A two-level factored implicit scheme is considered for solving a two-dimensional unsteady advection-dispersion equation with spatio-temporal coefficients and source terms subjected to suitable initial and boundary conditions. The approach reduces multi-dimensional problems into pieces of one-dimensional subproblems and then solves tridiagonal systems of linear equations. The computational cost of the algorithm becomes cheaper and makes the method more attractive. Furthermore, the two-level approach is unconditionally stable, temporal second-order accurate and spatial fourth-order convergent. The developed numerical scheme is faster and more efficient than a broad range of methods widely studied in the literature for the considered initial-boundary value problem. The stability of the proposed procedure is analyzed in the $ L^{\infty}(t_{0}, T_{f}; L^{2}) $-norm whereas the convergence rate of the algorithm is numerically analyzed using the $ L^{2}(t_{0}, T_{f}; L^{2}) $-norm. Numerical examples are provided to verify the theoretical result.
Citation: Eric Ngondiep. An efficient two-level factored method for advection-dispersion problem with spatio-temporal coefficients and source terms[J]. AIMS Mathematics, 2023, 8(5): 11498-11520. doi: 10.3934/math.2023582
A two-level factored implicit scheme is considered for solving a two-dimensional unsteady advection-dispersion equation with spatio-temporal coefficients and source terms subjected to suitable initial and boundary conditions. The approach reduces multi-dimensional problems into pieces of one-dimensional subproblems and then solves tridiagonal systems of linear equations. The computational cost of the algorithm becomes cheaper and makes the method more attractive. Furthermore, the two-level approach is unconditionally stable, temporal second-order accurate and spatial fourth-order convergent. The developed numerical scheme is faster and more efficient than a broad range of methods widely studied in the literature for the considered initial-boundary value problem. The stability of the proposed procedure is analyzed in the $ L^{\infty}(t_{0}, T_{f}; L^{2}) $-norm whereas the convergence rate of the algorithm is numerically analyzed using the $ L^{2}(t_{0}, T_{f}; L^{2}) $-norm. Numerical examples are provided to verify the theoretical result.
[1] | K. R. Rehfeldt, L. W. Gelhar, Stochastic analysis of dispersion in unsteady flow in heterogeneous acquifers, Water Resour. Res., 28 (1992), 2085–2099. https://doi.org/10.1029/92WR00750 doi: 10.1029/92WR00750 |
[2] | S. E. Serrano, The form of the dispersion equation under recharge and variable velocity, and its analytical solution, Water Resour. Res., 28 (1992), 1801–1808. https://doi.org/10.1029/92WR00665 doi: 10.1029/92WR00665 |
[3] | G. De Josselin De Jong, Longitiudinal and transverse diffusion in granular deposits, Trans. Am. Geophys. Union, 39 (1958), 67–74. https://doi.org/10.1029/TR039i001p00067 doi: 10.1029/TR039i001p00067 |
[4] | E. Ngondiep, Error estimate of MacCormack rapid solver method for 2D incompressible Navier-Stokes problems, arXiv Preprint, 2019. https://doi.org/10.48550/arXiv.1903.10857 |
[5] | E. Ngondiep, Long time stability and convergence rate of MacCormack rapid solver method for nonstationary Stokes-Darcy problem, Comput. Math. Appl., 75 (2018), 3663–3684. https://doi.org/10.1016/j.camwa.2018.02.024 doi: 10.1016/j.camwa.2018.02.024 |
[6] | S. C. R. Dennis, J. D. Hudson, Compact $h^{4}$ finite-difference approximations to operators of Navier-Stokes type, J. Comput. Phys., 85 (1989), 390–416. https://doi.org/10.1016/0021-9991(89)90156-3 doi: 10.1016/0021-9991(89)90156-3 |
[7] | E. Ngondiep, A novel three-level time-split approach for solving two-dimensional nonlinear unsteady convection-diffusion-reaction equation, J. Math. Comput. Sci., 26 (2022), 222–248. |
[8] | E. Ngondiep, Stability analysis of MacCormack rapid solver method for evolutionary Stokes-Darcy problem, J. Comput. Appl. Math., 345 (2019), 269–285. https://doi.org/10.1016/j.cam.2018.06.034 doi: 10.1016/j.cam.2018.06.034 |
[9] | J. Zhang, An explicit fourth-order compact finite-difference scheme for three dimensional convection-diffusion equation, Commun. Numer. Meth. Eng., 14 (1998), 209–218. |
[10] | E. Ngondiep, A high-order numerical scheme for multidimensional convection-diffusion-reaction equation with time-fractional derivative, Numer. Algor., 2023. https://doi.org/10.1007/s11075-023-01516-x |
[11] | E. Ngondiep, An efficient three-level explicit time-split scheme for solving two-dimensional unsteady nonlinear coupled Burgers equations, Int. J. Numer. Meth. Fluids, 92 (2020), 266–284. https://doi.org/10.1002/fld.4783 doi: 10.1002/fld.4783 |
[12] | M. Li, T. Tang, B. Fornberg, A compact fourth-order finite-difference scheme for the incompressible Navier-Stokes equations, Int. J. Numer. Meth. Fluids, 20 (1995), 1137–1151. https://doi.org/10.1002/fld.1650201003 doi: 10.1002/fld.1650201003 |
[13] | E. Ngondiep, A fast third-step second-order explicit numerical approach to investigating and forecasting the dynamic of corruption and poverty in Cameroon, arXiv Preprint, 2022. https://doi.org/10.48550/arXiv.2206.05022 |
[14] | Z. Zlatev, R. Berkowicz, L. P. Prahm, Implementation of a variable stepsize variable formula in the time-integration part of a code for treatment of long-range transport of air polluants, J. Comput. Phys., 55 (1984), 278–301. https://doi.org/10.1016/0021-9991(84)90007-X doi: 10.1016/0021-9991(84)90007-X |
[15] | R. T. Alqahtani, J. C. Ntonga, E. Ngondiep, Stability analysis and convergence rate of a two-step predictor-corrector approach for shallow water equations with source terms, AIMS Math., 8 (2023), 9265–9289. https://doi.org/10.3934/math.2023465 doi: 10.3934/math.2023465 |
[16] | E. Ngondiep, A two-level fourth-order approach for time-fractional convection-diffusion-reaction equation with variable coefficients, Commun. Nonlinear Sci. Numer. Simul., 111 (2022), 106444. https://doi.org/10.1016/j.cnsns.2022.106444 doi: 10.1016/j.cnsns.2022.106444 |
[17] | E. Ngondiep, A robust three-level time split high-order Leapfrog/Crank-Nicolson scheme for two-dimensional Sobolev and regularized long wave equations arising in fluid mechanics, arXiv Preprint, 2022. https://doi.org/10.48550/arXiv.2211.06298 |
[18] | E. Ngondiep, A robust three-level time-split MacCormack scheme for solving two-dimensional unsteady convection-diffusion equation, J. Appl. Comput. Mech., 7 (2021), 559–577. https://doi.org/10.22055/JACM.2020.35224.2601 doi: 10.22055/JACM.2020.35224.2601 |
[19] | C. Man, C. W. Tsai, A high-order predictor-corrector scheme for two-dimensional advection-diffusion equation, Int. J. Numer. Meth. Fluids, 56 (2008), 401–418. https://doi.org/10.1002/fld.1528 doi: 10.1002/fld.1528 |
[20] | E. Ngondiep, A six-level time-split Leap-Frog/Crank-Nicolson approach for two-dimensional nonlinear time-dependent convection diffusion reaction equation, Int. J. Comput. Meth., 2023. https://doi.org/10.1142/S0219876222500645 |
[21] | B. J. Noye, H. H. Tan, Finite difference methods for solving the two-dimensional advection-diffusion equation, Int. J. Numer. Meth. Fluids, 9 (1989), 75–98. https://doi.org/10.1002/fld.1650090107 doi: 10.1002/fld.1650090107 |
[22] | E. Ngondiep, An efficient three-level explicit time-split approach for solving 2D heat conduction equations, Appl. Math. Inf. Sci., 14 (2020), 1075–1092. https://doi.org/10.18576/amis/140615 doi: 10.18576/amis/140615 |
[23] | E. Ngondiep, Long time unconditional stability of a two-level hybrid method for nonstationary incompressible Navier-Stokes equations, J. Comput. Appl. Math., 345 (2019), 501–514. https://doi.org/10.1016/j.cam.2018.05.023 doi: 10.1016/j.cam.2018.05.023 |
[24] | T. Nazir, M. Abbas, A. I. M. Ismail, A. A. Majid, A. Rashid, The numerical solution of advection-diffusion problems using new cubic trigonometric B-splines approach, Appl. Math. Model., 40 (2016), 4586–4611. https://doi.org/10.1016/j.apm.2015.11.041 doi: 10.1016/j.apm.2015.11.041 |
[25] | E. Ngondiep, A robust numerical two-level second-order explicit approach to predict the spread of covid-2019 pandemic with undetected infectious cases, J. Comput. Appl. Math., 403 (2022), 113852. https://doi.org/10.1016/j.cam.2021.113852 doi: 10.1016/j.cam.2021.113852 |
[26] | E. Ngondiep, Unconditional stability of a two-step fourth-order modified explicit Euler/Crank-Nicolson approach for solving time-variable fractional mobile-immobile advection-dispersion equation, arXiv Preprint, 2022. https://doi.org/10.48550/arXiv.2205.05077 |
[27] | K. Huang, J. Simunek, M. T. Van Genuchten, A third-order numerical scheme with upwing weighting for solving the solute transport equation, Int. J. Numer. Meth. Eng., 40 (1997), 1623–1637. |
[28] | A. Gharehbaghi, Third and fifth order finite volume schemes for advection-diffusion equation with variable coefficients in semi-infinite domain, Water Environ. J., 31 (2017), 184–193. https://doi.org/10.1111/wej.12233 doi: 10.1111/wej.12233 |
[29] | E. Ngondiep, N. Kerdid, M. A. M. Abaoud, I. A. I. Aldayel, A three-level time-split MacCormack method for two-dimensional nonlinear reaction-diffusion equations, Int. J. Numer. Meth. Fluids, 92 (2020), 1681–1706. https://doi.org/10.1002/fld.4844 doi: 10.1002/fld.4844 |
[30] | E. Ngondiep, Unconditional stability over long time intervals of a two-level coupled MacCormack/Crank-Nicolson method for evolutionary mixed Stokes-Darcy model, J. Comput. Appl. Math., 409 (2022), 114148. https://doi.org/10.1016/j.cam.2022.114148 doi: 10.1016/j.cam.2022.114148 |
[31] | S. G. Li, F. Ruan, D. Mclaughli, A space-time accurate method for solving solute transport problems, Water Resour. Res., 28 (1992), 2297–2306. https://doi.org/10.1029/92WR01009 doi: 10.1029/92WR01009 |
[32] | G. Comini, M. Manzan, C. Nonino, Analysis of finite element schemes for convection-type problems, Int. J. Numer. Meth. Fluids, 20 (1995), 443–458. https://doi.org/10.1002/fld.1650200603 doi: 10.1002/fld.1650200603 |
[33] | R. J. Mitchell, A. S. Mayer, A numerical model for transient-hysteretic flow and solute transport in unsaturated porous media, J. Contam. Hydrol., 50 (1998), 243–264. https://doi.org/10.1016/S0169-7722(97)00042-9 doi: 10.1016/S0169-7722(97)00042-9 |
[34] | M. A. Malusis, C. D. Shackelford, Explicit and implicit coupling during solute transport through clay membrane barries, J. Contam. Hydrol., 72 (2004), 259–285. https://doi.org/10.1016/j.jconhyd.2003.12.002 doi: 10.1016/j.jconhyd.2003.12.002 |
[35] | E. Ngondiep, A fourth-order two-level factored implicit scheme for solving two-dimensional unsteady transport equation with time-dependent dispersion coefficients, Int. J. Comput. Methods Eng. Sci. Mech., 22 (2021), 253–264. https://doi.org/10.1080/15502287.2020.1856972 doi: 10.1080/15502287.2020.1856972 |
[36] | P. Herrera, A. Valocchi, Positive solution of two-dimensional solute transport in heterogeneous acquifers, Groundwater, 44 (2006), 803–813. https://doi.org/10.1111/j.1745-6584.2006.00154.x doi: 10.1111/j.1745-6584.2006.00154.x |
[37] | E. Ngondiep, A novel three-level time-split MacCormack scheme for two-dimensional evolutionary linear convection-diffusion-reaction equation with source term, Int. J. Comput. Math., 98 (2021), 47–74. https://doi.org/10.1080/00207160.2020.1726896 doi: 10.1080/00207160.2020.1726896 |
[38] | E. Ngondiep, A two-level factored Crank-Nicolson method for two-dimensional nonstationary advection-diffusion equation with time dependent dispersion coefficients and source sink/term, Adv. Appl. Math. Mech., 13 (2021), 1005–1026. |
[39] | M. M. Gupta, R. P. Manohar, J. W. Stephenson, A single cell high order scheme for the convection-diffusion equation with variable coefficients, Int. J. Numer. Methods Fluids, 4 (1984), 641–651. https://doi.org/10.1002/fld.1650040704 doi: 10.1002/fld.1650040704 |
[40] | Z. Ahmad, U. C. Kothyari, Time-line cubic spline interpolation scheme for solution of advection-diffusion equation, Comput. Fluids, 30 (2001), 737–752. https://doi.org/10.1016/S0045-7930(00)00032-3 doi: 10.1016/S0045-7930(00)00032-3 |
[41] | S. Karaa, J. Zhang, Higher order ADI method for solving unsteady convection-diffusion problems, J. Comput. Phys., 198 (2004), 1–9. https://doi.org/10.1016/j.jcp.2004.01.002 doi: 10.1016/j.jcp.2004.01.002 |
[42] | M. Aral, B. Liao, Analytical solutions for two-dimensional transport equations with time-dependent dispersion coefficients, J. Hydrol. Eng., 1 (1996), 20–32. |
[43] | H. B. Fisher, J. E. List, C. R. Koh, J. Imberger, N. H. Brooks, Mixing in inland and coastal waters, Cambridge: Academic Press, 1979. |
[44] | A. Sanskrittyayn, V. P. Singh, V. K. Bharati, N. Kumar, Analytical solution of two-dimensional advection-dispersion equation with spatio-temporal coefficients for point sources in an infinite medium using Green's function method, Environ. Fluid Mech., 18 (2018), 739–757. https://doi.org/10.1007/s10652-018-9578-8 doi: 10.1007/s10652-018-9578-8 |
[45] | J. C. Kalita, D. C. Dalal, A. K. Dass, A class of higher order compact schemes for the unsteady two-dimensional convection-diffusion equation with variable convection coefficients, Int. J. Numer. Methods Fluids, 38 (2002), 1111–1131. https://doi.org/10.1002/fld.263 doi: 10.1002/fld.263 |
[46] | L. Kong, P. Zhu, Y. Wang, Z. Zeng, Efficient and accurate numerical methods for the multidimensional convection-diffusion equations, Math. Comput. Simul., 162 (2019), 179–194. https://doi.org/10.1016/j.matcom.2019.01.014 doi: 10.1016/j.matcom.2019.01.014 |