Loading [MathJax]/jax/output/SVG/fonts/TeX/fontdata.js
Research article

Global regularity to the 3D Cauchy problem of inhomogeneous magnetic Bénard equations with vacuum

  • Received: 20 April 2023 Revised: 21 May 2023 Accepted: 26 May 2023 Published: 31 May 2023
  • MSC : 35Q35, 76D03, 76W05

  • This paper deals with the Cauchy problem of 3D inhomogeneous incompressible magnetic Bénard equations. Through some time-weighted a priori estimates, we prove the global existence of strong solution provided that the upper boundedness of initial density and initial magnetic field satisfy some smallness condition. Furthermore, we also obtain large time decay rates of the solution.

    Citation: Wen Wang, Yang Zhang. Global regularity to the 3D Cauchy problem of inhomogeneous magnetic Bénard equations with vacuum[J]. AIMS Mathematics, 2023, 8(8): 18528-18545. doi: 10.3934/math.2023942

    Related Papers:

    [1] Zhongying Liu . Global well-posedness to the Cauchy problem of 2D inhomogeneous incompressible magnetic Bénard equations with large initial data and vacuum. AIMS Mathematics, 2021, 6(11): 12085-12103. doi: 10.3934/math.2021701
    [2] Zhongying Liu . Correction: Global well-posedness to the Cauchy problem of 2D inhomogeneous incompressible magnetic Bénard equations with large initial data and vacuum. AIMS Mathematics, 2022, 7(3): 4793-4794. doi: 10.3934/math.2022266
    [3] Ru Bai, Tiantian Chen, Sen Liu . Global stability solution of the 2D incompressible anisotropic magneto-micropolar fluid equations. AIMS Mathematics, 2022, 7(12): 20627-20644. doi: 10.3934/math.20221131
    [4] Xingang Zhang, Zhe Liu, Ling Ding, Bo Tang . Global solutions to a nonlinear Fokker-Planck equation. AIMS Mathematics, 2023, 8(7): 16115-16126. doi: 10.3934/math.2023822
    [5] Saleh Almuthaybiri, Tarek Saanouni . Energy solutions to the bi-harmonic parabolic equations. AIMS Mathematics, 2024, 9(12): 35264-35273. doi: 10.3934/math.20241675
    [6] Sangwoo Kang, Won-Kwang Park . A novel study on the bifocusing method for imaging unknown objects in two-dimensional inverse scattering problem. AIMS Mathematics, 2023, 8(11): 27080-27112. doi: 10.3934/math.20231386
    [7] Mingyu Zhang . On the Cauchy problem of 3D nonhomogeneous micropolar fluids with density-dependent viscosity. AIMS Mathematics, 2024, 9(9): 23313-23330. doi: 10.3934/math.20241133
    [8] Yuna Zhao . Construction of blocked designs with multi block variables. AIMS Mathematics, 2021, 6(6): 6293-6308. doi: 10.3934/math.2021369
    [9] Shangqin He . The identical approximation regularization method for the inverse problem to a 3D elliptic equation with variable coefficients. AIMS Mathematics, 2025, 10(3): 6732-6744. doi: 10.3934/math.2025308
    [10] Shuqi Tang, Chunhua Li . Decay estimates for Schrödinger systems with time-dependent potentials in 2D. AIMS Mathematics, 2023, 8(8): 19656-19676. doi: 10.3934/math.20231002
  • This paper deals with the Cauchy problem of 3D inhomogeneous incompressible magnetic Bénard equations. Through some time-weighted a priori estimates, we prove the global existence of strong solution provided that the upper boundedness of initial density and initial magnetic field satisfy some smallness condition. Furthermore, we also obtain large time decay rates of the solution.



    In this paper, we consider the following inhomogeneous incompressible magnetic Bénard equations in R3:

    {ρt+div(ρu)=0,ρut+ρuu+p=μΔu+bb+ρθe3,ρθt+ρuθκΔθ=ρue3,bt+ub=ηΔb+bu,divu=divb=0, (1.1)

    which is equipped with the following initial conditions:

    (ρ,ρu,ρθ,b)(x,0)=(ρ0,ρ0u0,ρ0θ0,b0)(x)forxR3. (1.2)

    Here, the unknown functions ρ, u, θ, b and p are the density, absolute temperature, magnetic field and pressure of the fluid, respectively. μ>0 stands for the viscosity constant and κ>0 is the heat conductivity coefficient. η>0 is the magnetic diffusive coefficient. e3=(0,0,1)T.

    The magnetic Bénard equations (1.1) illuminates the heat convection phenomenon under the dynamics of the velocity and magnetic fields in electrically conducting fluids such as plasmas (see [12] for details). If we ignore the Rayleigh-Bénard convection term ue2, system (1.1) recovers the inhomogeneous incompressible MHD equations (i.e., θ0), which have been discussed in numerous studies on the existence, uniqueness, and regularity of the solutions, please see [1,2,3,4,6,7,9,11,14,15,16,22] and references therein.

    When b0, system (1.1) reduces to inhomogeneous incompressible Bénard system. For the initial density allowing vacuum states, imposing a compatibility condition on the initial data, Cho-Kim [5] showed the local existence of strong solution in bounded domains ΩRN(N=2,3). Later on, Zhong [17] removed the compatibility condition, and extended the Cho-Kim's results to the whole space R2. Meanwhile, Zhong [18,19] showed the global existence of strong solutions to the 2D Cauchy problem and 2D initial boundary value problem with general large data, respectively. Recently, using time-weighted estimates, Zhong [20] investigated the global existence and exponential decay of strong solutions without a compatibility condition, provided that some initial conditions are suitably small.

    Similar to the results achieved for inhomogeneous Bénard system, the authors [8,21] respectively showed the local and global existence of strong solutions to the Cauchy problem of (1.1) and (1.2) in R2. However, the global existence of strong solution to the 3D Cauchy problem of (1.1) and (1.2) with vacuum is not addressed. In fact, this is the main aim of this paper.

    Before formulating our main results, we first explain the notations and conventions used throughout this paper. For simplicity, we set

    fdx=R3fdx,μ=κ=η=1.

    For 1r, k1, the Sobolev spaces are defined in a standard way.

    {Lr=Lr(R3),Dk,r=Dk,r(R3)={vL1loc(R3)|DkvLr(R3)},Wk,p=Wk,p(R3),Hk=Wk,2,Dk=Dk,2.

    The main result of this paper is formulated in the following theorem.

    Theorem 1.1. For constants ˉρ>0, assume that the initial data (ρ0,u0,θ0,b0) satisfies

    {0ρ0ˉρ,ρ0L1H1W1,6,(ρ0u0,ρ0θ0)L2,(u0,θ0)L2,b0H1,divu0=divb0=0. (1.3)

    Then, there is a positive constant ϵ0, which depends only on ˉρ and the initial data, such that if

    ˉρ+b0L3:=χ0ϵ0, (1.4)

    then the problems (1.1) and (1.2) has a unique global solution (ρ,u,θ,b) on R3×(0,T) satisfying

    {0ρL(0,T;L1L), ρL(0,T;L2L6),ρtL(0,T;L2L3), ρC([0,T];Lq), 32q<,ρu,u,t14ρut,t142u,t14pL(0,T;L2),ρθ,θ,t14ρθt,t142θL(0,T;L2),b,b,t122b,t12btL(0,T;L2),u,2u,t14ρut,t14utL2(0,T;L2),θ,2θ,t14ρθt,t14θtL2(0,T;L2),b,2b,t12btL2(0,T;L2). (1.5)

    Moreover, it holds that

    sup0t<ρL2L6Cρ0L2L6, (1.6)

    and there exists some positive constant C depending only on ˉρ and initial data, such that for all t1,

    {ρuL2+ρθL2+uL2+θL2Ct14,ρut2L2+ρθt2L2+2u2L2+p2L2+2θ2L2Ct14,bL2+btL2+2bL2Ct12. (1.7)

    Remark 1.1. Very recently, Zhong [20] establish the unique global strong solutions with vacuum to the Cauchy problem of the inhomogeneous incompressible Bénard equations. However, the corresponding strong solutions admits the exponential decay-in-time property which is quite different from Theorem 1.1 for magnetic Bénard system. This means that the magnetic field acts some significant roles on the large time behaviors of solutions. In particular, this decay rates of solutions are new for the magnetic Bénard system.

    Remark 1.2. When b=0, Theorem 1.1 is different from Zhong's [20] result, since the initial velocity u0 and initial temperature θ0 need not to be small in our result.

    We begin with the local existence and uniqueness of strong solutions whose proof can be performed by strategies as those in [5,21].

    Lemma 2.1. Assume that (ρ0,u0,θ0,b0) satisfies (1.3). Then there exists a small time T>0 and a unique strong solution (ρ,u,θ,b,p) to the problems (1.1) and (1.2) in R3×(0,T) satisfying for some constant M>1 depending on T and the initial data

    sup0tTt12(u2H1+θ2H1+b2H2+ρut2L2+ρθt2L2+bt2L2)+T0(ut2L2+θt2L2+bt2L2)dtM. (2.1)

    Next, the following well-known Gagliardo-Nirenberg inequality (see [13]) will be used later.

    Lemma 2.2. (Gagliardo-Nirenberg inequality) Assume fW1,mLr, it holds that

    fLqCfϑLmf1ϑLr, (2.2)

    where ϑ=(1r1q)/(1r1m+12), and if m<2, then q is between r and 2m2m, if m=2, then q[2,), if m>2, then q[2,] and constant C depending on q, m and r.

    Next, we have some regularity results for the Stokes equations, which have been proven in [9].

    Lemma 2.3. Suppose that FLr with 1<r<. Let (u,p)H1×L2 be the unique weak solution to the following Stokes problem

    {μΔu+p=F,inR3,divu=0,inR3,u(x)0,as|x|, (2.3)

    then (2u,p)Lr and there exists a constant C depending only on μ and r such that

    2uLr+pLrCFLr. (2.4)

    In this section, we will establish some necessary a priori estimates, which together with the local existence (cf. Lemma 2.1) will complete the proof of Theorem 1.1. To this end, we let (ρ,u,θ,b,p) be a strong solutions of (1.1) and (1.2) in R3×[0,T]. For simplicity, we use the letters C and Ci(i=1,2,) to denote some positive constant which dependent on ˉρ and the initial data, and write C(α) to emphasize that C dependent on α.

    We first aim to get the following key a priori estimates on (ρ,u,θ,b,p). Set

    X(t):=u2L2+b2L2+θ2L2,K:=u02L2+b02L2+θ02L2+b02L2.

    Proposition 3.1. Assume that

    χ0ϵ0,

    there exists some small positive constant ϵ0 depending only on ˉρ and the initial data, such that if (ρ,u,θ,b,p) is a smooth solution of (1.1) and (1.2) on R3×(0,T] satisfying

    ˉρ+bL32χ120,X(t)6K, (3.1)

    then the following estimate holds

    ˉρ+bL332χ120,X(t)5K. (3.2)

    Moreover, we have

    sup0tT(u2L2+θ2L2+b2L2)+T0(ρut2L2+ρθt2L2+bt2L2+2b2L2)dtC. (3.3)

    Proof of Proposition 3.1. 1) It following from transport Equation (1.1)1, and making use of (1.1)5 (see Lions [10, Theorem 2.1]) that

    0ρ(x,t)supxR3ρ0(x)=ˉρ. (3.4)

    2) Multiplying (1.1)2,3,4 by u, θ and b, respectively, and integrating by parts over R3, one obtains by using divu=divb=0,

    12ddt(ρu2L2+ρθ2L2+b2L2)+u2L2+θ2L2+b2L2Cρ|u||θ|dxCρu2L2+Cρθ2L2CρL32(u2L6+θ2L6)Cρ023L1ˉρ13(u2L2+θ2L2)C1ρ023L1χ160(u2L2+θ2L2), (3.5)

    which leads

    ddt(ρu2L2+ρθ2L2+b2L2)+μu2L2+κθ2L2+ηb2L20 (3.6)

    provided χ0ϵ1:=min{1,164C61ρ04L1}. Integrating (3.23) over [0,T] yields that

    sup0tT(ρu2L2+ρθ2L2+b2L2)+T0(u2L2+θ2L2+b2L2)dtE0, (3.7)

    where

    E0:=ρ0u02L2+ρ0θ02L2+b02L2.

    3) Multiplying (1.1)2,3 by ut and θt respectively, and integrating the resulting equality by parts. We infer from Gagliardo-Nirenberg inequality and Young's inequality, (3.4) that

    12ddt(|u|2+|θ|2)dx+(ρ|ut|2+ρ|θt|2)dx=ρuuutdxρuθθtdxθρe3utdxθtρue3dxddtbubdxbtubdxbubtdxddtbubdx+Cˉρ12ρutL2uL6uL3+Cˉρ12ρθtL2uL6θL3+CρθtL2ρuL2+CbL3btL2uL6+CρθL2ρutL2ddtbubdx+Cˉρ12ρutL2u32L22u12L2+Cρ12L32uL6ρθtL2+Cρ12L32θL6ρutL2+Cˉρ12ρθtL2uL2θ12L22θ12L2+CbL3btL22uL2ddtbubdx+12ρut2L2+12ρθt2L2+18bt2L2+Cˉρu3L22uL2+Cˉρu2L2θL22θL2+Cb2L32u2L2+Cˉρ13u2L2+Cˉρ13θ2L2,

    which yields

    ddt(u2L2+θ2L2)+ρθt2L2+ρut2L2ddtbubdx+14bt2L2+C(ˉρ2+b2L3)2u2L2+Cˉρ22θ2L2+Cu2L2+Cθ2L2. (3.8)

    4) Multiplying (1.1)4 by bt in L2 and integrating by parts, we obtain

    12ddt|b|2dx+|bt|2dx=(buub)btdxCbtL2(bL3uL6+uL6bL3)14bt2L2+Cb2L32u2L2+Cu2L22b43L2b23L314bt2L2+Cb2L32u2L2+Cu6L2bL3+C2b2L2b12L314bt2L2+Cb2L32u2L2+Cu2L2+Cb12L32b2L2. (3.9)

    5) According to Lemma 2.2 and F=ρut+ρuu+bb+ρθe3, we derive

    2uL2+pL2Cρut+ρuu+bb+ρθe3L2Cˉρ12ρutL2+CˉρuL6uL3+Cˉρ12ρθL2+CbL3bL6Cˉρ12ρutL2+Cˉρu32L22u12L2+Cˉρ23θL6+CbL32bL2122uL2+Cˉρ12ρutL2+Cˉρ2u3L2+Cˉρ23θL2+CbL32bL2,

    which directly leads that

    2uL2+pL2Cˉρ12ρutL2+Cˉρ23θL2+Cˉρ2uL2+C1bL32bL2CρutL2+CθL2+CuL2+C2χ1202bL2. (3.10)

    It follows from (1.1)4, Hölder's and Gagliardo-Nirenberg inequalities, we get

    2bL2C(btL2+ubL2+buL2)CbtL2+CuL6bL3+CbL3uL6CbtL2+Cb12L22b12L2uL2+CuL22b23L2b13L3142bL2+CbtL2+CbL2u2L2+CbL3u3L2, (3.11)

    which together with (3.10) implies that

    2uL2+pL2+2bL2CbtL2+CρutL2+CuL2+CθL2, (3.12)

    which provided χ0ϵ2=min{ϵ1,14C22}.

    Similarly, by using the following L2-estimate of elliptic system, we have

    2θL2C(ρθtL2+ρuθL2+ρue3L2)Cˉρ12ρθtL2+CˉρuL6θL3+Cˉρ12ρ012L32uL6Cˉρ12ρθtL2+Cˉρ12uL2θ12L22θ12L2+Cˉρ23uL2122θL2+Cˉρ12ρθtL2+Cˉρ(uL2+θL2),

    that is

    2θL2Cˉρ12ρθtL2+Cˉρ(uL2+θL2). (3.13)

    6) Combining (3.8), (3.9), (3.12) and (3.13), it is easy to deduce that

    ddt(u2L2+θ2L2+b2L2)+ρθt2L2+ρut2L2+12bt2L2ddtbubdx+C(ˉρ+b2L3)(2u2L2+2θ2L2)+Cb12L32b2L2+Cu2L2+Cθ2L2ddtbubdx+χ120˜C(bt2L2+ρut2L2+ρθ2L2)+Cu2L2+Cθ2L2.

    Hence, choosing χ0 suitably small, we have

    ddt(u2L2+θ2L2+b2L2)+ρθt2L2+ρut2L2+bt2L2ddtbubdx+Cu2L2+Cθ2L2. (3.14)

    Integrating (3.14) with respect to t, and using (3.1), one obtains

    sup0tT(u2L2+θ2L2+b2L2)+T0(ρθt2L2+ρut2L2+bt2L2)dtM+Cb0L3u0L2b0L6+Csup0tTbL3uL2bL6+CT0(u2L2+θ2L2)dt2M+12u02L2+C3b02L3b02L2+12sup0tTu2L2+C3b2L3b2L252M+12sup0tTu2L2+4C3sup0tTχ0b2L2.

    As a consequence, we have

    sup0tT(u2L2+θ2L2+b2L2)+T0(ρθt2L2+ρut2L2+bt2L2)dt5M, (3.15)

    provided χ0ϵ3:=min{ϵ2,18C3,116˜C}.

    7) Mmultiplying (1.1)4 by 3|b|b and integrating by parts, we derive

    ddtb3L3+3|b||b|2dx+3|b|||b||2dx|b||b|2dx+Cu2L2b3L92.

    Consequently,

    ddtb3L3+2|b||b|2dx+3|b|||b||2dxCu2L2b3L92. (3.16)

    To deal with the right-hand side of (3.16), we need to use the following variant of the Kato inequality

    ||b|32|=32|b|12||b||32|b|12|b|,

    which combined with Hölder's inequality and Galiardo-Nirenberg inequality leads to

    b3L92b32L3b32L9=b32L3|b|32L6Cb32L3(|b|32)L2Cb32L3|b|12|b|L2. (3.17)

    Thus, substituting (3.17) into (3.16), we obtain from Young's inequality that

    ddtb3L3+|b||b|2dxCu4L2b3L3.

    This together with (3.7), (3.15) and Gronwall's inequality yields

    sup0tTbL3exp{CT0u4L2dt}13b0L3C4χ0χ1202,

    provided χ0ϵ4=min{ϵ3,14C24}. Thus, choosing ϵ0=min{ϵ4,ϵ7} (ϵ7 can be chosen in the following lemmas), one obtains

    ρL+bL3ρ0L+bL3χ0+12χ120=32χ120. (3.18)

    Finally, combining (3.15) with (3.7) and (3.12) imply the desired (3.3). We completed the proof of Proposition 3.1.

    Lemma 3.1. Under the conditions of Proposition 3.1, it holds that

    sup0tTtb2L2+T0t(bt2L2+2b2L2)dtC, (3.19)
    sup0tTt12(ρu2L2+ρθ2L2)+T0t12(u2L2+θ2L2)dtC, (3.20)
    sup0tTt12(u2L2+θ2L2)+T0t12(ρut2L2+ρθt2L2)dt+T0t12(2u2L2+p2L2+2θ2L2)dtC. (3.21)

    Proof. 1) Using (1.1)4, Hölder's and Gagliardo-Nirenberg inequalities, we have

    ddtb2L2+bt2L2+2b2L2=|btΔb|2dx=|buub|2dxCb2Lu2L2+Cu2L6b2L3CbL22bL2u2L2122b2L2+Cu4L2b2L2,

    which implies

    ddt(tb2L2)+tbt2L2+t22b2L2b2L2+Ctu4L2b2L2. (3.22)

    This along with Gronwall's inequality, (3.7) and (3.3) yields the desired (3.19).

    2) It follows from (3.5) that

    ddt(ρu2L2+ρθ2L2)+u2L2+θ2L214u2L2+C5χ160(u2L2+θ2L2)+CbL2b3L2,

    which implies

    ddt(ρu2L2+ρθ2L2)+u2L2+θ2L2CbL2b3L2, (3.23)

    provided χ0ϵ5=min{ϵ4,164C65}. Multiplying it by t12, we arrive at

    sup0tTt12(ρu2L2+ρθ2L2)+T0t12(u2L2+θ2L2)dtsup0t1(ρu2L2+ρθ2L2)10t12dt+CT1(u2L2+θ2L2)dt+Csup0tTbL2sup0tTt12bL2T0b2L2dtC. (3.24)

    3) In the view of (3.14), one obtains

    ddt(u2L2+θ2L2+b2L2)+ρθt2L2+ρut2L2+bt2L2ddtbubdx+Cu2L2+Cθ2L2, (3.25)

    which together with (3.3), (3.7) and (3.19) yields that

    sup0tTt12(u2L2+θ2L2+b2L2)+T0t12(ρθt2L2+ρut2L2+bt2L2)dtsup0t1(u2L2+θ2L2+b2L2)10t12dt+T1(u2L2+θ2L2+b2L2)dt+CT0t12bL3uL2bL6dt+sup0tTt12bL3uL2bL6+CCsup0t1(u2L2+b2L2)10t12dt+T1(u2L2+b2L2)dt+sup0tTt12bL3uL2bL6+CC. (3.26)

    Thus, we directly obtain (3.21) from (3.12), (3.13) and (3.26). The proof of Lemma 3.1 is completed.

    Lemma 3.2. Under the conditions of Proposition 3.1, it holds that

    sup0tTt12(ρut2L2+ρθt2L2)+T0t12(ut2L2+θt2L2)dtC, (3.27)
    sup0tTt(bt2L2+2b2L2)+T0tbt2L2dtC, (3.28)
    sup0tTt12(2u2L2+p2L2+2θ2L2)C. (3.29)

    Proof. 1) Differentiating (1.1)2,3 with respect to time variable t give

    ρutt+ρuutΔut+pt=ρt(ut+uu)ρutu+(ρθe3)t+(bb)t, (3.30)
    ρθtt+ρuθtΔθt=ρt(θt+uθ)ρutθ+(ρu)te3. (3.31)

    Multiplying (3.30), (3.31) by ut, θt respectively, and integrating it by parts, we arrive at

    12ddt(ρut2L2+ρθt2L2)+ut2L2+θt2L2=2ρuututdxρutuutdxρu(uuut)dx+(bb)tutdx2ρuθtθtdxρutθθtdxρu(uθθt)dx+(ρθe3)tutdx+(ρu)tθte3dx=:9i=1Ii. (3.32)

    By using Hölder's, Gagliardo-Nirenberg inequalities, and (3.4), one gets

    I1Cˉρ12ρutL3uL6utL2Cˉρ12ρut12L2ρut12L6uL2utL2Cˉρ34ρut12L2ut23L2uL2110ut2L2+Cˉρ3ρut2L2u4L2,I2Cρut2L4uL2Cˉρ34ρut12L2ut32L2uL2110ut2L2+Cˉρ3ρut2L2u4L2,I3CˉρuL6utL6(u2L3+uL62uL2)+Cˉρu2L6uL6utL2110ut2L2+Cˉρ22u2L2u4L2,I4CbtL6utL2bL3110ut2L2+Cb2L3bt2L2,I5Cˉρ12ρθtL3uL6θtL2Cˉρ12ρθt12L2ρθt12L6uL2θtL2Cˉρ34ρθtL2θt32L2uL218θt2L2+Cˉρ3ρθt2L2u4L2,I6Cˉρ12θL2ρutL3θtL6Cˉρ34ρut12L2ut12L6θtL2θL218θt2L2+110ut2L2+Cˉρ3ρut2L2θ4L2,I7Cρ|u||θt|(|u||θ|+|u||2θ|)dx+Cρ|u|2|θ||θt|dxCˉρu2L6θtL2θL6+CˉρuL6uL2θtL6θL6+CˉρθtL62θL2u2L6Cˉρu2L2θtL22θL218θt2L2+Cˉρ2u4L22θ2L2,I8+I9Cρ|u||ut||θ|dx+Cρ|θ||u||ut|dx+Cρ|u||θt||u|dx+Cρ|u|2|θt|dx+Cρ|θt||ut|dxCˉρ12uL6ρutL3θL2+CˉρutL2ρuL3θL6+Cˉρ12uL6ρθtL3uL2+Cˉρ12ρutL3uL6θtL2+CρθtL2ρutL2110ut2L2+18θt2L2+Cˉρ3ρut2L2θ4L2+Cˉρ3ρθt2L2u4L2+Cθ2L2+Cu2L2+Cρut2L2+Cρθt2L2.

    Putting all above estimates into (3.32), we show

    ddt(ρut2L2+ρθt2L2)+ut2L2+θt2L2Cρut2L2+Cρθt2L2+Cˉρ2(2u2L2+2θ2L2)Cˉρ13(ut2L6+Cθt2L6)+C(u2L2+θ2L2)+Cbt2L2u4L2C6χ160(ut2L2+Cθt2L2)+C(u2L2+θ2L2)+Cbt2L2u4L2,

    which yields

    ddt(ρut2L2+ρθt2L2)+12ut2L2+12θt2L2Cbt2L2u4L2+C(u2L2+θ2L2), (3.33)

    provided χ0ϵ6:=min{ϵ5,(12C6)6}. Hence, multiplying (3.33) by t12, and integrating by parts, we infer from Lemma 3.1 and (3.3) that

    sup0tTt12(ρut2L2+ρθt2L2)+T0t12(ut2L2+θt2L2)dtCT0t12(ρut2L2+ρθt2L2)dt+CT0t12bt2L2u4L2dt+CT0t12(u2L2+θ2L2)dtCsup0tt0t12(ρut2L2+ρθt2L2)t00t1dt+Cˉρ13Tt0(ut2L2+θt2L2)dt+Csup0tTt12u2L2T0bt2L2dtC(M)t0+C7χ160T0t12(ut2L2+θt2L2)dt+C, (3.34)

    that is

    sup0tTt12(ρut2L2+ρθt2L2)+T0t12(ut2L2+θt2L2)dtC, (3.35)

    provided χ0ϵ7:=min{ϵ6,(12C7)6}.

    2) Differentiating (1.1)4 with respect to t, and multiplying the resulting equality with bt and then integrating by parts over R3, we arrive at

    12ddt|bt|2dx+|bt|2dxC(|ut||b|L2+|u||bt|L2)btL2CutL6bL3btL2+CuL6btL3btL2CbtL2utL2bL3+CuL2bt12L2bt32L212bt2L2+Cb2L3ut2L2+Cu4L2bt2L2,

    which leads

    ddt|bt|2dx+|bt|2dxCb2L3ut2L2+Cu4L2bt2L2. (3.36)

    Multiplying (3.36) by t, and using Gronwall's inequality, we infer from (3.35) that

    sup0tTtbt2L2+T0tbt2L2dtCT0tb12L2b12L2ut2L2dt+T0bt2L2dtsup0tT(tb2L2)12T0t12ut2L2dt+CC. (3.37)

    Then, the desired (3.27) follows from (3.12) and (3.13). We completed the proof of lemma.

    Lemma 3.3. Under the assumption of Theorem 1.1, it holds that

    sup0tT(ρL2L6+ρtL2L3)+T0uLdtC(T). (3.38)

    Proof. 1) It follows from the Lemma 2.3, Hölder's and Gagliardo-Nirenberg inequalities that for r (3,min{q,6}),

    2uLr+pLrCρutLr+CρuuLr+CρθLr+CbbLrC(ˉρ)ρut6r2rL2ut3r62rL2+CˉρuL6uL6r6r+C(ˉρ)ρθ6r2rL2ρθ3r62rL6+CbLbLrC(ˉρ)ρut6r2rL2ut3r62rL2+C(ˉρ)u6r6rL2+C(ˉρ)(ρ12L32θL6)6r2r(ˉρθL6)3r62r+122uLr+Cb3rL22b2r3rL2Cρut6r2rL2ut3r62rL2+Cu6r6rL2+CθL2+122uLr+Cb3rL22b2r3rL2

    which yields

    2uLr+pLrCρut6r2rL2ut3r62rL2+Cu6r6rL2+CθL2+Cb3rL22b2r3rL2. (3.39)

    Then, one derives from the Gagliardo-Nirenberg inequality and (3.12) that

    uLC2u3r5r6Lru2r65r6L2CuL2+C2uLrCρut6r2rL2ut3r62rL2+Cu6r6rL2+CθL2+CuL2+Cb3rL22b2r3rL2,

    which together with Lemma 3.2, (3.7) and (3.3) implies

    T0uLdtCsup0tT(t12ρut2L2)6r4r(T0t12ut2L2dt)3r64r(T0trr+6dt)r+64+C(T0θ2L2dt)12+C(T0u2L2dt)12+CT02b2L2dt+C(sup0tTu2L2)2r3rT0u2L2dt+CC. (3.40)

    2) Differentiating the continuity equation (1.1)1 with respect to xi gives rise to

    (ρxi)t+ρxiu+ρuxi=0. (3.41)

    Multiplying (3.41) by s|ρxi|s2ρxi (s={2,6}) and integrating the resulting equation over R3 indicate that

    ddtρL2L6CuLρL2L6. (3.42)

    It follows from the Gronwall's inequality and (3.40) that

    ρL2L6Cρ0L2L6. (3.43)

    Noticing the following facts

    ρtL2L3CuL6(ρL3+ρL6)CuL2ρL2L6Cρ0L2L6. (3.44)

    This ends the proof of Lemma 3.3.

    Lemma 3.4. Under the assumption of Theorem 1.1, it holds that for

    T0t323b2L2dtC. (3.45)

    Proof. Taking operator to (1.1)4, we get

    Δb=(buubbt). (3.46)

    Using the L2-estimates of elliptic system, we derive

    3b2L2C(bt2L2+(ub)2L2+(bu)2L2)Cbt2L2+C|u||b|2L2+C|u||2b|2L2+C|b||2u|2L2Cbt2L2+Cu2L3b2L6+Cu2L62b2L2+Cb2L2u2L2Cbt2L2+CuL22uL22b2L2+Cu2L22b2L2+CbL22bL22u2L2, (3.47)

    which yields to

    T0t323b2L2dtCsup0tT(t142uL2t14uL2)T0t2b2L2dt+Csup0tT(t12bL2t122bL2)T0t122u2L2dt+Csup0tTt2b2L2T0t12u2L2dtC. (3.48)

    We complete the proof of this lemma.

    By Lemma 2.1, there exists a T such that the problems (1.1) and (1.2) has a unique local strong solution (ρ,u,θ,b) on R3×(0,T]. In what follows, we shall extend the local solution to all the time.

    Set

    T=sup{T|(ρ,u,θ,b)isastrongsolutionof(1.1)and(1.2)onR3×(0,T]}. (4.1)

    First, for any 0<τ<T<T<T with T finite, it follows from Proposition 3.1, and Lemmas 3.1–3.4 that for any p2,

    u,θ,bC([τ,T];L2), (4.2)

    where we used the following standard Sobolev embedding

    L(τ,T;H1)H1(τ,T;H1)C(τ,T;L2).

    Moreover, one deduces from (3.4) and (3.38) that

    ρC(0,T;L32W1,q). (4.3)

    Now, we claim that

    T=. (4.4)

    Otherwise, if T<, in the view of Lemmas 3.1–3.4, we have

    (ρ,u,θ,b)(T,x)=limtT(ρ,u,θ,b)(t,x) (4.5)

    satisfies (1.3) at t=T. Thus, we can take (ρ,u,θ,b)(T,x) as the initial data, and Lemma 2.1 implies that one can extend the local solutions beyond T. This contradicts the assumption of T in (4.4). The proof of Theorem 1.1 is completed.

    This paper deals with the Cauchy problem of 3D inhomogeneous incompressible magnetic Bénard equations. Through some time-weighted a priori estimates, we prove the global existence of strong solution provided that the upper boundedness of initial density and initial magnetic field satisfy some smallness condition. Furthermore, we also obtain large time decay rates of the solution.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors would like to thank the anonymous reviewers and the Editor for their constructive comments which helped to improve the quality of the paper. Funding: This research was supported by grants from the Key Project of Jilin Provincial Science and Technology Development Plan (Grant No. 20210203056SF); Project Name: Research on the Construction of the "Two Products and One Equipment" Supervision and Traceability System under Information Conditions.

    The authors declare that they have no competing interests.



    [1] H. Abidi, M. Paicu, Global existence for the magnetohydrodynamic system in critical spaces, P. Roy. Soc. Edinb. A, 138 (2008), 447–476. https://doi.org/10.1017/S0308210506001181 doi: 10.1017/S0308210506001181
    [2] A. M. Alghamdi, S. Gala, M. A. Ragusa, Global regularity for the 3D micropolar fluid flows, Filomat, 36 (2022), 1967–1970. https://doi.org/10.2298/FIL2206967A doi: 10.2298/FIL2206967A
    [3] F. Chen, B. Guo, X. Zhai, Global solution to the 3-D inhomogeneous incompressible MHD system with discontinuous density, Kinet. Relat. Mod., 12 (2019), 37–58. https://doi.org/10.3934/krm.2019002 doi: 10.3934/krm.2019002
    [4] Q. Chen, Z. Tan, Y. Wang, Strong solutions to the incompressible magnetohydrodynamic equations, Math. Method. Appl. Sci., 34 (2011), 94–107. https://doi.org/10.1002/mma.1338 doi: 10.1002/mma.1338
    [5] Y. Cho, H. Kim, Existence result for heat-conducting viscous incompressible fluids with vacuum, J. Korean Math. Soc., 45 (2008), 645–681. https://doi.org/10.4134/jkms.2008.45.3.645 doi: 10.4134/jkms.2008.45.3.645
    [6] H. Gong, J. Li, Global existence of strong solutions to incompressible MHD, Commun. Pur. Appl. Anal., 13 (2014), 1553–1561. https://doi.org/10.3934/cpaa.2014.13.1553 doi: 10.3934/cpaa.2014.13.1553
    [7] X. Huang, Y. Wang, Global strong solution to the 2D nonhomogeneous incompressible MHD system, J. Differ. Equ., 254 (2013), 511–527. https://doi.org/10.1016/j.jde.2012.08.029 doi: 10.1016/j.jde.2012.08.029
    [8] Z. Liu, Global well-posedness to the Cauchy problem of 2D inhomogeneous incompressible magnetic Bénard equations with large initial data and vacuum, AIMS Mathematics, 6 (2021), 12085–12103. https://doi.org/10.3934/math.2021701 doi: 10.3934/math.2021701
    [9] B. Lu, Z. Xu, X. Zhong, Global existence and large time asymptotic behavior of strong solutions to the Cauchy problem of 2D density-dependent magnetohydrodynamic equations with vacuum, J. Math. Pure. Appl., 108 (2017), 41–62. https://doi.org/10.1016/j.matpur.2016.10.009 doi: 10.1016/j.matpur.2016.10.009
    [10] P. L. Lions, Mathematical topics in fluid mechanics: Volume 1: Incompressible models, Oxford: Oxford University Press, 1996.
    [11] E. Marušić-Paloka, I. Pažanin, M. Radulović, MHD flow through a perturbed channel filled with a porous medium, Bull. Malays. Math. Sci. Soc., 45 (2022), 2441–2471. https://doi.org/10.1007/s40840-022-01356-3 doi: 10.1007/s40840-022-01356-3
    [12] G. Mulone, S. Rionero, Necessary and sufficient conditions for nonlinear stability in the magnetic Bénard problem, Arch. Rational Mech. Anal., 166 (2003), 197–218. https://doi.org/10.1007/s00205-002-0230-9 doi: 10.1007/s00205-002-0230-9
    [13] A. Novotny, I. Straŝkraba, Introduction to the mathematical theory of compressible flow, Oxford: Oxford University Press, 2004.
    [14] P. Sunthrayuth, A. A. Alderremy, F. Ghani, A. M. J. Tchalla, S. Aly, Y. Elmasry, Unsteady MHD flow for fractional Casson channel fluid in a porous medium: An application of the Caputo-Fabrizio time-fractional derivative, J. Funct. Space., 2022 (2022), 2765924. https://doi.org/10.1155/2022/2765924 doi: 10.1155/2022/2765924
    [15] S. Song, On local strong solutions to the three-dimensional nonhomogeneous incompressible magnetohydrodynamic equations with density-dependent viscosity and vacuum, Z. Angew. Math. Phys., 69 (2018), 23. https://doi.org/10.1007/s00033-018-0915-z doi: 10.1007/s00033-018-0915-z
    [16] P. Zhang, H. Yu, Global regularity to the 3D incompressible MHD equations, J. Math. Anal. Appl., 432 (2015), 613–631. http://doi.org/10.1016/j.jmaa.2015.07.007 doi: 10.1016/j.jmaa.2015.07.007
    [17] X. Zhong, Local strong solutions to the nonhomogeneous Bénard system with nonnegative density, Rocky Mountain J. Math., 50 (2020), 1497–1516. https://doi.org/10.1216/rmj.2020.50.1497 doi: 10.1216/rmj.2020.50.1497
    [18] X. Zhong, Global strong solution to the nonhomogeneous Bénard system with large initial data and vacuum, Results Math., 76 (2021), 27. https://doi.org/10.1007/s00025-020-01338-6 doi: 10.1007/s00025-020-01338-6
    [19] X. Zhong, Global strong solution of nonhomogeneous Bénard system with large initial data and vacuum in a bounded domain, Z. Anal. Anwend., 40 (2021), 153–166. https://doi.org/10.4171/zaa/1677 doi: 10.4171/zaa/1677
    [20] X. Zhong, Global strong solution and exponential decay to the 3D Cauchy problem of nonhomogeneous Bénard system with vacuum, Acta Appl. Math., 172 (2021), 8. https://doi.org/10.1007/s10440-021-00406-5 doi: 10.1007/s10440-021-00406-5
    [21] X. Zhong, The local existence of strong solutions to the Cauchy problem of two-dimensional density-dependent magnetic Bénard problem with nonnegative density, Commun. Math. Sci., 18 (2020), 725–750. https://doi.org/10.4310/CMS.2020.v18.n3.a7 doi: 10.4310/CMS.2020.v18.n3.a7
    [22] X. Zhong, Global strong solution and exponential decay for nonhomogeneous Navier-Stokes and magnetohydrodynamic equations, DCDS-B, 26 (2021), 3563–3578. https://doi.org/10.3934/dcdsb.2020246 doi: 10.3934/dcdsb.2020246
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1236) PDF downloads(47) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog