Research article

Solution of integral equations for multivalued maps in fuzzy $ b $-metric spaces using Geraghty type contractions

  • Received: 09 March 2023 Revised: 24 April 2023 Accepted: 27 April 2023 Published: 11 May 2023
  • MSC : 47H10, 54H25

  • In this article, the notion of Hausdorff fuzzy $ b $-metric space is studied. Some fixed point results for multivalued mappings using Geraghty type contractions in $ G $-complete fuzzy $ b $-metric spaces are established. To strengthen the results, an illustrative example is furnished. A fuzzy integral inclusion is constructed as an application of fixed point result which shows the validity of the proved results. The presented outcomes are the generalization of the existing results in literature.

    Citation: Rashid Ali, Faisar Mehmood, Aqib Saghir, Hassen Aydi, Saber Mansour, Wajdi Kallel. Solution of integral equations for multivalued maps in fuzzy $ b $-metric spaces using Geraghty type contractions[J]. AIMS Mathematics, 2023, 8(7): 16633-16654. doi: 10.3934/math.2023851

    Related Papers:

  • In this article, the notion of Hausdorff fuzzy $ b $-metric space is studied. Some fixed point results for multivalued mappings using Geraghty type contractions in $ G $-complete fuzzy $ b $-metric spaces are established. To strengthen the results, an illustrative example is furnished. A fuzzy integral inclusion is constructed as an application of fixed point result which shows the validity of the proved results. The presented outcomes are the generalization of the existing results in literature.



    加载中


    [1] B. C. Dhage, Condensing mappings and applications to existence theorems for common solution of differential equations, Bull. Korean Math. Soc., 36 (1999), 565–578.
    [2] A. Baklouti, S. Hidri, Tools to specify semi-simple Jordan triple systems, Differ. Geom. Appl., 83 (2022), 101900.
    [3] S. Banach, Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrals, Fund. Math., 3 (1922), 133–181.
    [4] I. A. Bakhtin, The contraction mapping principle in quasi metric spaces, Funct. Anal., 30 (1989), 26–37.
    [5] A. Shoaib, T. Rasham, G. Marino, J. R. Lee, C. Park, Fixed point results for dominated mappings in rectangular $b$-metric spaces with applications, AIMS Mathematics, 5 (2020), 5221–5229. https://doi.org/10.3934/math.2020335 doi: 10.3934/math.2020335
    [6] M. U. Ali, T. Kamran, M. Postolache, Solution of Volterra integral inclusion in $b$-metric spaces via new fixed point theorem, Nonlinear Anal.-Model., 22 (2017), 17–30. https://doi.org/10.15388/NA.2017.1.2 doi: 10.15388/NA.2017.1.2
    [7] M. Anwar, R. Ali, D. Sagheer, N. Hussain, Wardowski type $\gamma$-$F$-contractive approach for nonself multivalued mappings, UPB Sci. Bull. Ser. A, 82 (2020), 69–77.
    [8] A. Baklouti, L. Mifdal, S. Dellagi, A. Chelbi, An optimal preventive maintenance policy for a solar photovoltaic system, Sustainability, 12 (2020), 4266.
    [9] A. Baklouti, Quadratic Hom-Lie triple systems, J. Geom. Phys., 121 (2017), 166–175.
    [10] T. Rasham, A. Shoaib, N. Hussain, M. Arshad, S. U. Khan, Common fixed point results for new Ciric-type rational multivalued F-contraction with an application, J. Fixed Point Theory Appl., 20 (2018), 45.
    [11] T. Rasham, M. De La. Sen, A novel study for hybrid pair of multivalued dominated mappings in $b$-multiplicative metric space with applications, J. Inequal. Appl., 2022 (2022), 107.
    [12] T. Rasham, M. Nazam, H. Aydi, A. Shoaib, C. Park, J. R. Lee, Hybrid pair of multivalued mappings in modular-like metric spaces and applications, AIMS Mathematics, 7 (2022), 10582–10595. http://doi.org/10.3934/math.2022590 doi: 10.3934/math.2022590
    [13] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [14] I. Kramosil, J. Michálek, Fuzzy metric and statistical metric spaces, Kybernetica, 11 (1975), 336–344.
    [15] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Set. Syst., 27 (1988), 385–389. https://doi.org/10.1016/0165-0114(88)90064-4 doi: 10.1016/0165-0114(88)90064-4
    [16] A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Set. Syst., 64 (1994), 395–399.
    [17] D. Gopal, C. Vetro, Some new fixed point theorems in fuzzy metric spaces, Iran. J. Fuzzy Syst., 11 (2014), 95–107.
    [18] V. Gupta, N. Mani, A. Saini, Fixed point theorems and its applications in fuzzy metric spaces, Conference Paper, 2013 (2013).
    [19] F. Mehmood, R. Ali, C. Ionescu, T. Kamran, Extended fuzzy $b$-metric Spaces, J. Math. Anal., 8 (2017), 124–131.
    [20] F. Mehmood, R. Ali, N. Hussain, Contractions in fuzzy rectangular $b$-metric spaces with application. J. Intell. Fuzzy Syst., 37 (2019), 1275–1285.
    [21] D. Mehit, A Banach contraction theorem in fuzzy metric spaces, Fuzzy Set. Syst., 144 (2004), 431–439. https://doi.org/10.1016/S0165-0114(03)00305-1 doi: 10.1016/S0165-0114(03)00305-1
    [22] S. N. Mishra, S. N. Sharma, S. L. Singh, Common fixed point of maps on fuzzy metric spaces, Internat. J. Math. Sci., 17 (1994), 253–258.
    [23] A. F. Roldán-López-de-Hierro, E. Karapinar, S. Manro, Some new fixed point theorems in fuzzy metric space, J. Intell. Fuzzy Syst., 27 (2014), 2257–2264. https://doi.org/10.3233/IFS-141189 doi: 10.3233/IFS-141189
    [24] P. V. Subramanyam, A common fixed point theorem in fuzzy metric spaces, Inform. Sci., 83 (1995), 109–112. https://doi.org/10.1016/0020-0255(94)00043-B doi: 10.1016/0020-0255(94)00043-B
    [25] C. Vetro, Fixed points in a weak non-Archemedean fuzzy metric spaces, Fuzzy Set. Syst., 162 (2011), 84–90. https://doi.org/10.1016/j.fss.2010.09.018 doi: 10.1016/j.fss.2010.09.018
    [26] T. Rasham, F. Saeed, R. P. Agarwal, A. Hussain, A. Felhi, Symmetrical hybrid coupled fuzzy fixed-point results on closed ball in fuzzy metric space with applications, Symmetry, 15 (2022), 30. https://doi.org/10.3390/sym15010030 doi: 10.3390/sym15010030
    [27] M. S. Ashraf, R. Ali, N. Hussain, New fuzzy fixed point results in generalized fuzzy metric spaces With application to integral equations, IEEE Access, 8 (2020), 91653–91660. https://doi.org/10.1109/ACCESS.2020.2994130 doi: 10.1109/ACCESS.2020.2994130
    [28] S. Nădăban, Fuzzy $b$-metric spaces, Int. J. Comput. Commun., 11 (2016), 273–281.
    [29] J. Rodriguez-Lopez, S. Romaguera, The Hausdorff fuzzy metric on compact sets, Fuzzy Set. Syst., 147 (2004), 273–283. https://doi.org/10.1016/j.fss.2003.09.007 doi: 10.1016/j.fss.2003.09.007
    [30] A. Shahzad, A. Shoaib, Q. Mahmood, Fixed point results for the multivalued mapping in Hausdorff fuzzy metric space, J. Fixed Point Theory, 2017 (2017), 3.
    [31] S. Batul, F. Mehmood, A. Hussain, D. Sagheer, H. Aydi, A. Mukheimer, Multivalued contraction maps on fuzzy $b$-metric spaces and an application, AIMS Mathematics, 7 (2022), 5925–5942. http://doi.org/10.3934/math.2022330 doi: 10.3934/math.2022330
    [32] M. S. Ashraf, R. Ali, N. Hussain, Geraghty type contractions in fuzzy $b$-metric spaces with application to integral equations, Filomat, 34 (2020), 3083–3098. https://doi.org/10.2298/FIL2009083A doi: 10.2298/FIL2009083A
    [33] N. Hussain, P. Salimi, V. Parvaneh, Fixed point results for various contractions in parametric and fuzzy b-metric spaces, J. Nonlinear Sci. Appl., 8 (2015), 719–39.
    [34] E. Michael, Continuous selections Ⅰ, Annl. Math., 63 (1956), 361–382.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1228) PDF downloads(58) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog