬁ’)” RN CORRTYE
=1 j=1 7= =1
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Using the Cauchy-Schwarz inequality, the Young’s inequality and the nonlinear property of g(-), it is
shown that

ZTZ' g(qu) 6,uH ) < TZ{ng(Mzé) 2
I=1

=
+E

Oy,

-1 2}

) (3.8)
<Z 263 + TW& ,
where
= (n.a;) (n.a;) J (nﬁ )
= +Zr(2— (@™ + A )+Zr(z ﬁj)nlj'
Combing with the Lemma 2.1, above analysis uses
0 <al <Ay (3.9)
1 1 & T2 -B)) rQ-5) g,
ch 5 < Ay (3.10)
= L togy D by ]Zl: qj
M o
€8 B 28 25,
ZF(Z ﬁ)zb ” ”‘Zr@ ﬁ)” ”Z(” [+1) (n=1 ]
M, 2 —Bj

Z G- q] ||

(3.11)
Substituting the estimates (3.8)—(3.10) into (3.5), and using the Poincaré inequality, we have
M,
n qJ F(2 ﬁJ) 5 2
| < [|vul| + Z ri = el + Z e Z ceuls?[
By the Lemma 3.2, we have the desired result
Theorem 3.2. For the fine grid system (2.1 1), the following stable inequality for uj, € 1%
My M
I'2-p)
vul V|| + —’TﬁfCZ t
[Vl < (v Z rampy Il + 2= max lus(. DI ).
Proof. Considering (2.11), we can deduce that
M, » 1
o Z (@) = al)ou ™ = @ = A )
i=1 !
S W) ) L @By
O T g L B )
i=1 (3.12)
n—1 ,, n—» 1 n—1i
= (g(uH 2) +8 (MH 2)(”h 2 —Uy 2) Vh)
< (Cwly + €6l =il Hm)

(Catiy ) + €16, m3)
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where C,Cy,C, are positive constants.

n—% Tpi (n, oz, l 7q; n (n,8/) k‘% 2
Let vy = 6, °, i= 1 T(2-a) D=1 G, 5f”h + Z] 1 T2-5) =1 0,5 |0y,
Using the recurrence relatlon, we have
n n—1 (n a,) (n,ai) (n @;) n—3 2
Fr < Pl - or sl EZHZ R 07 Elnz AT |,
M
Zz A e o (@(u?ﬁ) + €007
I'2-8))
0 _ (%) — A0 TpiA -3
<F 27’; Sl sz — ALY ||u) ] Z‘,Z‘FQ 5th
2
n (lﬂf n 47C3 ||u 47C? |lu, * n
b 2 2
ht + + = + T= 5tuh
N Z = %
(3.13)
It follows from (3.10) that
we | x
= T, Uy 3 T2 -8;
Z = < Z MTﬁng SEEB; lun(z, )|, (3.14)
=1 = =1 4j ==
then combing with (3.8) and substituting (3.14) into (3.13) yields
2
n 4‘rC2 Huh

0
ht

M, 2 :B/q
0 J

Using the Poincaré inequality and the Lemma 3.2, we obtain the proof.

2 Z @Tﬁxcz max llup (e, DI + Z

j=1 J I=1

=

3.2. Covergence

The convergence of the FEM system is considered by the energy method. First, we shall derive the
convergence of the coarse grid system as follows:

Theorem 3.3. Let u(t,) € Hg(Q) NH*(Q), u, € H(Q), u, € LX(Q), uy € LXH(Q), uy, € Vy and
uloq = Ryuy(x), then we have
+ 7P, (3.15)

|uct) = 0y
Proof. We combine (1.1) with (2.10) to get

n—

M,
}’l—l Y n—x= n_l n—
(O, 2,vh)+(2pi1)t'(u 2 — Uy 2),vh + ZQJDB (u 2 —uH ) vh)+ (V(u"~ 2 — Uy 2) Vvi)
i=1

= (8™ = gCuyy ).vi) = (R v = Ry ).
| (3.16)
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Denoting 1" = u" — Ryu", 6" = Ryu" — u}, and choosing v, = 5,6”‘% in (3.15), we obtain

M,
(5,9’1_%,@9"_%)+(Zpiz);n9n—%,6t9n ZC]JZ)B 0" 2 ,0,0" )+(V9"_§ V6,00 2)
i=1
= (8(”"_%)—8@2_%)’@9"‘1) R, 6,0 - (R 26,6 — S 6,0mh) (3.17)
M,
_(Zpiﬂfiﬂn_%,5z9" Zq, 3,60 (Vﬁn_%,V&H"_%).

i=1

From the definitions ofz _ PiD; u;, : Z 2 qJZ)B 7 and (5,uH we can have that

2 My n-1
IDCK g 2 5 5.0 2 (nai) (na)
,Z‘p ’ r(3 ) ) ’ 24 24T —ap it T4k )
" (3.18)
(5,672,607 - Z r(z (a(’“” AlD)(5,6, 6,677,
3 Dligs NN T N T
DI, 5,0F) = / - L — by,
(;ql ! ! ) Zr(3 ,8) ZZIF(Z—,Bj)( n—1-k n—k )
My b("ﬂ’ (3.19)
5,632,660 Il (5,6°, 65,00
(0:67%.6,6"%) - Zm 508667,
and |
(Vo5 Vo) = —(Ive = v ). (3.20)
Since g(-) is twice continuously differentiable, we have
_1
(8u") — gy ),6,0"2) < |lute,) — || |66 < ("2 + 2| ) |60 (3.21)

Substituting the above results into (3.16) and multiplying 2t on both sides of the resulting identity, it
holds that

2—a; 2
27 ||s,0mt 2r P =

M. 3.
,gn—;szrzg_ﬁ 2o

2 ) 2 M,
+IVOIE = ||V + >
i=1

M, TDi n-l i n.a; ) 1 . o .
i Z T2 -a) Z (@52, =)o o Z r(z s )( D~ AG):
-1
(ls?[]" + joier Z re- ﬁ, Z G, 5[l + o) (3.22)
k=1
Tb( ﬂ/ | | | |
F(2 ﬁ )( ||6160|| + ||0,6" ) - ZT(RZZE’ 5;0”—2) — 2T(RZ;§, 51,‘9”_7) _ 27_(5”7”_7’ 5[9’1_7)

1
0

M,
- 272171'(@?"17"‘%,6:9”‘%) - 27'qu(ij 36,077) + 27C(|[n"
i=1 j=1
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Denoting G° = |V&°||* and G" = V"> + T, 7, }’2’2“ ) 5,64 +z zklﬁ(gfg)) 5,9“” we
have that
n n— n,a;) n,a; n,a;) n—1 2
G' < G"' -2 fs e Zm S - A ) ||5.6°)” —Zm A o

M,

Z T2-— ,3 )b,({l'rf/) ||5,60||2 B 2T(R';i_%, 5,9n—%) _ ZT(RZ;%,@@"_%) 3 ZTZ Pi(@fin"_%, 5{(9”_%)
M,

i-1
-27 Z qj(i)fjn"_%, 5,6’"_%) — 27(6t77"_%, 6,0"

5,63 +2TC”9" '5 o
j=1
which, by induction, gives
n M n
<) | 6,91"H 2y () — 4%) o0
i=1 [=1
TpiA 2 My & Tqb N
- 22 fe- o K ;; r(2j lé e ZTZ(R 50 523,
M n M n ’
~27 Z(Rl;%, 5072) — 272 Z p{ D2, 6,62) 272 Z g (D) 2.662)
=1 i=1 I=1 j=1 =1
- 2rzn: 64,6074 + 22C Z 73] Jsie]| + 2c Z o3 o0
=1 =1 =1
By the Cauchy-Schwarz inequality, the Young’s inequality and Lemma 2.2, we obtain
27 Zn:(R;j5,5tel-) < Z = ma [l (. DI max 7072 4 Z = st (3.24)
=1
27 Z(R 2 504 < Z = max [l (. NI Jmax. 0% IZ ? 504, (3.25)
2rzn: (62, 6:67%) < Z M oS ? Hate)’—%' : (3.26)
=1 =1 = =1

n n -3 2 no -
. M, pi(z);yinl_%’dtel—%) 3 77"21 lpiDt n:2 . Z 72 Hé[@l—%‘ 2 ’ (3.27)

i=1 =1 =1 = 7

_1

sz] (0t e ) < S role lq_’ i S Zsel (3.28)

j=1 I=1 I=1 = 1=1 7
200 3 o4 o4 < 3T o+ 3 o (329
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7TC2 1|2 ~ T2 12
-1 -1 /-1 -1
ZTCZ He ‘50 s He H + Z = |lo (3.30)
The definition of 2 is the same as (3.9). By Lemma 2.1, we have
0 <a™ < Ay, (3.31)
Based on the above estimates and Lemma 3.1, we have
> Z max (s DI max 0 < S Ay, max u(z, OF T, (332)
=1 = j=1 4j
: r
2z max @, DI max 0% < Z LB 8 wmax Jua, P T, (333)
= = I<I<n = q] 1<i<n
S TlomlE _ AYTQ =B e 1P
Z — < Z — TR H? max ||6,u'"2 , (3.34)
~ & = q; 1<i<n r+l
n Tt Zl lpli)f’n My o —g.
H < Z—( B2 151 max M Dy
= = o q;j 1<I<n (3.35)
2
< Cmax [ oyt H 4 € max @, I 7,
1<i<n r+l
2
v, 772 0|
> — < Cmax | S)q, 00 || H? 4 € max (@, 0P 7F, (3:36)
= = 1<i<n q r+l
n M, _n.
27_: ’71_%H2 = Z =B | = Z—m Phps |4l e 3.37)
== T Y =4 i
Combining (3.22)—(3.37) can give
n 2 )
1P < (3 L 4| + 1 4 prn-zasam)
=1 =
By the Poincaré inequality, Lemma 3.1 and the Lemma 3.2, it follows that
16"1* < C(H** + 157%). (3.38)

The proof is complete.

Theorem 3.4. Let u(t,) € Hé(Q) N H*Y(Q), u, € HX(Q), u, € L*(Q), uy € L*(Q) u, € VO and
u) = Ryuo(x), then we arrive at the following

||u(t

3-8 + hr+1 + H2r+2).

(3.39)
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Proof. Subtracting (1.1) from (2.10), it yields

M
(5,(u”_% - uzf%), vh) + (Z p,-Z)f”(u”_% - uzf%), vh)
i=1

o R Ll (3.40)
+ (Z qu)f’(u”_f —u, 2),vh) + (V(u”‘i —u, °), Vvh)
=1
n—i n—1 ’ n—1i n—1 n—1 n—1 n—1
=(guh) = gy ) = gy )y =y Pva) = R vi) = (R v,
By the Taylor expansion, we can have the estimate that
el nel 1 el "(u 1 el
g™ = gl ) + g/l Dt iyt £ (2H dart -l h, (3-41)
then it follows from (3.40) that
_1 n-1 & ; _1 n—1i
(6t(un : - u, 2)5 Vh) + (Zpiﬂtl(un : - u, 2)’ Vh)
i=1
el
qu ' - ), Vi) + (V(u”‘% — 1y, ), V)
(3.42)
P S g" (i, ) n-1 n-1 -t
=(8/ ey D@ =)+ T =)o) = Ry v = (R )
n—1 n— Cl n—4i n—-1
S(C(u 2 —u, 2)+ > — W' —uy, 2),vh).
l
Let u"™> - Ryu’* P = n”‘%, Rhu"‘% - uh =0" 2 and v, = 6,0" :, Hence, (3.42) becomes
M, M,
1 1 . 1 1 . 1 1 1
(66", 86"7) + > (DI 3,660"7) + > g (D61, 66"7) + (V6'2, V)
i=1 =1
1 1 il 1 1 & 1 1 1 1 3.43
< —(607"2,6,6") ~ Zpi(ﬂi”’n"‘wﬁ"‘f) - Z GO0 o0 - R ot O
n— g3 n—L n— C3 n—L n— n—l
~ (R ey )+ (Cu'? — i) 2)+7(u o). 60 ’).
n 2
Defining H° = V6°, H" = VeI + £ i, ralsa™e” |l6,6043 +z Y rabey (wk—%”,

we have following results:

H' < H° - erH(sel

sz Ptals = Ay o
" IH ]Z ZrT(qzj 1ﬁ1>”5f90” ‘272 ipf@?"n"%,a,e"‘%)

i=1 [=1

(Z ;)

TpiA
_;Zr(z @)
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n

M, n I . |
—2r ) > A D a8 ~ 2 Y Ry 68 )~ 20 ) (R P56 )
=1 =1 — £

& _1 C _1
+21 ) (C =1, %) + f(ul-% — 1), 567%).
=1

We use the similar process of proof to the estimate (3.37). By the Poincaré inequality, Lemma 3.1,
Lemma 3.2 and the estimate of (3.37), it follows that

n
o < [ + =%+ 3 ot = a2+ )
I=1
< ( ”90”2 + 752 4 g ),

which leads to

lu — wll < C@# + H*™2 + b, (3.44)
This concludes the proof.

Remark 4.1. In the estimate (3.44), we observe that the TGM algorithm can achieve the convergence
rate 2! as long as the mesh sizes satisfy H = O(h?).

4. Numerical examples

In this section, we present a numerical example to demonstrate the theoretical analysis and illustrate
the efficiency of the algorithm discussed in section three. To investigate the spatial and temporal
convergence order, we use a bilinear finite element approximation and the computation is performed
by using Matlab.

Example 4.1. The following equation has an exact solution u(x, y, t) = £***Psinzxsinry:

Auu(x,y, 1) + 0%u(x, y, 1) + &u(x, y, £) — Au(x,y, 1) = —u> + g(x,y, 1), (x,y,1) € Qx (0,T],
u(x, y,0) = up(x,y), u(x,y,0)=ul(x,y), x,y € Q,

where Q is the unit square (0, 1)x(0, 1), T = 1 and g is a known function. The domain Q is divided into
families 7 and 77, of quadrilaterals, and Vg, V), C Hé(Q) are linear spaces of piecewise continuous
bilinear functions defined on 75 and 77, respectively.

Let H, = H, = H, h, = hy = hand h = H*. Tables 1-3 show that the spatial convergence rates
in the L?>-norm of FEM and Algorithm 3.1 are both equivalent to two. The convergence results are in
good agreement with the results O(h'*!) of the theoretical analysis. Moreover, combining Tables 2—4,
it can be seen that the TGM scheme will save more time than the general FEM scheme as M increases.

AIMS Mathematics Volume 9, Issue 1, 160-177.



174

Table 1. Comparison of the spatial convergence order and elapsed CPU(s) time of TGM and
FEM for Example 4.1 with different («, 8), 7 = 1000.

o a=03, =17 a=058=15 a=09,8=13
u"—u,|| Rate, CPU u"—u,|| Rate, CPU u' — u, Rate, CPU
% }‘ 4.815e-2 * 14.39  4.780e-2 * 13.49  4.780e-2 * 13.92
% é 8.811e-3 2.09 2954 8.720e-3 2.10 29.28 8.631e-3 2.10 29.85
i 11—6 2.635¢-3  2.10 67.18 2.614e-3 2.09 67.62 2590e-3 2.09 69.60
% % 1.058e-3 2.04 17541 1.063e-3 2.02 17326 1.058e-3 2.01 174.18
I a=03, =17 a=05 =15 a=09, =13
lu" — U"| Rate, CPU |u"—-U"| Rate, CPU |u"-U"|| Rate, CPU
JT 4.816e-2 * 23.66  4.780e-2 * 2470  4.780e-2 * 25.74
% 8.811e-3 2.09 41.52 8.720e-3 2.10 53.05 8.631e-3 2.10 5344
11—6 2.636e-3 210 77.83 2.614e-3 2.09 11843 2.590e-3 2.09 120.49
% 1.059¢-3 2.04 326.60 1.063e-3 2.02 296.73 1.058e-3 2.01 298.67

Table 2. L>-errors and temporal convergence rate for TGM and FEM with @=0.3, § = 1.7,
a=0.5,=15and =0.7,8=1.7.

a=03,8=17 a=05 =15 a=07, =17
’ u' —uy Rate,  CPU u' —u, | Rate,  CPU u' —uy Rate,  CPU
% 1.397e-2 * 30.34  6.519¢-3 * 41.16  1.706e-2 * 30.31
ﬁ 1.145¢-2 129 3540  5.169e-3 1.51 5190 1.396e-2 130 3544
% 9.633e-3 1.29 41.20 4.231e-3 1.50 58.28 1.174e-2  1.30  40.65
% 8.274e-3 1.29  47.23  3.549¢-3 1.49 62.54 1008e-2 1.30 45.44
a=03, =17 a=05 6=1.5 a=0.7 B=1.7
’ | — U"|| Rate, CPU |u"-U"|| Rate, CPU |u"—-U"|| Rate, CPU
ﬁ 1.395e-2 * 132.68 6.501e-3 * 130.38  1.704e-2 * 133.69
ﬁ 1.143e-2  1.29 153.62 5.152¢-3 1.51 152.17 1.395¢-2  1.30 152.98
% 9.623¢-3  1.29 186.10 4.215e-3 1.50 17550 1.173e-2 130 175.26
1

8.265e-3  1.29 267.50 3.533e¢-3 1.50 198.20 1.007e-2  1.30  200.97

—_
OO

Example 4.2. The following equation has the exact solution u(x, y, ) = (1 + £****#)sinxsinsy:

atu(w’ t) + ZiZZI 8?iu(m’ t) + 21'2:1 f.iu(ma t) - Au(-x’ Yy, t) = _Iu’z + g(-x’ Yy, t)’ (vaa t) € Q X (Oa T]’
u(-x’y’ O) = MO(X,)’)’ Mt(-x’y’ O) = U?(X,)’), X,y € Qa

where Q is the unit square (0,1) X (0, 1), T =1 and g is a known function.
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Table 3. Comparison of the spatial convergence order and elapsed CPU(s) time of TGM and
FEM for Example 4.2 with different (a;,5;), 7 = 1000.

@ =02,03,8,=16,17 @ =0405 ;=1415 o =0809,5;=1213

Hh u"—u,|| Rate, CPU u"—u,|| Rate, CPU u' —u, Rate, CPU
% }‘ 4.417e-2 * 16.71  4.597e-2 * 17.13  4.598e-2 * 15.87
% é 8.036e-3 2.10 3146 842le-3 2.10 3452 8426e-3 2.10 3349
i 11—6 2413e-3  2.09 72.02 2.539e-3 2.09 7044 2.543e-3 2.08 74.08
% % 9.730e-4 2.04 188.77 1.028e-3 2.02 181.33 1.034e-3 2.02 173.04
I @;=02,03,8;=16,17 @ =04,05,8;,=14,15 ;=08,09, 5;=12,1.3
|lu" — U"|| Rate, CPU |u"-U"|| Rate, CPU |ju"—-U"| Rate, CPU

JT 4.417e-2 * 26.53  4.597e-2 * 2527  4.326e-2 * 25.69

% 8.036e-3 2.10 41.09 8421e-3 2.10 4290 7.878e-3 2.10 4197

11—6 2.413e-3 209 98.70 2.539e-3 2.08 9741 2.3703e-3 2.09 98.14

% 9.730e-4 2.04 367.81 1.028e-3 2.02 32095 9.570e-4 2.03 367.51

Table 4. L’-errors and temporal convergence rate and elapsed CPU(s) time of TGM and
FEM with different (a;,8;), m = 121.

@ =02,03,8;=16,17 @ =04,05 8,=1415 ;=08,09,5;=16,1.7

o~|

u' —uy Ratey, CPU u' —u, Rate,, CPU u' —u, Ratey, CPU
ﬁ 1.893e-2 * 36.93 8.676e-3 * 3244  2.184e-2 * 30.83
ﬁ 1.544e-2 1.32 3526  6.845¢-3 1.54  35.76 1.777e-2 1.34 3592
% 1.294e-2 1.32 4271 5.577e-3 1.53 40.98 1.487e-2 1.34  40.89
% 1.107e-2 1.32 4554  4.657e-3 1.53 46.42 1.271e-2 1.33  46.27
. @;=02,03, g;=1.6,1.7 a; =04,05, g;=14,1.5 @;=038,09, g;=1.6,1.7
|lu" — U"|| Rate, CPU |u"—-U"| Rate, CPU |u"—-U"| Rate, CPU
11—2 6.474e-3 s 137.84  4.772e-3 * 135.30 1.373e-2 * 135.73
ﬁ 5.273e-3 1.33  153.89 3.767e-3 1.53  154.05 1.117e-2 1.33  155.12
11—6 4.417e-3 1.33  176.16 3.072e-3 1.53 178.36 9.351e-3 1.33  196.50
1

3.77%-3 132 198.87 2.568e-3  1.52 200.17 7.993e-3 133 325.33

—
o0

5. Conclusions

In this paper, we proposed a new H2N2 formula to approximate the multi-term fractional derivative
Zf‘g pidfiu(zx, 1), Zjﬂ’fl qjafju(zc, D, a; € (0,1), B; € (1,2). Based on the H2N2 approximation in time
and the finite element method for the spatial discretization, we have presented a fully discrete TGM
scheme for two-dimensional nonlinear time fractional multi-term mixed sub-diffusion and diffusion
wave equations and proved they are of second-order convergence in space and can reach the optimal

convergence order 3 — 3 in time, which is not related to «. In future work, we will consider the L2-1,
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formulation, which can reach second-order accuracy in time.
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