Theory article Special Issues

Cartesian vector solutions for $ N $-dimensional non-isentropic Euler equations with Coriolis force and linear damping

  • Received: 03 March 2023 Revised: 27 March 2023 Accepted: 27 March 2023 Published: 17 May 2023
  • MSC : 35C05, 35Q31, 76B03, 76M60

  • In this paper, we construct and prove the existence of theoretical solutions to non-isentropic Euler equations with a time-dependent linear damping and Coriolis force in Cartesian form. New exact solutions can be acquired based on this form with examples presented in this paper. By constructing appropriate matrices $ A(t) $, and vectors $ {\mathbf{b} }(t) $, special cases of exact solutions, where entropy $ s = \ln\rho $, are obtained. This is the first matrix form solution of non-isentropic Euler equations to the best of the authors' knowledge.

    Citation: Xitong Liu, Xiao Yong Wen, Manwai Yuen. Cartesian vector solutions for $ N $-dimensional non-isentropic Euler equations with Coriolis force and linear damping[J]. AIMS Mathematics, 2023, 8(7): 17171-17196. doi: 10.3934/math.2023877

    Related Papers:

  • In this paper, we construct and prove the existence of theoretical solutions to non-isentropic Euler equations with a time-dependent linear damping and Coriolis force in Cartesian form. New exact solutions can be acquired based on this form with examples presented in this paper. By constructing appropriate matrices $ A(t) $, and vectors $ {\mathbf{b} }(t) $, special cases of exact solutions, where entropy $ s = \ln\rho $, are obtained. This is the first matrix form solution of non-isentropic Euler equations to the best of the authors' knowledge.



    加载中


    [1] M. Ghil, S. Childress, Topics in Geophysical Fluid Dynamics: Atmospheric Dynamics, Dynamo Theory, and Climate Dynamics, New York: Springer-Verlag, 1987. https://doi.org/10.1007/978-1-4612-1052-8
    [2] J. Pedlosky, Geophysical Fluid Dynamics, New York: Springer-Verlag, 1987. https://doi.org/10.1007/978-1-4612-4650-3
    [3] J. Marshall, R. A. Plumb, Atmosphere, Ocean, and Climate Dynamics: An Introductory Text, San Diego, CA: Academic Press, 2008.
    [4] F. V. Dolzhansky, Fundamentals of Geophysical Hydrodynamics, Berlin, Heidelberg: Springer, 2013. https://doi.org/10.1007/978-3-642-31034-8
    [5] H. Liu, E. Tadmor, Rotation prevents finite-time breakdown, Phys. D, 188 (2004), 262–276. https://doi.org/10.1016/j.physd.2003.07.006 doi: 10.1016/j.physd.2003.07.006
    [6] B. Cheng, E. Tadmor, Long-time existence of smooth solutions for the rapidly rotating shallow-water and Euler equations, SIAM J. Math. Anal., 39 (2008), 1668–1685. https://doi.org/10.1137/070693643 doi: 10.1137/070693643
    [7] B. Cheng, C. J. Xie, On the classical solutions of two dimensional inviscid rotating shallow water system, J. Differ. Equations, 250 (2011), 690–709. https://doi.org/10.1016/j.jde.2010.09.017 doi: 10.1016/j.jde.2010.09.017
    [8] O. S. Rozanova, M. K. Turzynsky, Nonlinear stability of localized and non-localized vortices in rotating compressible media, In: Theory, Numerics and Applications of Hyperbolic Problems II, Cham: Springer, 2018. https://doi.org/10.1007/978-3-319-91548-7_41
    [9] O. S. Rozanova, J. L. Yu, C. K. Hu, Typhoon eye trajectory based on a mathematical model: Comparing with observational data, Nonlinear Anal. Real World Appl., 11 (2010), 1847–1861. https://doi.org/10.1016/j.nonrwa.2009.04.011 doi: 10.1016/j.nonrwa.2009.04.011
    [10] O. S. Rozanova, J. L. Yu, C. K. Hu, On the position of vortex in a two-dimensional model of atmosphere, Nonlinear Anal. Real World Appl., 13 (2012), 1941–1954. https://doi.org/10.1016/j.nonrwa.2011.12.023 doi: 10.1016/j.nonrwa.2011.12.023
    [11] O. S. Rozanova, M. K. Turzynsky, On systems of nonlinear ODE arising in gas dynamics: Application to vortical motion, In: Differential and Difference Equations with Applications, Cham: Springer, 2018. https://doi.org/10.1007/978-3-319-75647-9_32
    [12] O. S. Rozanova, M. K. Turzynsky, Full classification of motions with uniform deformation on a rotating plane, AIP Conf. Proc. 2164 (2019), 090005. https://doi.org/10.1063/1.5130835
    [13] O. S. Rozanova, M. K. Turzynsky, The stability of vortices in gas on the l-plane: The influence of centrifugal force, In: Nonlinear Analysis and Boundary Value Problems, Cham: Springer, 2019. https://doi.org/10.1007/978-3-030-26987-6_9
    [14] L. Hsiao, T. P. Liu, Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping, Comm. Math. Phys., 143 (1992), 599–605. https://doi.org/10.1007/BF02099268 doi: 10.1007/BF02099268
    [15] D. Y. Fang, J. Xu, Existence and asymptotic behavior of C1 solutions to the multi-dimensional compressible Euler equations with damping, Nonlinear Anal. Theory Methods Appl., 70 (2009), 244–261. https://doi.org/10.1016/j.na.2007.11.049 doi: 10.1016/j.na.2007.11.049
    [16] F. M. Huang, R. H. Pan, Convergence rate for compressible Euler equations with damping and vacuum, Arch. Ration. Mech. Anal., 166 (2003), 359–376. https://doi.org/10.1007/s00205-002-0234-5 doi: 10.1007/s00205-002-0234-5
    [17] W. K. Wang, T. Yang, The pointwise estimates of solutions for Euler equations with damping in multi-dimensions, J. Differ. Equations, 173 (2001), 410–450. https://doi.org/10.1006/jdeq.2000.3937 doi: 10.1006/jdeq.2000.3937
    [18] F. M. Huang, R. H. Pan, Asymptotic behavior of the solutions to the damped compressible Euler equations with vacuum, J. Differ. Equations, 220 (2006), 207–233. https://doi.org/10.1016/j.jde.2005.03.012 doi: 10.1016/j.jde.2005.03.012
    [19] F. M. Huang, P. Marcati, R. H. Pan, Convergence to the Barenblatt solution for the compressible Euler equations with damping and vacuum, Arch. Ration. Mech. Anal., 176 (2005), 1–24. https://doi.org/10.1007/s00205-004-0349-y doi: 10.1007/s00205-004-0349-y
    [20] K. W. Chow, E. G. Fan, M. W. Yuen, The analytical solutions for the $N$-dimensional damped compressible Euler equations, Stud. Appl. Math., 138 (2017), 294–316. https://doi.org/10.1111/sapm.12154 doi: 10.1111/sapm.12154
    [21] J. W. Dong, J. J. Li, Analytical solutions to the compressible Euler equations with time-dependent damping and free boundaries, J. Math. Phys., 63 (2022), 101502. https://doi.org/10.1063/5.0089142 doi: 10.1063/5.0089142
    [22] S. Friedlander, M. M. Vishik, Lax pair formulation for the Euler equation, Phys. Lett. A, 148 (1990), 313–319. https://doi.org/10.1016/0375-9601(90)90809-3 doi: 10.1016/0375-9601(90)90809-3
    [23] Y. Li, A Lax pair for the two dimensional Euler equation, J. Math. Phys., 42 (2001), 3552–3553. https://doi.org/10.1063/1.1378305 doi: 10.1063/1.1378305
    [24] Y. Li, A. V. Yurov, Lax pairs and Darboux transformations for Euler equations, Stud. Appl. Math., 111 (2003), 101–113. https://doi.org/10.1111/1467-9590.t01-1-00229 doi: 10.1111/1467-9590.t01-1-00229
    [25] S. Y. Lou, M. Jia, X. Y. Tang, F. Huang, Vortices, circumfluence, symmetry groups, and Darboux transformations of the (2+1)-dimensional Euler equation, Phys. Rev. E, 75 (2007), 056318. https://doi.org/10.1103/PhysRevE.75.056318 doi: 10.1103/PhysRevE.75.056318
    [26] S. Y. Lou, M. Jia, F. Huang, X. Y. Tang, Bäcklund transformations, solitary waves, conoid waves and Bessel waves of the (2+1)-dimensional Euler equation, Internat. J. Theoret. Phys., 46 (2007), 2082–2095. https://doi.org/10.1007/s10773-006-9327-5 doi: 10.1007/s10773-006-9327-5
    [27] L. I. Sedov, Similarity and Dimensional Methods in Mechanics, Boca Raton: CRC Press, 1993. https://doi.org/10.1201/9780203739730
    [28] A. J. Majda, A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge: Cambridge University Press, 2001. https://doi.org/10.1017/CBO9780511613203
    [29] A. G. Ramn, Inverse Problems: Mathematical and Analytical Techniques with Applications to Engineering, Cham: Springer, 2005. https://doi.org/10.1007/b100958
    [30] P. G. Drazin, N. Riley, The Navier-Stokes Equations: A Classification of Flows and Exact Solutions, Cambridge: Cambridge University Press, 2006. https://doi.org/10.1017/CBO9780511526459
    [31] M. W. Yuen, Self-similar solutions with elliptic symmetry for the compressible Euler and Navier-Stokes equations in $R^N$, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 4524–4528. https://doi.org/10.1016/j.cnsns.2012.05.022 doi: 10.1016/j.cnsns.2012.05.022
    [32] M. W. Yuen, Vortical and self-similar flows of 2D compressible Euler equations, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 2172–2180. https://doi.org/10.1016/j.cnsns.2013.11.008 doi: 10.1016/j.cnsns.2013.11.008
    [33] M. W. Yuen, Rotational and self-similar solutions for the compressible Euler equations in $R^3$, Commun. Nonlinear Sci. Numer. Simul., 20 (2015), 634–640. https://doi.org/10.1016/j.cnsns.2014.06.027 doi: 10.1016/j.cnsns.2014.06.027
    [34] I. F. Barna, L. Mátyásb, Analytic solutions for the one-dimensional compressible Euler equation with heat conduction and with different kind of equations of state, Miskolc Math. Notes, 14 (2013), 785–799. https://doi.org/10.18514/MMN.2013.694 doi: 10.18514/MMN.2013.694
    [35] I. F. Barna, L. Mátyásb, Analytic solutions for the three-dimensional compressible Navier-Stokes equation, Fluid Dyn. Res., 46 (2014), 055508. https://doi.org/10.1088/0169-5983/46/5/055508 doi: 10.1088/0169-5983/46/5/055508
    [36] H. L. An, E. G. Fan, M. W. Yuen, The Cartesian vector solutions for the $N$-dimensional compressible Euler equations, Stud. Appl. Math., 134 (2015), 101–119. https://doi.org/10.1111/sapm.12056 doi: 10.1111/sapm.12056
    [37] E. G. Fan, M. W. Yuen, A method for constructing special solutions for multidimensional generalization of Euler equations with Coriolis force, Chinese J. Phys., 72 (2021), 136–144. https://doi.org/10.1016/j.cjph.2021.03.013 doi: 10.1016/j.cjph.2021.03.013
    [38] T. T. Li, Y. Zhou, D. X. Kong, Weak linear degeneracy and global classical solutions for general quasilinear hyperbolic systems, Commun. Partial Differ. Equ., 19 (1994), 1263–1317. https://doi.org/10.1080/03605309408821055 doi: 10.1080/03605309408821055
    [39] T. T. Li, Y. Zhou, D. X. Kong, Global classical solutions for general quasilinear hyperbolic systems with decay initial data, Nonlinear Anal., 28 (1997), 1299–1332. https://doi.org/10.1016/0362-546X(95)00228-N doi: 10.1016/0362-546X(95)00228-N
    [40] G. Chen, R. H. Pan, S. G. Zhu, Singularity formation for the compressible Euler equations, SIAM J. Math. Anal., 49 (2017), 2591–2614. https://doi.org/10.1137/16M1062818 doi: 10.1137/16M1062818
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1142) PDF downloads(48) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog