Processing math: 100%
Research article

On a fuzzy bipolar metric setting with a triangular property and an application on integral equations

  • Received: 05 February 2023 Revised: 20 March 2023 Accepted: 26 March 2023 Published: 29 March 2023
  • MSC : 47H10, 54H25

  • In this manuscript, fixed point results without continuity via triangular notion on fuzzy bipolar metric spaces are established. The paper includes tangible examples which display the motivation for such investigations as those presented here. We solve an integral equation in this setting. The present work is a generalization of some published works.

    Citation: Gunaseelan Mani, Arul Joseph Gnanaprakasam, Khalil Javed, Eskandar Ameer, Saber Mansour, Hassen Aydi, Wajdi Kallel. On a fuzzy bipolar metric setting with a triangular property and an application on integral equations[J]. AIMS Mathematics, 2023, 8(6): 12696-12707. doi: 10.3934/math.2023639

    Related Papers:

    [1] Hasanen A. Hammad, Hassen Aydi, Choonkil Park . Fixed point approach for solving a system of Volterra integral equations and Lebesgue integral concept in F$ _{\text{CM}} $-spaces. AIMS Mathematics, 2022, 7(5): 9003-9022. doi: 10.3934/math.2022501
    [2] Abdolsattar Gholidahneh, Shaban Sedghi, Ozgur Ege, Zoran D. Mitrovic, Manuel de la Sen . The Meir-Keeler type contractions in extended modular $ b $-metric spaces with an application. AIMS Mathematics, 2021, 6(2): 1781-1799. doi: 10.3934/math.2021107
    [3] Gunaseelan Mani, Arul Joseph Gnanaprakasam, Absar Ul Haq, Imran Abbas Baloch, Choonkil Park . On solution of Fredholm integral equations via fuzzy $ b $-metric spaces using triangular property. AIMS Mathematics, 2022, 7(6): 11102-11118. doi: 10.3934/math.2022620
    [4] Iqra Shamas, Saif Ur Rehman, Thabet Abdeljawad, Mariyam Sattar, Sami Ullah Khan, Nabil Mlaiki . Generalized contraction theorems approach to fuzzy differential equations in fuzzy metric spaces. AIMS Mathematics, 2022, 7(6): 11243-11275. doi: 10.3934/math.2022628
    [5] Siniša N. Ješić, Nataša A. Ćirović, Rale M. Nikolić, Branislav M. Ranƌelović . A fixed point theorem in strictly convex $ b $-fuzzy metric spaces. AIMS Mathematics, 2023, 8(9): 20989-21000. doi: 10.3934/math.20231068
    [6] Joginder Paul, Mohammad Sajid, Naveen Chandra, Umesh Chandra Gairola . Some common fixed point theorems in bipolar metric spaces and applications. AIMS Mathematics, 2023, 8(8): 19004-19017. doi: 10.3934/math.2023969
    [7] Naeem Saleem, Salman Furqan, Mujahid Abbas, Fahd Jarad . Extended rectangular fuzzy $ b $-metric space with application. AIMS Mathematics, 2022, 7(9): 16208-16230. doi: 10.3934/math.2022885
    [8] Rashid Ali, Faisar Mehmood, Aqib Saghir, Hassen Aydi, Saber Mansour, Wajdi Kallel . Solution of integral equations for multivalued maps in fuzzy $ b $-metric spaces using Geraghty type contractions. AIMS Mathematics, 2023, 8(7): 16633-16654. doi: 10.3934/math.2023851
    [9] Amer Hassan Albargi, Jamshaid Ahmad . Fixed point results of fuzzy mappings with applications. AIMS Mathematics, 2023, 8(5): 11572-11588. doi: 10.3934/math.2023586
    [10] Muhammad Riaz, Umar Ishtiaq, Choonkil Park, Khaleel Ahmad, Fahim Uddin . Some fixed point results for ξ-chainable neutrosophic and generalized neutrosophic cone metric spaces with application. AIMS Mathematics, 2022, 7(8): 14756-14784. doi: 10.3934/math.2022811
  • In this manuscript, fixed point results without continuity via triangular notion on fuzzy bipolar metric spaces are established. The paper includes tangible examples which display the motivation for such investigations as those presented here. We solve an integral equation in this setting. The present work is a generalization of some published works.



    In 1960, Schweizer et al. [1] first initiated the concept of a continuous t-norm. In 1965, Zadeh [2] introduced a fuzzy set and its properties. After that, Kramosil et al. [3] established the fuzzy sets into fuzzy metric spaces in 1975 using the concept of continuous t-norms. In 1994, George et al. [6] introduced the modified version of fuzzy metric spaces. Grabeic [4] established and improved the well-known Banach's fixed point theorem (FPT) to fuzzy metric spaces in the visual of Karamosil et al. [3]. Following that, Gregori et al. [5] gave an extension of the Banach contraction theorem using a fuzzy metric space in the same way as George et al. [6], Mutlu et al. [7] generalized a metric space, also known as a bipolar metric space. Bartwal et al. [8] proposed and proved FPTs using the fuzzy bipolar metric space (FBMS). Very recently, Shamas et al. [9] demonstrated fixed-point results without continuity in the setting of fuzzy metric spaces using the triangular property. In this paper, we will use the triangular property on fuzzy bipolar metric spaces to prove fixed point theorems without continuity. For further fixed point results using fuzzy setting, see the works [10,11,12].

    Now, let's include some basic definitions and useful lemmas.

    Definition 1.1. [13] A triangular norm (shortly, l-norm) is a binary operation on the unit interval [0,1], i.e., a function :[0,1]×[0,1][0,1] such that for all a,b,c[0,1], the following four axioms are satisfied:

    (Tn1) a(bc)=(ab)c (associativity);

    (Tn2) ab=ba (commutativity);

    (Tn3) a1=a (boundary condition);

    (Tn4) abac, whenever bc (monotonicity).

    Definition 1.2. [6] The 3-tuple (X,μ,) is a fuzzy metric space if X is an arbitrary set, is a t-norm and μ:X2×(0,)[0,1] is a fuzzy set on X2×(0,) satisfying the following conditions for all x,y,κX and r,t>0:

    (f1) μ(x,y,t)>0;

    (f2) μ(x,y,t)=1x=y;

    (f3) μ(x,y,t)=μ(y,x,t);

    (f4) μ(x,y,t)μ(y,κ,r)μ(x,κ,t+r);

    (f5) μ(x,y,.):(0,)[0,1] is continuous.

    Definition 1.3. [8] Let Φ and Ψ. A quadruple (Φ,Ψ,Γβ,) is called a FBMS, where is a continuous l-norm and Γβ is a fuzzy set on Φ×Ψ×(0,), if for all l,ρ,δ>0:

    (1) Γβ(σ,μ,l)>0 for all (σ,μ)Φ×Ψ;

    (2) Γβ(σ,μ,l)=1 iff σ=μ for σΦ and μΨ;

    (3) Γβ(σ,μ,l)=Γβ(μ,σ,l) for all σ,μΦΨ;

    (4) Γβ(σ1,μ2,l+ρ+δ)Γβ(σ1,μ1,l)Γβ(σ2,μ1,ρ)Γβ(σ2,μ2,δ) for all σ1,σ2Φ and μ1,μ2Ψ;

    (5) Γβ(σ,μ,.):[0,)[0,1] is left continuous;

    (6) Γβ(σ,μ,.) is non-decreasing for all σΦ and μΨ.

    Definition 1.4. [8] Let (Φ,Ψ,Γβ,) be a FBMS.

    (1) An element σΦΨ is referred to as a left point if σΦ, a right point if σΨ, and a central point if both are satisfied. Similarly, a sequence {σγ} on Φ and a sequence {μγ} on Ψ are referred to as left and right sequences, respectively;

    (2) A sequence {σγ} is convergent to a point σ iff ({σγ} is a left sequence, σ is a right point and limγΓβ(σγ,σ,l)=1 for all l>0) or ({σγ} is a right sequence, σ is a left point and limγΓβ(σ,σγ,l)=1 for all l>0);

    (3) A bisequence ({σγ},{μγ}) is a sequence on the set Φ×Ψ. If the sequences {σγ} and {μγ} are convergent, then the bisequence ({σγ},{μγ}) is said to be convergent. ({σγ},{μγ}) is a Cauchy bisequence, if limγ,mΓβ(σγ,μm,l)=1 for all l>0;

    (4) (Φ,Ψ,Γβ,) is complete, if every Cauchy bisequence is convergent in Φ×Ψ.

    Lemma 1.5. [8] Let (Φ,Ψ,Γβ,) be a FBMS and rΦΨ be a limit of a sequence, then it is its unique limit.

    Definition 1.6. Let (Φ,Ψ,Γβ,) be a FBMS. The FBM Γβ is triangular if

    1Γβ(σ1,μ2,l)1(1Γβ(σ1,μ1,l)1)+(1Γβ(σ2,μ1,l)1)+(1Γβ(σ2,μ2,l)1).

    Example 1.7. Let (Φ,Ψ,|.|) be a bipolar metric space (where Φ and Ψ are subsets of the real number). Let Γβ:Φ×Ψ×(0,)[0,1] be a FBM defined by

    Γβ(σ,μ,l)=ll+|σμ|

    for all l>0, σΦ and μΨ. The FBM Γβ is triangular.

    Proof. We have for all l>0, σΦ and μΨ,

    1Γβ(σ1,μ2,l)1=|σ1μ2|l=|σ1μ1+μ1σ2+σ2μ2|l|σ1μ1|l+|σ2μ1|l+|σ2μ2|l=(1Γβ(σ1,μ1,l)1)+(1Γβ(σ2,μ1,l)1)+(1Γβ(σ2,μ2,l)1),

    which implies that

    1Γβ(σ1,μ2,l)1(1Γβ(σ1,μ1,l)1)+(1Γβ(σ2,μ1,l)1)+(1Γβ(σ2,μ2,l)1),for alll>0.

    Hence, the FBM Γβ is triangular.

    Motivated by Shamas et al. [9], we demonstrate FPTs omitting continuity and using triangular property on FBMSs with an application.

    In this section, we use the triangular property to prove FPTs on FBMSs without continuity. The following result investigates for fixed points of maps Υ satisfying Υ(Φ)Φ and Υ(Ψ)Ψ. These maps are referred in the literature as noncyclic maps, introduced by Fernandez-Leon and Gabeleh [14].

    Theorem 2.1. Let (Φ,Ψ,Γβ,) be a complete FBMS and the mapping Υ:ΦΨΦΨ be such that

    (1) Υ(Φ)Φ and Υ(Ψ)Ψ (i.e., the map Υ is noncyclic);

    (2) 1Γβ(Υ(σ),Υ(μ),l)1k(1Γβ(σ,μ,l)1), for all l>0, where k(0,1);

    (3) Γβ is triangular.

    Then Υ has a UFP (unique fixed point).

    Proof. Fix σ0Φ and μ0Ψ. Assume that Υ(σγ)=σγ+1 and Υ(μγ)=μγ+1 for all γN{0}. Then

    1Γβ(σγ+1,μγ+1,l)1=1Γβ(Υ(σγ),Υ(μγ),l)1k(1Γβ(σγ,μγ,l)1)=k(1Γβ(Υσγ1,Υμγ1,l)1)kγ(1Γβ(σ0,μ0,l)1).

    As γ, we derive that

    limγΓβ(σγ,μγ,l)=1,forl>0.

    We have

    1Γβ(σγ+1,μγ,l)1=1Γβ(Υ(σγ),Υ(μγ1),l)1k(1Γβ(σγ,μγ1,l)1)=k(1Γβ(Υσγ1,Υμγ2,l)1)kγ(1Γβ(σ1,μ0,l)1).

    As γ, we derive that

    limγΓβ(σγ+1,μγ,l)=1,for alll>0.

    Let γ,mN with γ<m. Then by Γβ is triangular, we get

    1Γβ(σγ,μm,l)1(1Γβ(σγ,μγ,l)1)+(1Γβ(σγ+1,μγ,l)1)+(1Γβ(σγ+1,μm,l)1)(1Γβ(σγ,μγ,l)1)+(1Γβ(σγ+1,μγ,l)1)++(1Γβ(σm1,μm1,l)1)+(1Γβ(σm,μm1,l)1)+(1Γβ(σm,μm,l)1)kγ(1Γβ(σ0,μ0,l)1)+kγ(1Γβ(σ1,μ0,l)1)++km1(1Γβ(σ0,μ0,l)1)+km(1Γβ(σ1,μ0,l)1)+km(1Γβ(σ0,μ0,l)1)kγ(1+k+k2++kmγ)(1Γβ(σ0,μ0,l)1)+kγ(1+k+k2++kmγ)(1Γβ(σ1,μ0,l)1)kγ1k(1Γβ(σ0,μ0,l)1)+kγ1k(1Γβ(σ1,μ0,l)1).

    As γ,m, we get

    limγ,mΓβ(σγ,μm,l)=1,forl>0.

    Thus, ({σγ},{μγ}) is a Cauchy bisequence. Since (Φ,Ψ,Γβ,) is complete, ({σγ},{μγ}) is a convergent bisequence. We know that the bisequence ({σγ},{μγ}) is biconvergent, so {σγ}r and {μγ}r for all rΦΨ. By Lemma 1.5, both sequences {σγ} and {μγ} have a unique limit.

    Next, we prove that rΦΨ is a fixed point of Υ. Since Γβ is triangular, we derive that

    1Γβ(Υ(r),r,l)1(1Γβ(Υ(r),Υ(μγ),l)1)+(1Γβ(Υ(σγ),Υ(μγ),l)1)+(1Γβ(Υ(σγ),r,l)1)k(1Γβ(r,μγ,l)1)+k(1Γβ(σγ,μγ,l)1)+(1Γβ(σγ+1,r,l)1).

    As γ, the three right-hand terms go to zero. We deduce that

    Γβ(Υ(r),r,l)=1.

    Therefore, Υ(r)=r. Let vΦΨ be another fixed point of Υ. Then

    1Γβ(r,v,l)1=1Γβ(Υ(r),Υ(v),l)1k(1Γβ(r,v,l)1).

    As k(0,1), therefore

    Γβ(r,v,l)=1.

    Hence, r=v.

    Example 2.2. Let Φ=[0,1] and Ψ={0}N{1} be equipped with a continuous l-norm. Define Γβ(r,v,l)=ll+|σμ|, for all l>0, σΦ and μΨ. Clearly, (Φ,Ψ,Γβ,) is a complete FBMS. Note that Γβ is triangular. Define Υ:ΦΨΦΨ by

    Υ(r)={r4,ifr[0,1],0,ifrN{1}.

    Then,

    1Γβ(Υσ,Υμ,l)1=|ΥσΥμ|l=|σμ|4l|σμ|2l=12(1Γβ(σ,μ,l)1).

    Therefore, all the conditions of Theorem 2.1 are fulfilled with k=12(0,1). Hence, Υ has a UFP, i.e., σ=0.

    The notion of cyclic maps was first introduced in by Kirk el al. [15]. Later, the notion for cyclic maps and fixed points for cyclic maps have been further developed by Eldred and Veeramani [16] by introducing the notion of best proximity points.

    Theorem 2.3. Let (Φ,Ψ,Γβ,) be a complete FBMS and the mapping Υ:ΦΨΦΨ be such that

    (1) Υ(Φ)Ψ and Υ(Ψ)Φ (i.e. the map Υ is cyclic);

    (2) 1Γβ(Υ(σ),Υ(μ),l)1k(1Γβ(σ,μ,l)1), for all l>0, where k(0,1);

    (3) Γβ is triangular.

    Then Υ has a UFP.

    Proof. Fix σ0Φ. Assume that Υ(σγ)=μγ and Υ(μγ)=σγ+1 for all γN{0}. Then

    1Γβ(σγ,μγ,l)1=1Γβ(Υ(μγ1),Υ(σγ),l)1k(1Γβ(σγ,μγ1,l)1)=k(1Γβ(Υμγ1,Υσγ1,l)1)k2γ(1Γβ(σ0,μ0,l)1).

    As γ, we derive that

    limγΓβ(σγ,μγ,l)=1,forl>0.1Γβ(σγ+1,μγ,l)1=1Γβ(Υ(μγ),Υ(σγ),l)1k(1Γβ(σγ,μγ1,l)1)=k(1Γβ(Υμγ1,Υσγ1,l)1)k2γ+1(1Γβ(σ0,μ0,l)1).

    Again,

    limγΓβ(σγ+1,μγ,l)=1,forl>0.

    Let γ,mN with γ<m. Since Γβ is triangular, we get

    1Γβ(σγ,μm,l)1(1Γβ(σγ,μγ,l)1)+(1Γβ(σγ+1,μγ,l)1)+(1Γβ(σγ+1,μm,l)1)(1Γβ(σγ,μγ,l)1)+(1Γβ(σγ+1,μγ,l)1)++(1Γβ(σm1,μm1,l)1)+(1Γβ(σm,μm1,l)1)+(1Γβ(σm,μm,l)1)k2γ(1Γβ(σ0,μ0,l)1)+k2γ+1(1Γβ(σ0,μ0,l)1)++k2m2(1Γβ(σ0,μ0,l)1)+k2m1(1Γβ(σ0,μ0,l)1)+k2m(1Γβ(σ0,μ0,l)1)k2γ(1+k+k2++k2m2γ)(1Γβ(σ0,μ0,l)1)k2γ1k(1Γβ(σ0,μ0,l)1).

    As γ,m, we get

    limγ,mΓβ(σγ,μm,l)=1,forl>0.

    Thus, ({σγ},{μγ}) is a Cauchy bisequence. Since (Φ,Ψ,Γβ,) is complete, ({σγ},{μγ}) is a convergent bisequence. Since the bisequence ({σγ},{μγ}) is biconvergent sequence, {σγ}r and {μγ}r for all rΦΨ. By Lemma 1.5, both sequences {σγ} and {μγ} have a unique limit.

    Next, we prove that rΦΨ is a fixed point of Υ. Since Γβ is triangular, we derive that

    1Γβ(Υ(r),r,l)1(1Γβ(Υ(r),Υ(μγ),l)1)+(1Γβ(Υ(σγ),Υ(μγ),l)1)+(1Γβ(Υ(σγ),r,l)1)k(1Γβ(r,μγ,l)1)+k(1Γβ(σγ,μγ,l)1)+(1Γβ(σγ+1,r,l)1).

    Again, all the right-terms go to zero when γ. Consequently, as γ, we get

    Γβ(Υ(r),r,l)=1.

    Therefore, Υ(r)=r. Let vΦΨ is another fixed point of Υ. Then

    1Γβ(r,v,l)1=1Γβ(Υ(r),Υ(v),l)1k(1Γβ(r,v,l)1).

    As k(0,1), therefore

    Γβ(r,v,l)=1.

    Hence, r=v.

    Example 2.4. Let Φ={0,1,2,7} and Ψ={0,14,12,3} be equipped with a continuous l-norm. Define Γβ(r,v,l)=ll+|σμ| for all l>0, σΦ and μΨ. Clearly, (Φ,Ψ,Γβ,) is a complete FBMS. Note that Γβ is triangular. Define Υ:ΦΨΦΨ by

    Υ(r)={r5,ifr{0,7,2},0,ifr{14,12,1,3}.

    Then,

    1Γβ(Υσ,Υμ,l)1=|ΥσΥμ|l=|σμ|5l|σμ|2l=12(1Γβ(σ,μ,l)1).

    Therefore, all the conditions of Theorem 2.3 are fulfilled with k=12(0,1). Hence, Υ has a UFP, i.e., σ=0.

    The applications of cyclic maps are presented in the investigation of market equilibrium in duopoly markets, see [17,18]. These applications allow us to find the exact solutions of systems of transcendent equations with the help of cyclic maps, for which the computer algebra systems can present only an approximation solutions. For more details, see [19].

    In this section, we are going to present an application of the result for fixed points for noncyclic maps in solving integral equations. Let us consider the integral equation

    σ()=β()+H1H2Ω(,ρ,σ(ρ))dρ,H1H2, (3.1)

    where H1H2 is a Lebesgue measurable set.

    Theorem 3.1. Suppose that:

    (1)Ω:(H21H22)×[0,)[0,) and bL(H1)L(H2);

    (2) a continuous function θ:H21H22[0,) and k(0,1) such that

    |Ω(,ρ,σ(ρ))Ω(,ρ,μ(ρ))|kθ(,ρ)(|σ()μ()|),

    for ,ρH21H22;

    (3) H1H2θ(,ρ)dρ1.

    Then the integral equation (3.1) has a unique solution in L(H1)L(H2).

    Proof. Let Φ=L(H1) and Ψ=L(H2) be two normed linear spaces, where H1,H2 are Lebesgue measurable sets and m(H1H2)<. Consider Γβ:Φ×Ψ×(0,)[0,1] by

    Γβ(σ,μ,l)=ll+|σμ|

    for all σΦ,μΨ. Then (Φ,Ψ,Γβ,) is a complete FBMS. Define Υ:L(H1)L(H2)L(H1)L(H2) by

    Υ(σ())=β()+H1H2Ω(,ρ,σ(ρ))dρ,H1H2.

    Now,

    1Γβ(Υσ(),Υμ(),l)1=|Υσ()Υμ()|l=|β()+H1H2Ω(,ρ,σ(ρ))dρ(β()+H1H2Ω(,ρ,μ(ρ))dρ)|l=|H1H2(Ω(,ρ,σ(ρ))Ω(,ρ,μ(ρ)))dρ|l|H1H2kθ(,ρ)(|σ()μ()|)dρ|lk|σ()μ()|l=k(1Γβ(σ(),μ(),l)1).

    Hence, all the conditions of Theorem 2.1 hold. Here, the integral equation has a unique solution.

    In this paper, we defined FBMSs and investigated some of their properties. The characteristic features of FBMSs have developed and proved fixed point theorems without continuity. Hereafter, we ensured the existence of a solution of an integral equation via the FBMS setting.

    The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work grant code: 22UQU4331214DSR01.

    The authors declare that they have no conflicts of interest.



    [1] B. Schweizer, A. Sklar, Statistical metric spaces, Pacific J. Math., 10 (1960), 313–334. http://dx.doi.org/10.2140/pjm.1960.10.313 doi: 10.2140/pjm.1960.10.313
    [2] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [3] I. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica, 11 (1975), 326–334.
    [4] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets Syst., 27 (1988), 385–389. https://doi.org/10.1016/0165-0114(88)90064-4 doi: 10.1016/0165-0114(88)90064-4
    [5] V. Gregori, A. Sapena, On fixed point theorems in fuzzy metric spaces, Fuzzy Sets Syst., 125 (2002), 245–252. https://doi.org/10.1016/S0165-0114(00)00088-9 doi: 10.1016/S0165-0114(00)00088-9
    [6] A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst., 64 (1994), 395–399. https://doi.org/10.1016/0165-0114(94)90162-7 doi: 10.1016/0165-0114(94)90162-7
    [7] A. Mutlu, U. Gurdal, Bipolar metric spaces and some fixed point theorems, J. Nonlinear Sci. Appl., 9 (2016), 5362–5373. http://dx.doi.org/10.22436/jnsa.009.09.05 doi: 10.22436/jnsa.009.09.05
    [8] A. Bartwal, R. C. Dimri, G. Prasad, Some fixed point theorems in fuzzy bipolar metric spaces, J. Nonlinear Sci. Appl., 13 (2020), 196–204. http://dx.doi.org/10.22436/jnsa.013.04.04 doi: 10.22436/jnsa.013.04.04
    [9] I. Shamas, S. U. Rehman, H. Aydi, T. Mahmood, E. Ameer, Unique fixed-point results in fuzzy metric spaces with an application to Fredholm integral equations, J. Funct. Spaces, 2021 (2021), 4429173. https://doi.org/10.1155/2021/4429173 doi: 10.1155/2021/4429173
    [10] A. Moussaoui, N. Hussain, S. Melliani, N. Hayel, M. Imdad, Fixed point results via extended FZ-simulation functions in fuzzy metric spaces, J. Inequal. Appl., 2022 (2022), 69. https://doi.org/10.1186/s13660-022-02806-z doi: 10.1186/s13660-022-02806-z
    [11] U. D. Patel, S. Radenović, An application to nonlinear fractional differential equation via α-ΓF-fuzzy contractive mappings in a fuzzy metric space, Mathematics, 10 (2022), 2831. https://doi.org/10.3390/math10162831 doi: 10.3390/math10162831
    [12] A. Moussaoui, N. Saleem, S. Melliani, M. Zhou, Fixed point results for new types of fuzzy contractions via admissible functions and FZ-simulation functions, Axioms, 11 (2022), 87. https://doi.org/10.3390/axioms11030087 doi: 10.3390/axioms11030087
    [13] E. P. Klement, R. Mesiar, E. Pap, Triangular norms, Dordrecht: Springer, 2000. https://doi.org/10.1007/978-94-015-9540-7
    [14] A. Fernández-León, M. Gabeleh, Best proximity pair theorems for noncyclic mappings in Banach and metric spaces, Fixed Point Theory, 17 (2016), 63–84.
    [15] W. A. Kirk, P. S. Srinivasan, P. Veeramani, Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theory, 4 (2003), 79–89.
    [16] A. Anthony Eldred, P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl., 323 (2006), 1001–1006. https://doi.org/10.1016/j.jmaa.2005.10.081 doi: 10.1016/j.jmaa.2005.10.081
    [17] Y. Dzhabarova, S. Kabaivanov, M. Ruseva, B. Zlatanov, Existence, uniqueness and stability of market equilibrium in oligopoly markets, Adm. Sci., 10 (2020), 70. https://doi.org/10.3390/admsci10030070 doi: 10.3390/admsci10030070
    [18] S. Kabaivanov, V. Zhelinski, B. Zlatanov, Coupled fixed points for Hardy–Rogers type of maps and their applications in the investigations of market equilibrium in duopoly markets for non-differentiable, nonlinear response functions, Symmetry, 14 (2022), 605. https://doi.org/10.3390/sym14030605 doi: 10.3390/sym14030605
    [19] B. Zlatanov, Coupled best proximity points for cyclic contractive maps and their applications, Fixed Point Theory, 22 (2021), 431–452. https://doi.org/10.24193/fpt-ro.2021.1.29 doi: 10.24193/fpt-ro.2021.1.29
  • This article has been cited by:

    1. (αη)-contractive and (βχ)-contractive mapping based fixed point theorems in fuzzy bipolar metric spaces and application to nonlinear Volterra integral equations, 2024, 139, 10075704, 108307, 10.1016/j.cnsns.2024.108307
    2. Amir Baklouti, Multiple-Attribute Decision Making Based on the Probabilistic Dominance Relationship with Fuzzy Algebras, 2023, 15, 2073-8994, 1188, 10.3390/sym15061188
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1521) PDF downloads(79) Cited by(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog