Research article

Wavelet estimations of the derivatives of variance function in heteroscedastic model

  • Received: 22 February 2023 Revised: 01 April 2023 Accepted: 06 April 2023 Published: 18 April 2023
  • MSC : 62G07, 62G20, 42C40

  • This paper studies nonparametric estimations of the derivatives $ r^{(m)}(x) $ of the variance function in a heteroscedastic model. Using a wavelet method, a linear estimator and an adaptive nonlinear estimator are constructed. The convergence rates under $ L^{\tilde{p}} (1\leq \tilde{p} < \infty) $ risk of those two wavelet estimators are considered with some mild assumptions. A simulation study is presented to validate the performances of the wavelet estimators.

    Citation: Junke Kou, Hao Zhang. Wavelet estimations of the derivatives of variance function in heteroscedastic model[J]. AIMS Mathematics, 2023, 8(6): 14340-14361. doi: 10.3934/math.2023734

    Related Papers:

  • This paper studies nonparametric estimations of the derivatives $ r^{(m)}(x) $ of the variance function in a heteroscedastic model. Using a wavelet method, a linear estimator and an adaptive nonlinear estimator are constructed. The convergence rates under $ L^{\tilde{p}} (1\leq \tilde{p} < \infty) $ risk of those two wavelet estimators are considered with some mild assumptions. A simulation study is presented to validate the performances of the wavelet estimators.



    加载中


    [1] G. Box, Signal-to-noise ratios, performance criteria, and transformations, Technometrics, 30 (1988), 1–17.
    [2] R. J. Carroll, D. Ruppert, Transformation and wighting in regression, Boca Raton: CRC Press, 1988
    [3] W. Härdle, A. Tsybakov, Local polynomial estimators of the volatility function in nonparametric autoregression, J. Econometrics, 81 (1997), 223–242. https://doi.org/10.1016/S0304-4076(97)00044-4 doi: 10.1016/S0304-4076(97)00044-4
    [4] J. Q. Fan, Q. W. Yao, Efficient estimation of conditional variance functions in stochastic regression, Biometrika, 85 (1998), 645–660. https://doi.org/10.1093/biomet/85.3.645 doi: 10.1093/biomet/85.3.645
    [5] A. V. Quevedo, G. G. Vining, Online monitoring of nonlinear profiles using a Gaussian process model with heteroscedasticity, Qual. Eng., 34 (2022), 58–74. https://doi.org/10.1080/08982112.2021.1998530 doi: 10.1080/08982112.2021.1998530
    [6] I. L. Amerise, Constrained quantile regression and heteroskedasticity, J. Nonparamet. Stat., 34 (2022), 344–356. https://doi.org/10.1080/10485252.2022.2053536 doi: 10.1080/10485252.2022.2053536
    [7] L. Wang, L. D. Brown, T. T. Cai, M. Levine, Effect of mean on variance function estimation in nonparametric regression, Ann. Statist., 36 (2008), 646–664. https://doi.org/10.1214/009053607000000901 doi: 10.1214/009053607000000901
    [8] R. Kulik, C. Wichelhaus, Nonparametric conditional variance and error density estimation in regression models with dependent errors and predictors, Electron. J. Statist., 5 (2011), 856–898. https://doi.org/10.1214/11-EJS629 doi: 10.1214/11-EJS629
    [9] Y. D. Shen, C. Gao, D. Witten, F. Han, Optimal estimation of variance in nonparametric regression with random design, Ann. Statist., 48 (2020), 3589–3618. https://doi.org/10.1214/20-AOS1944 doi: 10.1214/20-AOS1944
    [10] D. L. Donoho, I. M. Johnstone, Minimax estimation via wavelet shrinkage, Ann Statist., 26 (1998), 879–921. https://doi.org/10.1214/aos/1024691081 doi: 10.1214/aos/1024691081
    [11] T. T. Cai, Adaptive wavelet estimation: a block thresholding and oracle inequality approach, Ann. Statist., 27 (1999), 898–924. https://doi.org/10.1214/aos/1018031262 doi: 10.1214/aos/1018031262
    [12] G. P. Nason, R. Von Sachs, G. Kroisandt, Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum, J. Roy. Statist. Soc. B, 62 (2000), 271–292. https://doi.org/10.1111/1467-9868.00231 doi: 10.1111/1467-9868.00231
    [13] T. T. Cai, H. H. Zhou, A data-driven block thresholding approach to wavelet estimation, Ann. Statist., 37 (2009), 569–595. https://doi.org/10.1214/07-AOS538 doi: 10.1214/07-AOS538
    [14] P. Abry, G. Didier, Wavelet estimation for operator fractional Brownian motion, Bernoulli, 24 (2018), 895–928. https://doi.org/10.3150/15-BEJ790 doi: 10.3150/15-BEJ790
    [15] L. Y. Li, B. Zhang, Nonlinear wavelet-based estimation to spectral density for stationary non-Gaussian linear processes, Appl. Comput. Harmon. Anal., 60 (2022), 176–204. https://doi.org/10.1016/j.acha.2022.03.001 doi: 10.1016/j.acha.2022.03.001
    [16] R. Kulik, M. Raimondo, Wavelet regression in random design with heteroscedastic dependent errors, Ann. Statist., 37 (2009), 3396–3430. https://doi.org/10.1214/09-AOS684 doi: 10.1214/09-AOS684
    [17] Y. Zhou, A. T. K. Wan, S. Y. Xie, X. J. Wang, Wavelet analysis of change-points in a non-parametric regression with heteroscedastic variance, J. Econometrics, 159 (2010), 183–201. https://doi.org/10.1016/j.jeconom.2010.06.001 doi: 10.1016/j.jeconom.2010.06.001
    [18] T. Palanisamy, J. Ravichandran, A wavelet-based hybrid approach to estimate variance function in heteroscedastic regression models, Stat. Paper, 56 (2015), 911–-932. https://doi.org/10.1007/s00362-014-0614-6 doi: 10.1007/s00362-014-0614-6
    [19] L. Ding, P. Chen, Wavelet estimation in heteroscedastic regression models with $\alpha-$mixing random errorson, Lith. Math. J., 61 (2021), 13–36. https://doi.org/10.1007/s10986-021-09508-x doi: 10.1007/s10986-021-09508-x
    [20] H. J. Woltring, On optimal smoothing and derivative estimation from noisy displacement data in biomechanics, Hum. Movement Sci., 4 (1985), 229–245. https://doi.org/10.1016/0167-9457(85)90004-1 doi: 10.1016/0167-9457(85)90004-1
    [21] S. G. Zhou, D. A. Wolfe, On derivative estimation in spline regression, Stat. Sinica, 10 (2000), 93–108. http://www.jstor.org/stable/24306706
    [22] J. E. Chacón, T. Duong, Data-driven density derivative estimation, with applications to nonparametric clustering and bump hunting, Electron. J. Stat., 7 (2013), 499–532. https://doi.org/10.1214/13-EJS781 doi: 10.1214/13-EJS781
    [23] Y. Q. Wei, D. Y. Liu, D. Boutat, Innovative fractional derivative estimation of the pseudo-state for a class of fractional order linear systems, Automatica, 99 (2019), 157–166. https://doi.org/10.1016/j.automatica.2018.10.028 doi: 10.1016/j.automatica.2018.10.028
    [24] Y. Meyer, Wavelets and operators, London: Cambridge university press, 1992.
    [25] W. Härdle, G. Kerkyacharian, D. Picard, A. Tsybakov, Wavelets, approximation, and statistical applications, New York: Springer, 1998.
    [26] D. L. Donoho, I. M. Johnstone, G. Kerkyacharian, D. Picard, Density estimation by wavelet thresholding, Ann. Statist., 24 (1996), 508–539. http://www.jstor.org/stable/2242660
    [27] G. P. Nason, Wavelet shrinkage using cross-validation, J. Roy. Statist. Soc. B, 58 (1996), 463–479. https://doi.org/10.1111/j.2517-6161.1996.tb02094.x doi: 10.1111/j.2517-6161.1996.tb02094.x
    [28] F. Navarro, A. Saumard, Slope heuristics and V-Fold model selection in heteroscedastic regression using strongly localized bases, ESAIM Probab. Stat., 21 (2017), 412–451. https://doi.org/10.1051/ps/2017005 doi: 10.1051/ps/2017005
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1297) PDF downloads(69) Cited by(1)

Article outline

Figures and Tables

Figures(10)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog