This paper deals with the Cauchy problem of 3D inhomogeneous incompressible magnetic Bénard equations. Through some time-weighted a priori estimates, we prove the global existence of strong solution provided that the upper boundedness of initial density and initial magnetic field satisfy some smallness condition. Furthermore, we also obtain large time decay rates of the solution.
Citation: Wen Wang, Yang Zhang. Global regularity to the 3D Cauchy problem of inhomogeneous magnetic Bénard equations with vacuum[J]. AIMS Mathematics, 2023, 8(8): 18528-18545. doi: 10.3934/math.2023942
[1] | Zhongying Liu . Global well-posedness to the Cauchy problem of 2D inhomogeneous incompressible magnetic Bénard equations with large initial data and vacuum. AIMS Mathematics, 2021, 6(11): 12085-12103. doi: 10.3934/math.2021701 |
[2] | Zhongying Liu . Correction: Global well-posedness to the Cauchy problem of 2D inhomogeneous incompressible magnetic Bénard equations with large initial data and vacuum. AIMS Mathematics, 2022, 7(3): 4793-4794. doi: 10.3934/math.2022266 |
[3] | Ru Bai, Tiantian Chen, Sen Liu . Global stability solution of the 2D incompressible anisotropic magneto-micropolar fluid equations. AIMS Mathematics, 2022, 7(12): 20627-20644. doi: 10.3934/math.20221131 |
[4] | Xingang Zhang, Zhe Liu, Ling Ding, Bo Tang . Global solutions to a nonlinear Fokker-Planck equation. AIMS Mathematics, 2023, 8(7): 16115-16126. doi: 10.3934/math.2023822 |
[5] | Saleh Almuthaybiri, Tarek Saanouni . Energy solutions to the bi-harmonic parabolic equations. AIMS Mathematics, 2024, 9(12): 35264-35273. doi: 10.3934/math.20241675 |
[6] | Sangwoo Kang, Won-Kwang Park . A novel study on the bifocusing method for imaging unknown objects in two-dimensional inverse scattering problem. AIMS Mathematics, 2023, 8(11): 27080-27112. doi: 10.3934/math.20231386 |
[7] | Mingyu Zhang . On the Cauchy problem of 3D nonhomogeneous micropolar fluids with density-dependent viscosity. AIMS Mathematics, 2024, 9(9): 23313-23330. doi: 10.3934/math.20241133 |
[8] | Yuna Zhao . Construction of blocked designs with multi block variables. AIMS Mathematics, 2021, 6(6): 6293-6308. doi: 10.3934/math.2021369 |
[9] | Shangqin He . The identical approximation regularization method for the inverse problem to a 3D elliptic equation with variable coefficients. AIMS Mathematics, 2025, 10(3): 6732-6744. doi: 10.3934/math.2025308 |
[10] | Shuqi Tang, Chunhua Li . Decay estimates for Schrödinger systems with time-dependent potentials in 2D. AIMS Mathematics, 2023, 8(8): 19656-19676. doi: 10.3934/math.20231002 |
This paper deals with the Cauchy problem of 3D inhomogeneous incompressible magnetic Bénard equations. Through some time-weighted a priori estimates, we prove the global existence of strong solution provided that the upper boundedness of initial density and initial magnetic field satisfy some smallness condition. Furthermore, we also obtain large time decay rates of the solution.
In this paper, we consider the following inhomogeneous incompressible magnetic Bénard equations in R3:
{ρt+div(ρu)=0,ρut+ρu⋅∇u+∇p=μΔu+b⋅∇b+ρθe3,ρθt+ρu⋅∇θ−κΔθ=ρu⋅e3,bt+u⋅∇b=ηΔb+b⋅∇u,divu=divb=0, | (1.1) |
which is equipped with the following initial conditions:
(ρ,ρu,ρθ,b)(x,0)=(ρ0,ρ0u0,ρ0θ0,b0)(x)forx∈R3. | (1.2) |
Here, the unknown functions ρ, u, θ, b and p are the density, absolute temperature, magnetic field and pressure of the fluid, respectively. μ>0 stands for the viscosity constant and κ>0 is the heat conductivity coefficient. η>0 is the magnetic diffusive coefficient. e3=(0,0,1)T.
The magnetic Bénard equations (1.1) illuminates the heat convection phenomenon under the dynamics of the velocity and magnetic fields in electrically conducting fluids such as plasmas (see [12] for details). If we ignore the Rayleigh-Bénard convection term u⋅e2, system (1.1) recovers the inhomogeneous incompressible MHD equations (i.e., θ≡0), which have been discussed in numerous studies on the existence, uniqueness, and regularity of the solutions, please see [1,2,3,4,6,7,9,11,14,15,16,22] and references therein.
When b≡0, system (1.1) reduces to inhomogeneous incompressible Bénard system. For the initial density allowing vacuum states, imposing a compatibility condition on the initial data, Cho-Kim [5] showed the local existence of strong solution in bounded domains Ω⊂RN(N=2,3). Later on, Zhong [17] removed the compatibility condition, and extended the Cho-Kim's results to the whole space R2. Meanwhile, Zhong [18,19] showed the global existence of strong solutions to the 2D Cauchy problem and 2D initial boundary value problem with general large data, respectively. Recently, using time-weighted estimates, Zhong [20] investigated the global existence and exponential decay of strong solutions without a compatibility condition, provided that some initial conditions are suitably small.
Similar to the results achieved for inhomogeneous Bénard system, the authors [8,21] respectively showed the local and global existence of strong solutions to the Cauchy problem of (1.1) and (1.2) in R2. However, the global existence of strong solution to the 3D Cauchy problem of (1.1) and (1.2) with vacuum is not addressed. In fact, this is the main aim of this paper.
Before formulating our main results, we first explain the notations and conventions used throughout this paper. For simplicity, we set
∫fdx=∫R3fdx,μ=κ=η=1. |
For 1≤r≤∞, k≥1, the Sobolev spaces are defined in a standard way.
{Lr=Lr(R3),Dk,r=Dk,r(R3)={v∈L1loc(R3)|Dkv∈Lr(R3)},Wk,p=Wk,p(R3),Hk=Wk,2,Dk=Dk,2. |
The main result of this paper is formulated in the following theorem.
Theorem 1.1. For constants ˉρ>0, assume that the initial data (ρ0,u0,θ0,b0) satisfies
{0≤ρ0≤ˉρ,ρ0∈L1∩H1∩W1,6,(√ρ0u0,√ρ0θ0)∈L2,(∇u0,∇θ0)∈L2,b0∈H1,divu0=divb0=0. | (1.3) |
Then, there is a positive constant ϵ0, which depends only on ˉρ and the initial data, such that if
ˉρ+‖b0‖L3:=χ0≤ϵ0, | (1.4) |
then the problems (1.1) and (1.2) has a unique global solution (ρ,u,θ,b) on R3×(0,T) satisfying
{0≤ρ∈L∞(0,T;L1∩L∞), ∇ρ∈L∞(0,T;L2∩L6),ρt∈L∞(0,T;L2∩L3), ρ∈C([0,T];Lq), 32≤q<∞,√ρu,∇u,t14√ρut,t14∇2u,t14∇p∈L∞(0,T;L2),√ρθ,∇θ,t14√ρθt,t14∇2θ∈L∞(0,T;L2),b,∇b,t12∇2b,t12bt∈L∞(0,T;L2),∇u,∇2u,t14√ρut,t14∇ut∈L2(0,T;L2),∇θ,∇2θ,t14√ρθt,t14∇θt∈L2(0,T;L2),∇b,∇2b,t12bt∈L2(0,T;L2). | (1.5) |
Moreover, it holds that
sup0≤t<∞‖∇ρ‖L2∩L6≤C‖∇ρ0‖L2∩L6, | (1.6) |
and there exists some positive constant C depending only on ˉρ and initial data, such that for all t≥1,
{‖√ρu‖L2+‖√ρθ‖L2+‖∇u‖L2+‖∇θ‖L2≤Ct−14,‖√ρut‖2L2+‖√ρθt‖2L2+‖∇2u‖2L2+‖∇p‖2L2+‖∇2θ‖2L2≤Ct−14,‖∇b‖L2+‖bt‖L2+‖∇2b‖L2≤Ct−12. | (1.7) |
Remark 1.1. Very recently, Zhong [20] establish the unique global strong solutions with vacuum to the Cauchy problem of the inhomogeneous incompressible Bénard equations. However, the corresponding strong solutions admits the exponential decay-in-time property which is quite different from Theorem 1.1 for magnetic Bénard system. This means that the magnetic field acts some significant roles on the large time behaviors of solutions. In particular, this decay rates of solutions are new for the magnetic Bénard system.
Remark 1.2. When b=0, Theorem 1.1 is different from Zhong's [20] result, since the initial velocity u0 and initial temperature θ0 need not to be small in our result.
We begin with the local existence and uniqueness of strong solutions whose proof can be performed by strategies as those in [5,21].
Lemma 2.1. Assume that (ρ0,u0,θ0,b0) satisfies (1.3). Then there exists a small time T∗>0 and a unique strong solution (ρ,u,θ,b,p) to the problems (1.1) and (1.2) in R3×(0,T) satisfying for some constant M∗>1 depending on T∗ and the initial data
sup0≤t≤T∗t12(‖∇u‖2H1+‖∇θ‖2H1+‖b‖2H2+‖√ρut‖2L2+‖√ρθt‖2L2+‖bt‖2L2)+∫T∗0(‖∇ut‖2L2+‖∇θt‖2L2+‖∇bt‖2L2)dt≤M∗. | (2.1) |
Next, the following well-known Gagliardo-Nirenberg inequality (see [13]) will be used later.
Lemma 2.2. (Gagliardo-Nirenberg inequality) Assume f∈W1,m∩Lr, it holds that
‖f‖Lq≤C‖∇f‖ϑLm‖f‖1−ϑLr, | (2.2) |
where ϑ=(1r−1q)/(1r−1m+12), and if m<2, then q is between r and 2m2−m, if m=2, then q∈[2,∞), if m>2, then q∈[2,∞] and constant C depending on q, m and r.
Next, we have some regularity results for the Stokes equations, which have been proven in [9].
Lemma 2.3. Suppose that F∈Lr with 1<r<∞. Let (u,p)∈H1×L2 be the unique weak solution to the following Stokes problem
{−μΔu+∇p=F,inR3,divu=0,inR3,u(x)→0,as|x|→∞, | (2.3) |
then (∇2u,∇p)∈Lr and there exists a constant C depending only on μ and r such that
‖∇2u‖Lr+‖∇p‖Lr≤C‖F‖Lr. | (2.4) |
In this section, we will establish some necessary a priori estimates, which together with the local existence (cf. Lemma 2.1) will complete the proof of Theorem 1.1. To this end, we let (ρ,u,θ,b,p) be a strong solutions of (1.1) and (1.2) in R3×[0,T]. For simplicity, we use the letters C and Ci(i=1,2,…) to denote some positive constant which dependent on ˉρ and the initial data, and write C(α) to emphasize that C dependent on α.
We first aim to get the following key a priori estimates on (ρ,u,θ,b,p). Set
X(t):=‖∇u‖2L2+‖∇b‖2L2+‖∇θ‖2L2,K:=‖∇u0‖2L2+‖∇b0‖2L2+‖∇θ0‖2L2+‖b0‖2L2. |
Proposition 3.1. Assume that
χ0≤ϵ0, |
there exists some small positive constant ϵ0 depending only on ˉρ and the initial data, such that if (ρ,u,θ,b,p) is a smooth solution of (1.1) and (1.2) on R3×(0,T] satisfying
ˉρ+‖b‖L3≤2χ120,X(t)≤6K, | (3.1) |
then the following estimate holds
ˉρ+‖b‖L3≤32χ120,X(t)≤5K. | (3.2) |
Moreover, we have
sup0≤t≤T(‖∇u‖2L2+‖∇θ‖2L2+‖∇b‖2L2)+∫T0(‖√ρut‖2L2+‖√ρθt‖2L2+‖bt‖2L2+‖∇2b‖2L2)dt≤C. | (3.3) |
Proof of Proposition 3.1. 1) It following from transport Equation (1.1)1, and making use of (1.1)5 (see Lions [10, Theorem 2.1]) that
0≤ρ(x,t)≤supx∈R3ρ0(x)=ˉρ. | (3.4) |
2) Multiplying (1.1)2,3,4 by u, θ and b, respectively, and integrating by parts over R3, one obtains by using divu=divb=0,
12ddt(‖√ρu‖2L2+‖√ρθ‖2L2+‖b‖2L2)+‖∇u‖2L2+‖∇θ‖2L2+‖∇b‖2L2≤C∫ρ|u||θ|dx≤C‖√ρu‖2L2+C‖√ρθ‖2L2≤C‖ρ‖L32(‖u‖2L6+‖θ‖2L6)≤C‖ρ0‖23L1ˉρ13(‖∇u‖2L2+‖∇θ‖2L2)≤C1‖ρ0‖23L1χ160(‖∇u‖2L2+‖∇θ‖2L2), | (3.5) |
which leads
ddt(‖√ρu‖2L2+‖√ρθ‖2L2+‖b‖2L2)+μ‖∇u‖2L2+κ‖∇θ‖2L2+η‖∇b‖2L2≤0 | (3.6) |
provided χ0≤ϵ1:=min{1,164C61‖ρ0‖4L1}. Integrating (3.23) over [0,T] yields that
sup0≤t≤T(‖√ρu‖2L2+‖√ρθ‖2L2+‖b‖2L2)+∫T0(‖∇u‖2L2+‖∇θ‖2L2+‖∇b‖2L2)dt≤E0, | (3.7) |
where
E0:=‖√ρ0u0‖2L2+‖√ρ0θ0‖2L2+‖b0‖2L2. |
3) Multiplying (1.1)2,3 by ut and θt respectively, and integrating the resulting equality by parts. We infer from Gagliardo-Nirenberg inequality and Young's inequality, (3.4) that
12ddt∫(|∇u|2+|∇θ|2)dx+∫(ρ|ut|2+ρ|θt|2)dx=−∫ρu⋅∇u⋅utdx−∫ρu⋅∇θ⋅θtdx−∫θρe3⋅utdx−∫θtρu⋅e3dx−ddt∫b⋅∇u⋅bdx−∫bt⋅∇u⋅bdx−∫b⋅∇u⋅btdx≤−ddt∫b⋅∇u⋅bdx+Cˉρ12‖√ρut‖L2‖u‖L6‖∇u‖L3+Cˉρ12‖√ρθt‖L2‖u‖L6‖∇θ‖L3+C‖√ρθt‖L2‖√ρu‖L2+C‖b‖L3‖bt‖L2‖∇u‖L6+C‖√ρθ‖L2‖√ρut‖L2≤−ddt∫b⋅∇u⋅bdx+Cˉρ12‖√ρut‖L2‖∇u‖32L2‖∇2u‖12L2+C‖ρ‖12L32‖u‖L6‖√ρθt‖L2+C‖ρ‖12L32‖θ‖L6‖√ρut‖L2+Cˉρ12‖√ρθt‖L2‖∇u‖L2‖∇θ‖12L2‖∇2θ‖12L2+C‖b‖L3‖bt‖L2‖∇2u‖L2≤−ddt∫b⋅∇u⋅bdx+12‖√ρut‖2L2+12‖√ρθt‖2L2+18‖bt‖2L2+Cˉρ‖∇u‖3L2‖∇2u‖L2+Cˉρ‖∇u‖2L2‖∇θ‖L2‖∇2θ‖L2+C‖b‖2L3‖∇2u‖2L2+Cˉρ13‖∇u‖2L2+Cˉρ13‖∇θ‖2L2, |
which yields
ddt(‖∇u‖2L2+‖∇θ‖2L2)+‖√ρθt‖2L2+‖√ρut‖2L2≤−ddt∫b⋅∇u⋅bdx+14‖bt‖2L2+C(ˉρ2+‖b‖2L3)‖∇2u‖2L2+Cˉρ2‖∇2θ‖2L2+C‖∇u‖2L2+C‖∇θ‖2L2. | (3.8) |
4) Multiplying (1.1)4 by bt in L2 and integrating by parts, we obtain
12ddt∫|∇b|2dx+∫|bt|2dx=∫(b⋅∇u−u⋅∇b)⋅btdx≤C‖bt‖L2(‖b‖L3‖∇u‖L6+‖u‖L6‖∇b‖L3)≤14‖bt‖2L2+C‖b‖2L3‖∇2u‖2L2+C‖∇u‖2L2‖∇2b‖43L2‖b‖23L3≤14‖bt‖2L2+C‖b‖2L3‖∇2u‖2L2+C‖∇u‖6L2‖b‖L3+C‖∇2b‖2L2‖b‖12L3≤14‖bt‖2L2+C‖b‖2L3‖∇2u‖2L2+C‖∇u‖2L2+C‖b‖12L3‖∇2b‖2L2. | (3.9) |
5) According to Lemma 2.2 and F=ρut+ρu⋅∇u+b⋅∇b+ρθe3, we derive
‖∇2u‖L2+‖∇p‖L2≤C‖ρut+ρu⋅∇u+b⋅∇b+ρθe3‖L2≤Cˉρ12‖√ρut‖L2+Cˉρ‖u‖L6‖∇u‖L3+Cˉρ12‖√ρθ‖L2+C‖b‖L3‖∇b‖L6≤Cˉρ12‖√ρut‖L2+Cˉρ‖∇u‖32L2‖∇2u‖12L2+Cˉρ23‖θ‖L6+C‖b‖L3‖∇2b‖L2≤12‖∇2u‖L2+Cˉρ12‖√ρut‖L2+Cˉρ2‖∇u‖3L2+Cˉρ23‖∇θ‖L2+C‖b‖L3‖∇2b‖L2, |
which directly leads that
‖∇2u‖L2+‖∇p‖L2≤Cˉρ12‖√ρut‖L2+Cˉρ23‖∇θ‖L2+Cˉρ2‖∇u‖L2+C1‖b‖L3‖∇2b‖L2≤C‖√ρut‖L2+C‖∇θ‖L2+C‖∇u‖L2+C2χ120‖∇2b‖L2. | (3.10) |
It follows from (1.1)4, Hölder's and Gagliardo-Nirenberg inequalities, we get
‖∇2b‖L2≤C(‖bt‖L2+‖u⋅∇b‖L2+‖b⋅∇u‖L2)≤C‖bt‖L2+C‖u‖L6‖∇b‖L3+C‖b‖L3‖∇u‖L6≤C‖bt‖L2+C‖∇b‖12L2‖∇2b‖12L2‖∇u‖L2+C‖∇u‖L2‖∇2b‖23L2‖b‖13L3≤14‖∇2b‖L2+C‖bt‖L2+C‖∇b‖L2‖∇u‖2L2+C‖b‖L3‖∇u‖3L2, | (3.11) |
which together with (3.10) implies that
‖∇2u‖L2+‖∇p‖L2+‖∇2b‖L2≤C‖bt‖L2+C‖√ρut‖L2+C‖∇u‖L2+C‖∇θ‖L2, | (3.12) |
which provided χ0≤ϵ2=min{ϵ1,14C22}.
Similarly, by using the following L2-estimate of elliptic system, we have
‖∇2θ‖L2≤C(‖ρθt‖L2+‖ρu⋅∇θ‖L2+‖ρu⋅e3‖L2)≤Cˉρ12‖√ρθt‖L2+Cˉρ‖u‖L6‖∇θ‖L3+Cˉρ12‖ρ0‖12L32‖u‖L6≤Cˉρ12‖√ρθt‖L2+Cˉρ12‖∇u‖L2‖∇θ‖12L2‖∇2θ‖12L2+Cˉρ23‖∇u‖L2≤12‖∇2θ‖L2+Cˉρ12‖√ρθt‖L2+Cˉρ(‖∇u‖L2+‖∇θ‖L2), |
that is
‖∇2θ‖L2≤Cˉρ12‖√ρθt‖L2+Cˉρ(‖∇u‖L2+‖∇θ‖L2). | (3.13) |
6) Combining (3.8), (3.9), (3.12) and (3.13), it is easy to deduce that
ddt(‖∇u‖2L2+‖∇θ‖2L2+‖∇b‖2L2)+‖√ρθt‖2L2+‖√ρut‖2L2+12‖bt‖2L2≤−ddt∫b⋅∇u⋅bdx+C(ˉρ+‖b‖2L3)(‖∇2u‖2L2+‖∇2θ‖2L2)+C‖b‖12L3‖∇2b‖2L2+C‖∇u‖2L2+C‖∇θ‖2L2≤−ddt∫b⋅∇u⋅bdx+χ120˜C(‖bt‖2L2+‖√ρut‖2L2+‖√ρθ‖2L2)+C‖∇u‖2L2+C‖∇θ‖2L2. |
Hence, choosing χ0 suitably small, we have
ddt(‖∇u‖2L2+‖∇θ‖2L2+‖∇b‖2L2)+‖√ρθt‖2L2+‖√ρut‖2L2+‖bt‖2L2≤−ddt∫b⋅∇u⋅bdx+C‖∇u‖2L2+C‖∇θ‖2L2. | (3.14) |
Integrating (3.14) with respect to t, and using (3.1), one obtains
sup0≤t≤T(‖∇u‖2L2+‖∇θ‖2L2+‖∇b‖2L2)+∫T0(‖√ρθt‖2L2+‖√ρut‖2L2+‖bt‖2L2)dt≤M+C‖b0‖L3‖∇u0‖L2‖b0‖L6+Csup0≤t≤T‖b‖L3‖∇u‖L2‖b‖L6+C∫T0(‖∇u‖2L2+‖∇θ‖2L2)dt≤2M+12‖∇u0‖2L2+C3‖b0‖2L3‖∇b0‖2L2+12sup0≤t≤T‖∇u‖2L2+C3‖b‖2L3‖∇b‖2L2≤52M+12sup0≤t≤T‖∇u‖2L2+4C3sup0≤t≤Tχ0‖∇b‖2L2. |
As a consequence, we have
sup0≤t≤T(‖∇u‖2L2+‖∇θ‖2L2+‖∇b‖2L2)+∫T0(‖√ρθt‖2L2+‖√ρut‖2L2+‖bt‖2L2)dt≤5M, | (3.15) |
provided χ0≤ϵ3:=min{ϵ2,18C3,116˜C}.
7) Mmultiplying (1.1)4 by 3|b|b and integrating by parts, we derive
ddt‖b‖3L3+3∫|b||∇b|2dx+3∫|b||∇|b||2dx≤∫|b||∇b|2dx+C‖∇u‖2L2‖b‖3L92. |
Consequently,
ddt‖b‖3L3+2∫|b||∇b|2dx+3∫|b||∇|b||2dx≤C‖∇u‖2L2‖b‖3L92. | (3.16) |
To deal with the right-hand side of (3.16), we need to use the following variant of the Kato inequality
|∇|b|32|=32|b|12|∇|b||≤32|b|12|∇b|, |
which combined with Hölder's inequality and Galiardo-Nirenberg inequality leads to
‖b‖3L92≤‖b‖32L3‖b‖32L9=‖b‖32L3‖|b|32‖L6≤C‖b‖32L3‖∇(|b|32)‖L2≤C‖b‖32L3‖|b|12|∇b|‖L2. | (3.17) |
Thus, substituting (3.17) into (3.16), we obtain from Young's inequality that
ddt‖b‖3L3+∫|b||∇b|2dx≤C‖∇u‖4L2‖b‖3L3. |
This together with (3.7), (3.15) and Gronwall's inequality yields
sup0≤t≤T‖b‖L3≤exp{C∫T0‖∇u‖4L2dt}13‖b0‖L3≤C4χ0≤χ1202, |
provided χ0≤ϵ4=min{ϵ3,14C24}. Thus, choosing ϵ0=min{ϵ4,ϵ7} (ϵ7 can be chosen in the following lemmas), one obtains
‖ρ‖L∞+‖b‖L3≤‖ρ0‖L∞+‖b‖L3≤χ0+12χ120=32χ120. | (3.18) |
Finally, combining (3.15) with (3.7) and (3.12) imply the desired (3.3). We completed the proof of Proposition 3.1.
Lemma 3.1. Under the conditions of Proposition 3.1, it holds that
sup0≤t≤Tt‖∇b‖2L2+∫T0t(‖bt‖2L2+‖∇2b‖2L2)dt≤C, | (3.19) |
sup0≤t≤Tt12(‖√ρu‖2L2+‖√ρθ‖2L2)+∫T0t12(‖∇u‖2L2+‖∇θ‖2L2)dt≤C, | (3.20) |
sup0≤t≤Tt12(‖∇u‖2L2+‖∇θ‖2L2)+∫T0t12(‖√ρut‖2L2+‖√ρθt‖2L2)dt+∫T0t12(‖∇2u‖2L2+‖∇p‖2L2+‖∇2θ‖2L2)dt≤C. | (3.21) |
Proof. 1) Using (1.1)4, Hölder's and Gagliardo-Nirenberg inequalities, we have
ddt‖∇b‖2L2+‖bt‖2L2+‖∇2b‖2L2=∫|bt−Δb|2dx=∫|b⋅∇u−u⋅∇b|2dx≤C‖b‖2L∞‖∇u‖2L2+C‖u‖2L6‖∇b‖2L3≤C‖∇b‖L2‖∇2b‖L2‖∇u‖2L2≤12‖∇2b‖2L2+C‖∇u‖4L2‖∇b‖2L2, |
which implies
ddt(t‖∇b‖2L2)+t‖bt‖2L2+t2‖∇2b‖2L2≤‖∇b‖2L2+Ct‖∇u‖4L2‖∇b‖2L2. | (3.22) |
This along with Gronwall's inequality, (3.7) and (3.3) yields the desired (3.19).
2) It follows from (3.5) that
ddt(‖√ρu‖2L2+‖√ρθ‖2L2)+‖∇u‖2L2+‖∇θ‖2L2≤14‖∇u‖2L2+C5χ160(‖∇u‖2L2+‖∇θ‖2L2)+C‖b‖L2‖∇b‖3L2, |
which implies
ddt(‖√ρu‖2L2+‖√ρθ‖2L2)+‖∇u‖2L2+‖∇θ‖2L2≤C‖b‖L2‖∇b‖3L2, | (3.23) |
provided χ0≤ϵ5=min{ϵ4,164C65}. Multiplying it by t12, we arrive at
sup0≤t≤Tt12(‖√ρu‖2L2+‖√ρθ‖2L2)+∫T0t12(‖∇u‖2L2+‖∇θ‖2L2)dt≤sup0≤t≤1(‖√ρu‖2L2+‖√ρθ‖2L2)∫10t−12dt+C∫T1(‖∇u‖2L2+‖∇θ‖2L2)dt+Csup0≤t≤T‖b‖L2sup0≤t≤Tt12‖∇b‖L2∫T0‖∇b‖2L2dt≤C. | (3.24) |
3) In the view of (3.14), one obtains
ddt(‖∇u‖2L2+‖∇θ‖2L2+‖∇b‖2L2)+‖√ρθt‖2L2+‖√ρut‖2L2+‖bt‖2L2≤−ddt∫b⋅∇u⋅bdx+C‖∇u‖2L2+C‖∇θ‖2L2, | (3.25) |
which together with (3.3), (3.7) and (3.19) yields that
sup0≤t≤Tt12(‖∇u‖2L2+‖∇θ‖2L2+‖∇b‖2L2)+∫T0t12(‖√ρθt‖2L2+‖√ρut‖2L2+‖bt‖2L2)dt≤sup0≤t≤1(‖∇u‖2L2+‖∇θ‖2L2+‖∇b‖2L2)∫10t−12dt+∫T1(‖∇u‖2L2+‖∇θ‖2L2+‖∇b‖2L2)dt+C∫T0t−12‖b‖L3‖∇u‖L2‖b‖L6dt+sup0≤t≤Tt12‖b‖L3‖∇u‖L2‖b‖L6+C≤Csup0≤t≤1(‖∇u‖2L2+‖∇b‖2L2)∫10t−12dt+∫T1(‖∇u‖2L2+‖∇b‖2L2)dt+sup0≤t≤Tt12‖b‖L3‖∇u‖L2‖b‖L6+C≤C. | (3.26) |
Thus, we directly obtain (3.21) from (3.12), (3.13) and (3.26). The proof of Lemma 3.1 is completed.
Lemma 3.2. Under the conditions of Proposition 3.1, it holds that
sup0≤t≤Tt12(‖√ρut‖2L2+‖√ρθt‖2L2)+∫T0t12(‖∇ut‖2L2+‖∇θt‖2L2)dt≤C, | (3.27) |
sup0≤t≤Tt(‖bt‖2L2+‖∇2b‖2L2)+∫T0t‖∇bt‖2L2dt≤C, | (3.28) |
sup0≤t≤Tt12(‖∇2u‖2L2+‖∇p‖2L2+‖∇2θ‖2L2)≤C. | (3.29) |
Proof. 1) Differentiating (1.1)2,3 with respect to time variable t give
ρutt+ρu⋅∇ut−Δut+∇pt=−ρt(ut+u⋅∇u)−ρut⋅∇u+(ρθe3)t+(b⋅∇b)t, | (3.30) |
ρθtt+ρu⋅∇θt−Δθt=−ρt(θt+u⋅∇θ)−ρut⋅∇θ+(ρu)t⋅e3. | (3.31) |
Multiplying (3.30), (3.31) by ut, θt respectively, and integrating it by parts, we arrive at
12ddt(‖√ρut‖2L2+‖√ρθt‖2L2)+‖∇ut‖2L2+‖∇θt‖2L2=−2∫ρu⋅∇ut⋅utdx−∫ρut⋅∇u⋅utdx−∫ρu⋅∇(u⋅∇u⋅ut)dx+∫(b⋅∇b)t⋅utdx−2∫ρu⋅∇θtθtdx−∫ρut⋅∇θθtdx−∫ρu⋅∇(u⋅∇θθt)dx+∫(ρθe3)t⋅utdx+∫(ρu)tθt⋅e3dx=:9∑i=1Ii. | (3.32) |
By using Hölder's, Gagliardo-Nirenberg inequalities, and (3.4), one gets
I1≤Cˉρ12‖√ρut‖L3‖u‖L6‖∇ut‖L2≤Cˉρ12‖√ρut‖12L2‖√ρut‖12L6‖∇u‖L2‖∇ut‖L2≤Cˉρ34‖√ρut‖12L2‖∇ut‖23L2‖∇u‖L2≤110‖∇ut‖2L2+Cˉρ3‖√ρut‖2L2‖∇u‖4L2,I2≤C‖√ρut‖2L4‖∇u‖L2≤Cˉρ34‖√ρut‖12L2‖∇ut‖32L2‖∇u‖L2≤110‖∇ut‖2L2+Cˉρ3‖√ρut‖2L2‖∇u‖4L2,I3≤Cˉρ‖u‖L6‖ut‖L6(‖∇u‖2L3+‖u‖L6‖∇2u‖L2)+Cˉρ‖u‖2L6‖∇u‖L6‖∇ut‖L2≤110‖∇ut‖2L2+Cˉρ2‖∇2u‖2L2‖∇u‖4L2,I4≤C‖bt‖L6‖∇ut‖L2‖b‖L3≤110‖∇ut‖2L2+C‖b‖2L3‖∇bt‖2L2,I5≤Cˉρ12‖√ρθt‖L3‖u‖L6‖∇θt‖L2≤Cˉρ12‖√ρθt‖12L2‖√ρθt‖12L6‖∇u‖L2‖∇θt‖L2≤Cˉρ34‖√ρθt‖L2‖∇θt‖32L2‖∇u‖L2≤18‖∇θt‖2L2+Cˉρ3‖√ρθt‖2L2‖∇u‖4L2,I6≤Cˉρ12‖∇θ‖L2‖√ρut‖L3‖θt‖L6≤Cˉρ34‖√ρut‖12L2‖ut‖12L6‖∇θt‖L2‖∇θ‖L2≤18‖∇θt‖2L2+110‖∇ut‖2L2+Cˉρ3‖√ρut‖2L2‖∇θ‖4L2,I7≤C∫ρ|u||θt|(|∇u||∇θ|+|u||∇2θ|)dx+C∫ρ|u|2|∇θ||∇θt|dx≤Cˉρ‖u‖2L6‖∇θt‖L2‖∇θ‖L6+Cˉρ‖u‖L6‖∇u‖L2‖θt‖L6‖∇θ‖L6+Cˉρ‖θt‖L6‖∇2θ‖L2‖u‖2L6≤Cˉρ‖∇u‖2L2‖∇θt‖L2‖∇2θ‖L2≤18‖∇θt‖2L2+Cˉρ2‖∇u‖4L2‖∇2θ‖2L2,I8+I9≤Cρ|u||ut||∇θ|dx+C∫ρ|θ||u||∇ut|dx+C∫ρ|u||θt||∇u|dx+C∫ρ|u|2|∇θt|dx+C∫ρ|θt||ut|dx≤Cˉρ12‖u‖L6‖√ρut‖L3‖∇θ‖L2+Cˉρ‖∇ut‖L2‖√ρu‖L3‖θ‖L6+Cˉρ12‖u‖L6‖√ρθt‖L3‖∇u‖L2+Cˉρ12‖√ρut‖L3‖u‖L6‖∇θt‖L2+C‖√ρθt‖L2‖√ρut‖L2≤110‖∇ut‖2L2+18‖∇θt‖2L2+Cˉρ3‖√ρut‖2L2‖∇θ‖4L2+Cˉρ3‖√ρθt‖2L2‖∇u‖4L2+C‖∇θ‖2L2+C‖∇u‖2L2+C‖√ρut‖2L2+C‖√ρθt‖2L2. |
Putting all above estimates into (3.32), we show
ddt(‖√ρut‖2L2+‖√ρθt‖2L2)+‖∇ut‖2L2+‖∇θt‖2L2≤C‖√ρut‖2L2+C‖√ρθt‖2L2+Cˉρ2(‖∇2u‖2L2+‖∇2θ‖2L2)≤Cˉρ13(‖ut‖2L6+C‖θt‖2L6)+C(‖∇u‖2L2+‖∇θ‖2L2)+C‖bt‖2L2‖∇u‖4L2≤C6χ160(‖∇ut‖2L2+C‖∇θt‖2L2)+C(‖∇u‖2L2+‖∇θ‖2L2)+C‖bt‖2L2‖∇u‖4L2, |
which yields
ddt(‖√ρut‖2L2+‖√ρθt‖2L2)+12‖∇ut‖2L2+12‖∇θt‖2L2≤C‖bt‖2L2‖∇u‖4L2+C(‖∇u‖2L2+‖∇θ‖2L2), | (3.33) |
provided χ0≤ϵ6:=min{ϵ5,(12C6)6}. Hence, multiplying (3.33) by t12, and integrating by parts, we infer from Lemma 3.1 and (3.3) that
sup0≤t≤Tt12(‖√ρut‖2L2+‖√ρθt‖2L2)+∫T0t12(‖∇ut‖2L2+‖∇θt‖2L2)dt≤C∫T0t−12(‖√ρut‖2L2+‖√ρθt‖2L2)dt+C∫T0t12‖bt‖2L2‖∇u‖4L2dt+C∫T0t12(‖∇u‖2L2+‖∇θ‖2L2)dt≤Csup0≤t≤t0t12(‖√ρut‖2L2+‖√ρθt‖2L2)∫t00t−1dt+Cˉρ13∫Tt0(‖∇ut‖2L2+‖∇θt‖2L2)dt+Csup0≤t≤Tt12‖∇u‖2L2∫T0‖bt‖2L2dt≤C(M∗)t0+C7χ160∫T0t12(‖∇ut‖2L2+‖∇θt‖2L2)dt+C, | (3.34) |
that is
sup0≤t≤Tt12(‖√ρut‖2L2+‖√ρθt‖2L2)+∫T0t12(‖∇ut‖2L2+‖∇θt‖2L2)dt≤C, | (3.35) |
provided χ0≤ϵ7:=min{ϵ6,(12C7)6}.
2) Differentiating (1.1)4 with respect to t, and multiplying the resulting equality with bt and then integrating by parts over R3, we arrive at
12ddt∫|bt|2dx+∫|∇bt|2dx≤C(‖|ut||b|‖L2+‖|u||bt|‖L2)‖∇bt‖L2≤C‖ut‖L6‖b‖L3‖∇bt‖L2+C‖u‖L6‖bt‖L3‖∇bt‖L2≤C‖∇bt‖L2‖∇ut‖L2‖b‖L3+C‖∇u‖L2‖bt‖12L2‖∇bt‖32L2≤12‖∇bt‖2L2+C‖b‖2L3‖∇ut‖2L2+C‖∇u‖4L2‖bt‖2L2, |
which leads
ddt∫|bt|2dx+∫|∇bt|2dx≤C‖b‖2L3‖∇ut‖2L2+C‖∇u‖4L2‖bt‖2L2. | (3.36) |
Multiplying (3.36) by t, and using Gronwall's inequality, we infer from (3.35) that
sup0≤t≤Tt‖bt‖2L2+∫T0t‖∇bt‖2L2dt≤C∫T0t‖b‖12L2‖∇b‖12L2‖∇ut‖2L2dt+∫T0‖bt‖2L2dt≤sup0≤t≤T(t‖∇b‖2L2)12∫T0t12‖∇ut‖2L2dt+C≤C. | (3.37) |
Then, the desired (3.27) follows from (3.12) and (3.13). We completed the proof of lemma.
Lemma 3.3. Under the assumption of Theorem 1.1, it holds that
sup0≤t≤T(‖∇ρ‖L2∩L6+‖ρt‖L2∩L3)+∫T0‖∇u‖L∞dt≤C(T). | (3.38) |
Proof. 1) It follows from the Lemma 2.3, Hölder's and Gagliardo-Nirenberg inequalities that for r∈ (3,min{q,6}),
‖∇2u‖Lr+‖∇p‖Lr≤C‖ρut‖Lr+C‖ρu⋅∇u‖Lr+C‖ρθ‖Lr+C‖b⋅∇b‖Lr≤C(ˉρ)‖√ρut‖6−r2rL2‖∇ut‖3r−62rL2+Cˉρ‖u‖L6‖∇u‖L6r6−r+C(ˉρ)‖√ρθ‖6−r2rL2‖√ρθ‖3r−62rL6+C‖b‖L∞‖∇b‖Lr≤C(ˉρ)‖√ρut‖6−r2rL2‖∇ut‖3r−62rL2+C(ˉρ)‖∇u‖6r−6rL2+C(ˉρ)(‖ρ‖12L32‖θ‖L6)6−r2r(ˉρ‖θ‖L6)3r−62r+12‖∇2u‖Lr+C‖∇b‖3rL2‖∇2b‖2r−3rL2≤C‖√ρut‖6−r2rL2‖∇ut‖3r−62rL2+C‖∇u‖6r−6rL2+C‖∇θ‖L2+12‖∇2u‖Lr+C‖∇b‖3rL2‖∇2b‖2r−3rL2 |
which yields
‖∇2u‖Lr+‖∇p‖Lr≤C‖√ρut‖6−r2rL2‖∇ut‖3r−62rL2+C‖∇u‖6r−6rL2+C‖∇θ‖L2+C‖∇b‖3rL2‖∇2b‖2r−3rL2. | (3.39) |
Then, one derives from the Gagliardo-Nirenberg inequality and (3.12) that
‖∇u‖L∞≤C‖∇2u‖3r5r−6Lr‖∇u‖2r−65r−6L2≤C‖∇u‖L2+C‖∇2u‖Lr≤C‖√ρut‖6−r2rL2‖∇ut‖3r−62rL2+C‖∇u‖6r−6rL2+C‖∇θ‖L2+C‖∇u‖L2+C‖∇b‖3rL2‖∇2b‖2r−3rL2, |
which together with Lemma 3.2, (3.7) and (3.3) implies
∫T0‖∇u‖L∞dt≤Csup0≤t≤T(t12‖√ρut‖2L2)6−r4r(∫T0t12‖∇ut‖2L2dt)3r−64r(∫T0t−rr+6dt)r+64+C(∫T0‖∇θ‖2L2dt)12+C(∫T0‖∇u‖2L2dt)12+C∫T0‖∇2b‖2L2dt+C(sup0≤t≤T‖∇u‖2L2)2r−3r∫T0‖∇u‖2L2dt+C≤C. | (3.40) |
2) Differentiating the continuity equation (1.1)1 with respect to xi gives rise to
(ρxi)t+∇ρxi⋅u+∇ρ⋅uxi=0. | (3.41) |
Multiplying (3.41) by s|ρxi|s−2ρxi (s={2,6}) and integrating the resulting equation over R3 indicate that
ddt‖∇ρ‖L2∩L6≤C‖∇u‖L∞‖∇ρ‖L2∩L6. | (3.42) |
It follows from the Gronwall's inequality and (3.40) that
‖∇ρ‖L2∩L6≤C‖∇ρ0‖L2∩L6. | (3.43) |
Noticing the following facts
‖ρt‖L2∩L3≤C‖u‖L6(‖∇ρ‖L3+‖∇ρ‖L6)≤C‖∇u‖L2‖∇ρ‖L2∩L6≤C‖∇ρ0‖L2∩L6. | (3.44) |
This ends the proof of Lemma 3.3.
Lemma 3.4. Under the assumption of Theorem 1.1, it holds that for
∫T0t32‖∇3b‖2L2dt≤C. | (3.45) |
Proof. Taking ∇ operator to (1.1)4, we get
−∇Δb=∇(b⋅∇u−u⋅∇b−bt). | (3.46) |
Using the L2-estimates of elliptic system, we derive
‖∇3b‖2L2≤C(‖∇bt‖2L2+‖∇(u⋅∇b)‖2L2+‖∇(b⋅∇u)‖2L2)≤C‖∇bt‖2L2+C‖|∇u||∇b|‖2L2+C‖|u||∇2b|‖2L2+C‖|b||∇2u|‖2L2≤C‖∇bt‖2L2+C‖∇u‖2L3‖∇b‖2L6+C‖u‖2L6‖∇2b‖2L2+C‖b‖2L∞‖∇2u‖2L2≤C‖∇bt‖2L2+C‖∇u‖L2‖∇2u‖L2‖∇2b‖2L2+C‖∇u‖2L2‖∇2b‖2L2+C‖∇b‖L2‖∇2b‖L2‖∇2u‖2L2, | (3.47) |
which yields to
∫T0t32‖∇3b‖2L2dt≤Csup0≤t≤T(t14‖∇2u‖L2t14‖∇u‖L2)∫T0t‖∇2b‖2L2dt+Csup0≤t≤T(t12‖∇b‖L2t12‖∇2b‖L2)∫T0t12‖∇2u‖2L2dt+Csup0≤t≤Tt‖∇2b‖2L2∫T0t12‖∇u‖2L2dt≤C. | (3.48) |
We complete the proof of this lemma.
By Lemma 2.1, there exists a T∗ such that the problems (1.1) and (1.2) has a unique local strong solution (ρ,u,θ,b) on R3×(0,T∗]. In what follows, we shall extend the local solution to all the time.
Set
T∗=sup{T|(ρ,u,θ,b)isastrongsolutionof(1.1)and(1.2)onR3×(0,T]}. | (4.1) |
First, for any 0<τ<T∗<T<T∗ with T finite, it follows from Proposition 3.1, and Lemmas 3.1–3.4 that for any p≥2,
∇u,∇θ,∇b∈C([τ,T];L2), | (4.2) |
where we used the following standard Sobolev embedding
L∞(τ,T;H1)∩H1(τ,T;H−1)↪C(τ,T;L2). |
Moreover, one deduces from (3.4) and (3.38) that
ρ∈C(0,T;L32∩W1,q). | (4.3) |
Now, we claim that
T∗=∞. | (4.4) |
Otherwise, if T∗<∞, in the view of Lemmas 3.1–3.4, we have
(ρ,u,θ,b)(T∗,x)=limt→T∗(ρ,u,θ,b)(t,x) | (4.5) |
satisfies (1.3) at t=T∗. Thus, we can take (ρ,u,θ,b)(T∗,x) as the initial data, and Lemma 2.1 implies that one can extend the local solutions beyond T∗. This contradicts the assumption of T∗ in (4.4). The proof of Theorem 1.1 is completed.
This paper deals with the Cauchy problem of 3D inhomogeneous incompressible magnetic Bénard equations. Through some time-weighted a priori estimates, we prove the global existence of strong solution provided that the upper boundedness of initial density and initial magnetic field satisfy some smallness condition. Furthermore, we also obtain large time decay rates of the solution.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors would like to thank the anonymous reviewers and the Editor for their constructive comments which helped to improve the quality of the paper. Funding: This research was supported by grants from the Key Project of Jilin Provincial Science and Technology Development Plan (Grant No. 20210203056SF); Project Name: Research on the Construction of the "Two Products and One Equipment" Supervision and Traceability System under Information Conditions.
The authors declare that they have no competing interests.
[1] |
H. Abidi, M. Paicu, Global existence for the magnetohydrodynamic system in critical spaces, P. Roy. Soc. Edinb. A, 138 (2008), 447–476. https://doi.org/10.1017/S0308210506001181 doi: 10.1017/S0308210506001181
![]() |
[2] |
A. M. Alghamdi, S. Gala, M. A. Ragusa, Global regularity for the 3D micropolar fluid flows, Filomat, 36 (2022), 1967–1970. https://doi.org/10.2298/FIL2206967A doi: 10.2298/FIL2206967A
![]() |
[3] |
F. Chen, B. Guo, X. Zhai, Global solution to the 3-D inhomogeneous incompressible MHD system with discontinuous density, Kinet. Relat. Mod., 12 (2019), 37–58. https://doi.org/10.3934/krm.2019002 doi: 10.3934/krm.2019002
![]() |
[4] |
Q. Chen, Z. Tan, Y. Wang, Strong solutions to the incompressible magnetohydrodynamic equations, Math. Method. Appl. Sci., 34 (2011), 94–107. https://doi.org/10.1002/mma.1338 doi: 10.1002/mma.1338
![]() |
[5] |
Y. Cho, H. Kim, Existence result for heat-conducting viscous incompressible fluids with vacuum, J. Korean Math. Soc., 45 (2008), 645–681. https://doi.org/10.4134/jkms.2008.45.3.645 doi: 10.4134/jkms.2008.45.3.645
![]() |
[6] |
H. Gong, J. Li, Global existence of strong solutions to incompressible MHD, Commun. Pur. Appl. Anal., 13 (2014), 1553–1561. https://doi.org/10.3934/cpaa.2014.13.1553 doi: 10.3934/cpaa.2014.13.1553
![]() |
[7] |
X. Huang, Y. Wang, Global strong solution to the 2D nonhomogeneous incompressible MHD system, J. Differ. Equ., 254 (2013), 511–527. https://doi.org/10.1016/j.jde.2012.08.029 doi: 10.1016/j.jde.2012.08.029
![]() |
[8] |
Z. Liu, Global well-posedness to the Cauchy problem of 2D inhomogeneous incompressible magnetic Bénard equations with large initial data and vacuum, AIMS Mathematics, 6 (2021), 12085–12103. https://doi.org/10.3934/math.2021701 doi: 10.3934/math.2021701
![]() |
[9] |
B. Lu, Z. Xu, X. Zhong, Global existence and large time asymptotic behavior of strong solutions to the Cauchy problem of 2D density-dependent magnetohydrodynamic equations with vacuum, J. Math. Pure. Appl., 108 (2017), 41–62. https://doi.org/10.1016/j.matpur.2016.10.009 doi: 10.1016/j.matpur.2016.10.009
![]() |
[10] | P. L. Lions, Mathematical topics in fluid mechanics: Volume 1: Incompressible models, Oxford: Oxford University Press, 1996. |
[11] |
E. Marušić-Paloka, I. Pažanin, M. Radulović, MHD flow through a perturbed channel filled with a porous medium, Bull. Malays. Math. Sci. Soc., 45 (2022), 2441–2471. https://doi.org/10.1007/s40840-022-01356-3 doi: 10.1007/s40840-022-01356-3
![]() |
[12] |
G. Mulone, S. Rionero, Necessary and sufficient conditions for nonlinear stability in the magnetic Bénard problem, Arch. Rational Mech. Anal., 166 (2003), 197–218. https://doi.org/10.1007/s00205-002-0230-9 doi: 10.1007/s00205-002-0230-9
![]() |
[13] | A. Novotny, I. Straŝkraba, Introduction to the mathematical theory of compressible flow, Oxford: Oxford University Press, 2004. |
[14] |
P. Sunthrayuth, A. A. Alderremy, F. Ghani, A. M. J. Tchalla, S. Aly, Y. Elmasry, Unsteady MHD flow for fractional Casson channel fluid in a porous medium: An application of the Caputo-Fabrizio time-fractional derivative, J. Funct. Space., 2022 (2022), 2765924. https://doi.org/10.1155/2022/2765924 doi: 10.1155/2022/2765924
![]() |
[15] |
S. Song, On local strong solutions to the three-dimensional nonhomogeneous incompressible magnetohydrodynamic equations with density-dependent viscosity and vacuum, Z. Angew. Math. Phys., 69 (2018), 23. https://doi.org/10.1007/s00033-018-0915-z doi: 10.1007/s00033-018-0915-z
![]() |
[16] |
P. Zhang, H. Yu, Global regularity to the 3D incompressible MHD equations, J. Math. Anal. Appl., 432 (2015), 613–631. http://doi.org/10.1016/j.jmaa.2015.07.007 doi: 10.1016/j.jmaa.2015.07.007
![]() |
[17] |
X. Zhong, Local strong solutions to the nonhomogeneous Bénard system with nonnegative density, Rocky Mountain J. Math., 50 (2020), 1497–1516. https://doi.org/10.1216/rmj.2020.50.1497 doi: 10.1216/rmj.2020.50.1497
![]() |
[18] |
X. Zhong, Global strong solution to the nonhomogeneous Bénard system with large initial data and vacuum, Results Math., 76 (2021), 27. https://doi.org/10.1007/s00025-020-01338-6 doi: 10.1007/s00025-020-01338-6
![]() |
[19] |
X. Zhong, Global strong solution of nonhomogeneous Bénard system with large initial data and vacuum in a bounded domain, Z. Anal. Anwend., 40 (2021), 153–166. https://doi.org/10.4171/zaa/1677 doi: 10.4171/zaa/1677
![]() |
[20] |
X. Zhong, Global strong solution and exponential decay to the 3D Cauchy problem of nonhomogeneous Bénard system with vacuum, Acta Appl. Math., 172 (2021), 8. https://doi.org/10.1007/s10440-021-00406-5 doi: 10.1007/s10440-021-00406-5
![]() |
[21] |
X. Zhong, The local existence of strong solutions to the Cauchy problem of two-dimensional density-dependent magnetic Bénard problem with nonnegative density, Commun. Math. Sci., 18 (2020), 725–750. https://doi.org/10.4310/CMS.2020.v18.n3.a7 doi: 10.4310/CMS.2020.v18.n3.a7
![]() |
[22] |
X. Zhong, Global strong solution and exponential decay for nonhomogeneous Navier-Stokes and magnetohydrodynamic equations, DCDS-B, 26 (2021), 3563–3578. https://doi.org/10.3934/dcdsb.2020246 doi: 10.3934/dcdsb.2020246
![]() |